www.fgks.org   »   [go: up one dir, main page]

TIMBER SCREWS AND DECK FASTENING - 2023

Page 1

TIMBER SCREWS AND DECK FASTENING TIMBER, CONCRETE, METAL TERRACES AND FAÇADES


Solutions for Building Technology



TIMBER

15

PARTIALLY THREADED - COUNTERSUNK HEAD

PLATE FASTENING

SHS.................................................. 16

HBS PLATE...................................212

SHS AISI410...................................20

HBS PLATE EVO......................... 222

HTS..................................................26

HBS PLATE A4.............................227

HBS..................................................30

LBS................................................ 228

HBS SOFTWOOD........................ 44

LBS EVO...................................... 234

HBS COIL.......................................50

LBS HARDWOOD...................... 238

HBS EVO........................................52

LBS HARDWOOD EVO............. 244

HBS EVO C5..................................58

LBA............................................... 250

HBS HARDWOOD....................... 60

DWS.............................................. 259

HUS.................................................68 XYLOFON WASHER.....................73

PARTIALLY THREADED - FLANGE HEAD TBS.................................................. 76

CONCRETE

261

TIMBER-TO-CONCRETE

TBS SOFTWOOD........................ 88 CTC.............................................. 262

V

X

S

X

G

X

TBS MAX.........................................92

V

X

X

S

X

S

G

X

G

V

X

X V

X

S

X

G

X

TBS FRAME....................................98

TC FUSION..................................270

TBS EVO.......................................102 TBS EVO C5.................................108

CONCRETE AND MASONRY

KOP............................................... 110

MBS | MBZ....................................274 SKR EVO | SKS EVO....................276

FULLY THREADED - CYLINDRICAL HEAD

SKR | SKS | SKP............................278

VGZ................................................120 VGZ EVO......................................144 VGZ EVO C5................................152 VGZ HARDWOOD......................154

FULLY THREADED - COUNTERSUNK HEAD VGS................................................164 VGS EVO..................................... 180 VGS EVO C5................................186

METAL

281

TIMBER-TO-METAL SBD............................................... 284 SBS................................................ 292 SBS A2 | AISI304........................ 296 SPP............................................... 298

VGS A4..........................................188 VGU.............................................. 190 RTR................................................196

FASTENING METAL SHEET SBN - SBN A2 | AISI304........... 302 SAR............................................... 304

DOUBLE THREAD

MCS A2 | AISI304...................... 306 DGZ.............................................. 202 DRS............................................... 208 DRT................................................210

MTS A2 | AISI304....................... 308 CPL............................................... 309 WBAZ............................................310


DECKS AND FACADES

313

SCREWS

COMPLEMENTARY PRODUCTS

401

SCREWDRIVERS AND NAILGUNS SCI HCR........................................316

A 12............................................... 402

SCI A4 | AISI316...........................318

A 18 | ASB 18............................... 402

SCI A2 | AISI304......................... 320

KMR 3373.................................... 403

KKT COLOR A4 | AISI316..........324

KMR 3372.................................... 403

KKT A4 | AISI316........................ 328

KMR 3352....................................404

KKT COLOR.................................332

KMR 3338....................................404

FAS A4 | AISI316......................... 336

KMR 3371.................................... 405

KKZ A2 | AISI304........................ 338

B 13 B........................................... 405

KKZ EVO C5............................... 342

ANKER NAILGUNS....................406

EWS AISI410 | EWS A2.............. 344

D 38 RLE...................................... 407

KKF AISI410................................. 348

ACCESSORIES AND TEMPLATES

KKA AISI410.................................352

CATCH.........................................408

KKA COLOR................................ 354

TORQUE LIMITER.....................408

CLIPS

JIG VGU....................................... 409 FLAT | FLIP.................................. 356

JIG VGZ 45°................................ 409

SNAP............................................ 360

BIT STOP......................................410

TVM.............................................. 362

DRILL STOP.................................410

GAP.............................................. 366

JIG ALU STA................................. 411

TERRALOCK............................... 370

COLUMN...................................... 411 BEAR.............................................412

SUBSTRUCTURE

CRICKET.......................................412 JFA.................................................374 SUPPORT.....................................378

LIFTING

ALU TERRACE............................ 386 WASP.............................................413

GROUND COVER.......................392

RAPTOR........................................413

NAG...............................................392 GRANULO....................................393 TERRA BAND UV....................... 394 PROFID........................................ 394

DRILL BITS AND BITS

STAR............................................. 394

LEWIS............................................414

SHIM............................................. 395

SNAIL HSS....................................415

SHIM LARGE............................... 395

SNAIL PULSE...............................416

FASTENERS FOR INSULATION

BIT................................................. 417

THERMOWASHER..................... 396 ISULFIX..........................................397 WRAF........................................... 398

CONTENTS


6 | MADE TO CONNECT


Made to connect HEADQUARTERS • product development • certification • quality check

MANUFACTURING PLANT

INCREASINGLY FAST, SECURE, TECHNOLOGICAL CONNECTIONS We have a new plant in Italy that enhances the development, production and distribution of screws and connectors. We have supported timber construction for more than 30 years because we believe it is the right way to build a better future. We design in Alto Adige, we produce in Italy and around the

world, we export everywhere. Our screws are associated with a unique identification code that guarantees traceability from raw material to marketing. Connecting worlds, materials and people is what we do best, ever since.

rothoblaas.com

MADE TO CONNECT | 7


SERVICE CLASSES

The service classes are related to the thermo-hygrometric conditions of the environment in which a timber structural element is installed. They relate the temperature and humidity of the surroundings to the water content within the material.

SC1

SC2

SC3

SC4

internal

external but covered

external exposed

external in contact

elements within insulated and conditioned buildings

sheltered elements (i.e. not directly exposed to rain or precipitation), in uninsulated and unconditioned structures

elements directly exposed to the weather and not permanently exposed to water

elements immersed in soil or water (e.g. foundation piles and marine structures)

65%

85%

95%

-

(12%)

(20%)

(24%)

saturated

EXPOSURE

MOISTURE LEVEL atmospheric/timber

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

rare condensation

rare condensation

occasional condensation

frequent condensation

permanent condensation

> 10 km from the coast

from 10 to 3 km from 3 to 0,25 km from the coast from the coast

CLASSES

MOISTURE

Corrosion caused by the atmosphere depends on relative humidity, air pollution, chloride content and whether the connection is internal, external protected or external. Exposure is described by the CE category which is based on category C as defined in EN ISO 9223. Atmospheric corrosivity only affects the exposed part of the connector.

DISTANCE FROM THE SEA

POLLUTION

WOOD CORROSIVITY

< 0,25 km from the coast

very low

low

average

high

very high

deserts, central arctic/antarctic

rural areas with little pollution, small towns

urban and industrial areas with medium pollution

highly polluted urban and industrial area

environment with very high industrial pollution

T1

T2

T3

T4

T5

pH

pH

pH

pH

pH

any

any

pH > 4

pH ≤ 4

any

"standard" timbers low acidity and no treatment

“aggressive” woods high acidity and/or treated

CLASSES

Corrosion caused by wood depends on the wood species, wood treatment and moisture content. Exposure is defined by the TE category as indicated. The corrosivity of wood only affects the connector part inserted in the wooden element.

TIMBER pH AND TREATMENT

MOISTURE CONTENT OF THE WOOD

SERVICE CLASS

LEGEND:

≤ 10%

10% <

SC1

≤ 16%

SC2

use according to regulations

For further information, see SMARTBOOK TIMBER SCREWS at www.rothoblaas.com.

8 | SMARTBOOK TIMBER SCREWS

16% <

SC3

≤ 20%

SC3

> 20%

SC4

Rothoblaas experience


HOW MUCH DO WE KNOW ABOUT SCREWS? Theory, practice, experimental campaigns: putting it all together on screws takes years of lectures, workshops and construction sites. We make it available to you in 70 pages that are extra catalogue. Because our experience is in your hands. Scan the QR code to download the smartbook rothoblaas.com


COMPLETE RANGE

HEADS AND TIPS HEAD TYPE

TIP TYPE COUNTERSUNK WITH RIBS HBS, HBS COIL, HBS EVO C4/C5, HBS S, VGS, VGS EVO C4/C5, VGS A4, SCI A2/A4, SBS, SPP, MBS

3 THORNS HBS, HTS, HBS COIL, HBS EVO C4/C5, HBS PLATE, HBS PLATE EVO, TBS, TBS MAX, TBS EVO C4/C5, TBS FRAME, VGZ, VGZ EVO C4/C5, VGS, VGS EVO C4/C5, DGZ, CTC, SHS, SHS AISI410, KKF AISI410, SCI A2

FLANGE

SELF-DRILLING

TBS , TBS MAX, TBS EVO C4/C5, TBS S, FAS A4

VGZ , VGS, VGS A4

FLAT FLANGE

LBS, LBS EVO, DRS, DRT, DWS, DWS COIL, MCS A2, KKT COLOR A4, KKT A4, EWS A2, EWS AISI410, SCI HCR, SCI A4, FAS

SHARP

TBS FRAME

COUNTERSUNK SMOOTH

SHARP SAW

HTS, DRS, DRT, SKS EVO, SBS A2, SBN, SBN A2, SCI HCR

HBS S, TBS S

COUNTERSUNK 60°

SHARP SAW NIBS (RBSN)

SHS, SHS AISI410, HBS H

VGS

ROUND

SHARP 2 CUT

LBS, LBS EVO, LBS H, LBS H EVO

KKT COLOR

HEXAGONAL

STANDARD FOR WOOD

KOP, SKR EVO, VGS, VGS EVO, MTS A2, SAR

MBS, MBZ, KOP, MTS A2

CONE-SHAPED

HARD WOOD TIMBER

KKT A4 COLOR, KKT A4, KKT COLOR

HBS H, VGZ H

PAN HEAD

HARD WOOD (STEEL - to - TIMBER)

HBS P, HBS P EVO, KKF AISI410

LBS H, LBS H EVO

REINFORCED PAN HEAD

HARD WOOD (DECKING)

HBS PLATE, HBS PLATE EVO, HBS PLATE A4

KKZ A2, KKZ EVO C5

CONVEX

CONCRETE

EWS A2, EWS AISI410, MCS A2

SKR EVO, SKS EVO

CYLINDRICAL

METAL (TAPERED TIP)

VGZ, VGZ EVO C4/C5, VGZ H, DGZ, CTC, MBZ, SBD, KKZ A2, KKZ EVO C5, KKA AISI410, KKA COLOR

SBD

BUGLE

SBS, SBS A2, SPP

METAL (WITH FINS) DWS, DWS COIL

METAL (WITHOUT FINS) SBD, SBN, SBN A2, KKA AISI 410, KKA COLOR

10 | COMPLETE RANGE


RESEARCH & DEVELOPMENT

3 THORNS TIP

Extensive test campaigns carried out in Rothoblaas' own laboratories and at external institutions on softwood, hardwood and LVL have resulted in the development of a performing product in every respect.

Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

Featuring raised slitting elements and an umbrella thread reaching the end, the 3 THORNS tip ensures a quick initial grip and easy installation, reduces torsional stress on the screw and minimises timber damage. The aesthetic finish is optimal.

Thanks to its counter-threaded slitting elements, the 3 THORNS tip facilitates insertion of the screw into the grains without damaging them. It acts as a guide hole, allowing the reduction of edge distances and screw spacing. At the same time, it prevents wooden element's cracking and mechanisms of brittle failure of the connection.

X

V

S

C

X

G

V

S

B

X

X

A

X

X

REDUCTION OF MINIMUM DISTANCES

G

EASY AND FAST INSTALLATION

D The sequence represents the test procedure for the evaluation of minimum distances for axially stressed screws according to EAD 130118-01-0603.

LEGEND A standard tip B standard tip (with pre-drilled hole) C 3 THORNS tip D self-drilling tip

The test is performed by tightening the screw, unscrewing it after 24 hours and filling the hole with dye to check its diffusion inside the wooden element. The portion of wood affected by the insertion of the screw is proportional to the red area.

The picture shows the insertion of screws with different tips and shows the change in pull-through depth after 1.0 second of tightening.

To be inserted, the screw must overcome the strength force of the wood. The screwing force, measured through the insertion moment (Mins), is only minimised if the tip is performing.

A B

Mins

C D

0

Lins

A standard tip

B standard tip (with pre-drilled hole)

C 3 THORNS tip

D self-drilling tip

100%

The graph shows the development of the insertion moment for screws with different geometric characteristics of the drill bit and the same boundary conditions (screw diameter, thread length and type, timber substrate material, applied force) as a function of the penetration length (Lins).

The accumulated torsional stress on the screw with a 3 THORNS tip (C) during its insertion is significantly lower than in the case of screws with standard tips (A) and is close to the screwing with pre-drilling hole (B).

The 3 THORNS tip (C) exhibits similar behaviour to that of the standard screw inserted with pre-drilling hole (B), tending towards the case of the self-drilling tip screw (D).

RESEARCH & DEVELOPMENT | 11


COMPLETE RANGE

MATERIALS AND COATINGS

1

2

3

4

5

colour

CARBON STEEL WITH COATING C5

C5

C5 EVO ANTI-CORROSION COATING

EVO COATING

Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt spray exposure time (SST) according to ISO 9227 greater than 3000h (test carried out on screws previously screwed and unscrewed in Douglas fir).

C4

C4 EVO ANTI-CORROSION COATING

EVO COATING

ORGANIC COATING

Zn

ELECTRO PLATED

Inorganic-based multilayer coating with a functional outer layer of epoxy matrix with aluminium flakes. Suitability for atmospheric corrosivity class C4 proven by RISE.

ORGANIC ANTI-CORROSION COATING Coloured organic-based coating that provides excellent resistance to atmospheric and wood corrosive agents in outdoor applications.

ELECTROLYTIC GALVANIZING Coating consisting of a layer of electrolytic galvanizing with Cr passivation; standard for most connectors.

STAINLESS STEEL HCR

HIGH CORROSION RESISTANT - CRC V Austenitic stainless steel. It is characterised by high molybdenum and low carbon content. It offers very high resistance to general corrosion, stress corrosion cracking, intergranular corrosion and pitting. The appropriate choice for exposed fasteners in indoor pools.

A4

STAINLESS STEEL A4 | AISI316 - CRC III

A2

STAINLESS STEEL - A2 | AISI304 - CRC II

A2

STAINLESS STEEL - A2 | AISI305 - CRC II

410

AISI410 STAINLESS STEEL

AISI 316

AISI 304

AISI 305

AISI

LEGEND:

Austenitic stainless steel. The presence of molybdenum provides high resistance to generalised and crevice corrosion.

Austenitic stainless steel. It is the most common of the austenitic steels. It offers an excellent level of protection against generalised corrosion.

Austenitic stainless steel similar to A2 | AISI304. This alloy contains slightly more carbon than A2 | AISI304, making it more workable in production.

Martensitic stainless steel, characterised by its high carbon content. Suitable for outdoor applications (SC3). This stainless steels offers the highest mechanical performance compared to the other available stainless steels. C

atmospheric corrosivity classes

C

Rothoblaas experience

T

wood corrosivity classes

T

Rothoblaas experience

Atmospheric corrosivity classes defined according to EN 14592:2022 based on EN ISO 9223 and EN 1993-1-4:2014 (for stainless steel, an equivalent atmospheric corrosivity class was determined considering only the influence of chlorides and without a cleaning maintenance). Wood corrosivity classes according to EN 14592:2022.

For further information, see SMARTBOOK TIMBER SCREWS at www.rothoblaas.com.

12 | COMPLETE RANGE


RESEARCH & DEVELOPMENT

EVO COATINGS

Rothoblaas research projects result in coatings that meet the most complex market requirements. Our goal is to offer stateof-the-art fastening solutions that guarantee uncompromising mechanical strength and corrosion resistance.

C4 EVO

C5 EVO

C4

C5

Atmospheric corrosivity class C4: areas with a high concentration of pollutants, salts or chlorides. For example, heavily polluted urban and industrial areas and coastal zones.

Atmospheric corrosivity class C5: areas with a very high concentration of salts, chlorides or corrosive agents from production processes. For example, places by the sea or areas of high industrial pollution.

C4

EVO COATING

Inorganic-based multilayer coating with a functional outer layer of epoxy matrix with aluminium flakes. C5

1440 h

C5

EVO COATING

Organic-based multilayer coating with a functional layer. The top-coat has a sealing function, which delays the start of the corrosion reaction.

> 3000 h

t=0h

Hours of exposure in salt spray test according to EN ISO 9227:2012 in the absence of red rust.

t=0h

Hours of exposure in salt spray test according to EN ISO 9227:2012 in the absence of red rust carried out on previously screwed and unscrewed Douglas fir screws. t = 1440 h

t = > 3000 h

DISTANCE FROM THE SEA RESISTANCE TO CHLORIDE EXPOSURE(1)

C4

C4 EVO anti-corrosion coating(2)

C5

C5 EVO anti-corrosion coating(2)

EVO COATING

C5

EVO COATING

distance from the sea

10 km

3 km

1 km

0,25 km

0

(1) C4 and C5 are defined according to EN 14592:2022 based on EN ISO 9223. (2) EN 14592:2022 currently limits the service life of alternative coatings to 15 years.

RESEARCH & DEVELOPMENT | 13


TIMBER


TIMBER

SHS

VGS

60° COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

SHS AISI410 60° COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

VGS EVO

HTS

FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

FULLY THREADED COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . 26

HBS COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

HBS SOFTWOOD COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

HBS COIL HBS BOUND SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

HBS EVO

VGS EVO C5 FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD. . . . 186

VGS A4 FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD. . . . 188

VGU 45° WASHER FOR VGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

RTR STRUCTURAL REINFORCEMENT SYSTEM . . . . . . . . . . . . . . . . . . 196

COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

HBS EVO C5 COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

HBS HARDWOOD COUNTERSUNK SCREW FOR HARDWOODS. . . . . . . . . . . . . . . . . 60

HUS TURNED WASHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

DGZ DOUBLE THREADED SCREW FOR INSULATION . . . . . . . . . . . . . 202

DRS TIMBER-TO-TIMBER SPACER SCREW. . . . . . . . . . . . . . . . . . . . . . .208

DRT TIMBER-BRICKWORK SPACER SCREW . . . . . . . . . . . . . . . . . . . . . 210

XYLOFON WASHER SEPARATING WASHER FOR SCREWS. . . . . . . . . . . . . . . . . . . . . . . . 73

HBS PLATE PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . 212

TBS FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

TBS SOFTWOOD FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

TBS MAX XL FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

TBS FRAME FLAT FLANGE HEAD SCREW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

TBS EVO FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

TBS EVO C5 FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

KOP COACH SCREW DIN571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VGZ

HBS PLATE EVO PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

HBS PLATE A4 PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . 227

LBS ROUND HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . 228

LBS EVO ROUND HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . 234

LBS HARDWOOD ROUND HEAD SCREW FOR PLATES ON HARDWOODS. . . . . . . 238

LBS HARDWOOD EVO ROUND HEAD SCREW FOR PLATES ON HARDWOODS. . . . . . . 244

LBA HIGH BOND NAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

DWS DRYWALL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

FULL THREADED SCREWWITH CYLINDRICAL HEAD . . . . . . . . . 120

VGZ EVO FULLY THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . 144

VGZ EVO C5 FULLY THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . 152

VGZ HARDWOOD FULLY THREADED SCREW FOR HARDWOODS . . . . . . . . . . . . . . 154

TIMBER | 15


SHS

ETA-11/0030

UKTA-0836 22/6195

ETA-11/0030

60° COUNTERSUNK SCREW SMALL HEAD AND 3 THORNS TIP The 60° head and 3 THORNS tip allow easy insertion of the screw into small thickness without creating openings in the timber.

ENLARGED IMPRESSION Compared to common carpentry screws, it has a larger Torx cavity: TX 25 for Ø4 and 4.5, TX 30 for Ø5. It is the right screw for users requiring strength and precision.

FASTENING ON TONGUE AND GROOVE BOARDS For fixing beads or small elements, the 3.5 mm diameter version is perfectly suited for application in joints.

BIT INCLUDED

DIAMETER [mm] 3

3,5

5

12

LENGTH [mm] 12

30

120

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Ø3,5

Zn

Ø4 - Ø4,5 - Ø5

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • • • • •

16 | SHS | TIMBER

tongue-and-groove boards timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL

1000


CODES AND DIMENSIONS d1

CODE

L

b

A

[mm]

[mm]

[mm]

SHS3530( * )

30

20

10

500

SHS440

40

24

16

500

SHS3540( * )

40

26

14

500

SHS450

50

30

20

400

SHS3550( * )

50

34

16

500

SHS460

60

35

25

200

SHS3560( * )

60

40

20

500

SHS470

70

40

30

200

SHS4550

50

30

20

200

SHS4560

60

35

25

200

SHS4570

70

40

30

200

SHS550

50

24

26

200

SHS560

60

30

30

200

SHS570

70

35

35

200

SHS580

80

40

40

200

[mm]

3,5 TX 10

pcs

d1

CODE

[mm]

4 TX 25

( * ) Not holding CE marking.

4,5 TX 25

5 TX 30

L

b

A

[mm]

[mm]

[mm]

pcs

SHS590

90

45

45

200

SHS5100

100

50

50

200

SHS5120

120

60

60

200

GEOMETRY AND MECHANICAL CHARACTERISTICS SHS Ø3,5

SHS Ø4 - Ø4,5 - Ø5

A

A dS

dS dK

SHS

d2 d1

60°

XXX

dK

d2 d1

60° b

b L

L

GEOMETRY Nominal diameter

d1

[mm]

3,5

4

4,5

5

Head diameter

dK

[mm]

5,75

8,00

9,00

10,00

Thread diameter

d2

[mm]

2,30

2,55

2,80

3,40

Shank diameter

dS

[mm]

2,65

2,75

3,15

3,65

Pre-drilling hole diameter(1)

dV,S

[mm]

2,0

2,5

2,5

3,0

Pre-drilling hole diameter(2)

dV,H

[mm]

-

-

-

3,5

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

4

4,5

5

Tensile strength

ftens,k

[kN]

5,0

6,4

7,9

Yield moment

My,k

[Nm]

3,0

4,1

5,4

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

TIMBER | SHS | 17


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

20

a3,t

[mm]

15∙d

60

a3,c

[mm]

10∙d

40

a4,t

[mm]

5∙d

a4,c

[mm]

5∙d

10∙d

4

4,5

40

45

F

α=90°

5

d1

[mm]

10∙d

50

a1

[mm]

23

5∙d

25

a2

[mm]

5∙d

20

23

5∙d

25

68

15∙d

75

a3,t

[mm]

10∙d

40

45

10∙d

50

45

10∙d

50

a3,c

[mm]

10∙d

40

45

10∙d

50

20

23

5∙d

25

a4,t

[mm]

7∙d

28

32

10∙d

50

20

23

5∙d

25

a4,c

[mm]

5∙d

20

23

5∙d

25

5∙d

4

4,5

20

23

5 5∙d

25

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

12

14

3∙d

a3,t

[mm]

12∙d

48

54

12∙d

a3,c

[mm]

7∙d

28

32

7∙d

a4,t

[mm]

3∙d

12

14

a4,c

[mm]

3∙d

12

14

5∙d

4

4,5

20

23

F

5

d1

[mm]

25

a1

[mm]

4∙d

15

a2

[mm]

4∙d

60

a3,t

[mm]

7∙d

35

a3,c

[mm]

7∙d

3∙d

15

a4,t

[mm]

3∙d

15

a4,c

[mm]

5∙d

α=90° 4

4,5

16

18

4∙d

20

5

16

18

4∙d

20

28

32

7∙d

35

28

32

7∙d

35

5∙d

20

23

7∙d

35

3∙d

12

14

3∙d

15

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTE on page 19.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

18 | SHS | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber ε=90°

timber-to-timber ε=0°

RV,90,k

RV,0,k

SPAN

[kN]

[kN]

[mm]

0,83 0,91 0,99 0,99 1,06 1,18 1,22 1,29 1,46 1,46 1,46 1,46 1,46 1,46

0,51 0,62 0,69 0,77 0,69 0,79 0,86 0,73 0,81 0,88 0,96 1,05 1,13 1,17

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

0,84 0,84 0,84 0,84 1,06 1,06 1,06 1,20 1,20 1,20 1,20 1,20 1,20 1,20

1,21 1,52 1,77 2,02 1,70 1,99 2,27 1,52 1,89 2,21 2,53 2,84 3,16 3,79

0,36 0,45 0,53 0,61 0,51 0,60 0,68 0,45 0,57 0,66 0,76 0,85 0,95 1,14

0,73 0,73 0,73 0,73 0,92 0,92 0,92 1,13 1,13 1,13 1,13 1,13 1,13 1,13

panel-to-timber

SPAN

geometry

TENSION

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

4

4,5

5

40 50 60 70 50 60 70 50 60 70 80 90 100 120

24 30 35 40 30 35 40 24 30 35 40 45 50 60

16 20 25 30 20 25 30 26 30 35 40 45 50 60

12

15

15

ε = screw-to-grain angle

GENERAL PRINCIPLES

NOTES

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements.

• The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk

[kg/m3 ]

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

MINIMUM DISTANCES NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

• The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

TIMBER | SHS | 19


SHS AISI410

ETA-11/0030

UKTA-0836 22/6195

ETA-11/0030

60° COUNTERSUNK SCREW SMALL HEAD AND 3 THORNS TIP The concealed 60° head and 3 THORNS tip allow easy insertion of the screw into small thickness without creating openings in the timber.

OUTDOOR ON ACID WOOD Martensitic stainless steel. This stainless steels offers the highest mechanical performance compared to the other available stainless steels. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).

SMALL ELEMENTS FASTENING The smaller diameter versions are ideal for fixing beads or small elements, the 3.5 mm diameter version is perfectly suited for fastening tongue-and-groove boards.

SHS XS

SHS N

BIT INCLUDED

DIAMETER [mm]

3

LENGTH [mm]

12

3,5

8 40

12 280

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

410 AISI

1000

martensitic stainless steel AISI 410 SHS

FIELDS OF USE • • • • •

20 | SHS AISI410 | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT, LVL high-density woods and acid woods


WINDOWS AND DOORS ON THE OUTSIDE SHS AISI140 is the right choice for fastening small outdoor elements such as beads, façades and window/door frames.

TIMBER | SHS AISI410 | 21


External casing slats fixed with 6 and 8 mm diameter SHS AISI410 screws.

Fastening hardwood and acid wood in farfrom-sea environments with SHS AISI410 8 mm diameter.

GEOMETRY AND MECHANICAL CHARACTERISTICS SHSAS Ø3,5

SHSAS Ø4,5 - Ø5 - Ø6 - Ø8

A

A dS dK

S

d2 d1

60°

XXX

dK

HSAS

dS

d2 d1

60° b

b L

L

GEOMETRY Nominal diameter

d1

[mm]

3,5

4,5

5

6

8

Head diameter

dK

[mm]

Thread diameter

d2

[mm]

5,75

7,50

8,50

11,00

13,00

2,15

2,80

3,40

3,95

5,40

Shank diameter

dS

[mm]

2,50

3,15

3,65

4,30

5,80

Pre-drilling hole diameter(1)

dV,S

[mm]

2,0

2,5

3,0

4,0

5,0

Pre-drilling hole diameter(2)

dV,H

[mm]

-

-

3,5

4,0

6,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

4,5

5

6

8

Tensile strength

ftens,k

[kN]

6,4

7,9

11,3

20,1

Yield moment

My,k

[Nm]

4,1

5,4

9,5

20,1

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

[N/mm2]

11,7

15,0

29,0

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

Withdrawal resistance parameter Head-pull-through parameter

fax,k

For applications with different materials please see ETA-11/0030.

22 | SHS AISI410 | TIMBER


CODES AND DIMENSIONS SHS XS AISI410 d1 [mm] 3,5 TX 10

4,5 TX 20

5 TX 25

SHS AISI410 CODE

L [mm]

b [mm]

A [mm]

pcs

500

SHS680AS

80

40

40

100

CODE

L [mm]

b [mm]

A [mm]

pcs

SHS3540AS( * )

40

26

14

d1 [mm]

SHS3550AS( * )

50

34

16

500

SHS6100AS

100

50

50

100

SHS3560AS( * )

60

40

20

500

SHS6120AS

120

60

60

100

6 TX 30

SHS4550AS

50

30

20

500

SHS6140AS

140

75

65

100

SHS4560AS

60

35

25

500

SHS6160AS

160

75

85

100

SHS4570AS

70

40

30

200

SHS6180AS

180

75

105

100

SHS550AS

50

24

26

200

SHS6200AS

200

75

125

100

SHS560AS

60

30

30

200

SHS8120AS

120

60

60

100

SHS570AS

70

35

35

100

SHS8140AS

140

60

80

100

SHS580AS

80

40

40

100

SHS8160AS

160

80

80

100

SHS5100AS

100

50

50

100

SHS8180AS

180

80

100

100

SHS8200AS

200

80

120

100

SHS8220AS

220

80

140

100

SHS8240AS

240

80

160

100

SHS8260AS

260

80

180

100

SHS8280AS

280

80

200

100

8 TX 40

( * ) Not holding CE marking.

SHS N AISI410 - black version d1 [mm]

CODE

4,5 TX 20 5 TX 25

L [mm]

b [mm]

A [mm]

pcs

SHS4550ASN

50

30

20

100

SHS4560ASN

60

35

25

100

SHS550ASN

50

24

26

100

SHS560ASN

60

30

30

200

APPLICATION Oak Quercus petraea

Oak or European oak Quercus robur

Douglas fir Pseudotsuga menziesii

American black cherry Prunus serotina

ρk pH ~ 3,9

ρk pH = 3,4-4,2

ρk pH = 3,3-5,8

ρk = 490-630 kg/m3 pH ~ 3,9

European chestnut Castanea sativa

Red oak Quercus rubra

Blue Douglas fir Pseudotsuga taxifolia

Maritime pine Pinus pinaster

= 665-760 kg/m3

ρk = 580-600 kg/m3 pH = 3,4-3,7

= 690-960 kg/m3

ρk = 550-980 kg/m3 pH = 3,8-4,2

= 510-750 kg/m3

ρk = 500-620 kg/m3 pH ~ 3,8

ρk = 510-750 kg/m3 pH = 3,1-4,4

Possible installation on acid wood but away from corrosive agents (chlorides, sulphides, etc.). Find out the pH and density of the various wood species on page 314.

pH ≤ 4

pH > 4

“aggressive” woods high acidity

"standard" timbers low acidity

FAÇADES IN DARK TIMBER Specially designed to match façades made of charred wood, the black SHS N variant ensures perfect compatibility and offers an excellent aesthetic result. Thanks to its strength to corrosion, it can be used outdoors, allowing to create striking and long-lasting black façades.

TIMBER | SHS AISI410 | 23


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

4,5

a2

[mm]

5∙d

a3,t

[mm]

15∙d

a3,c

[mm]

10∙d

a4,t

[mm]

a4,c

[mm]

F

α=90°

5

6

8

d1

[mm]

10∙d

50

60

80

a1

[mm]

23

5∙d

25

30

40

a2

[mm]

5∙d

23

5∙d

25

30

40

68

15∙d

75

90

120

a3,t

[mm]

10∙d

45

10∙d

50

60

80

45

10∙d

50

60

80

a3,c

[mm]

10∙d

45

10∙d

50

60

80

5∙d

23

5∙d

25

30

40

a4,t

[mm]

7∙d

32

10∙d

50

60

80

5∙d

23

5∙d

25

30

40

a4,c

[mm]

5∙d

23

5∙d

25

30

40

10∙d

45

4,5 5∙d

23

d1

[mm]

a1

[mm]

α=0°

4,5 15∙d

68

15∙d

5

6

8

25

30

40

420 kg/m3 ≤ ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

F

5∙d

F

5

6

8

d1

[mm]

75

90

120

a1

[mm]

α=90°

4,5 7∙d

32

5

6

8

7∙d

35

42

56

a2

[mm]

7∙d

32

7∙d

35

42

56

a2

[mm]

7∙d

32

7∙d

35

42

56

a3,t

[mm]

20∙d

90

20∙d

100

120

160

a3,t

[mm]

15∙d

68

15∙d

75

90

120

a3,c

[mm]

15∙d

68

15∙d

75

90

120

a3,c

[mm]

15∙d

68

15∙d

75

90

120

a4,t

[mm]

7∙d

32

7∙d

35

42

56

a4,t

[mm]

9∙d

41

12∙d

60

72

96

a4,c

[mm]

7∙d

32

7∙d

35

42

56

a4,c

[mm]

7∙d

32

7∙d

35

42

56

screws inserted WITH pre-drilled hole

α=0°

F

4,5

F

α=90°

d1

[mm]

5

6

8

d1

[mm]

5

6

8

a1

[mm]

5∙d

23

5∙d

25

30

40

a1

[mm]

4∙d

4,5 18

4∙d

20

24

32

a2

[mm]

3∙d

14

3∙d

15

18

24

a2

[mm]

4∙d

18

4∙d

20

24

32

a3,t

[mm]

12∙d

54

12∙d

60

72

96

a3,t

[mm]

7∙d

32

7∙d

35

42

56

a3,c

[mm]

7∙d

32

7∙d

35

42

56

a3,c

[mm]

7∙d

32

7∙d

35

42

56

a4,t

[mm]

3∙d

14

3∙d

15

18

24

a4,t

[mm]

5∙d

23

7∙d

35

42

56

a4,c

[mm]

3∙d

14

3∙d

15

18

24

a4,c

[mm]

3∙d

14

3∙d

15

18

24

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

24 | SHS AISI410 | TIMBER

• The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR timber-to-timber

panel-to-timber

thread withdrawal

head pull-through

Rax,90,k

Rhead,k

SPAN

geometry

TENSION

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 4,5

5

6

8

50 60 70 50 60 70 80 100 80 100 120 140 160 180 200 120 140 160 180 200 220 240 260 280

30 35 40 24 30 35 40 50 40 50 60 75 75 75 75 60 60 80 80 80 80 80 80 80

20 25 30 26 30 35 40 50 40 50 60 65 85 105 125 60 80 80 100 120 140 160 180 200

RV,90,k

SPAN

RV,k

[kN]

[mm]

[kN]

[kN]

[kN]

1,01 1,01 1,01 1,14 1,14 1,14 1,14 1,14 1,60 1,60 1,60 1,60 1,60 1,60 1,60 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48 2,48

1,70 1,99 2,27 1,52 1,89 2,21 2,53 3,16 3,03 3,79 4,55 5,68 5,68 5,68 5,68 6,06 6,06 8,08 8,08 8,08 8,08 8,08 8,08 8,08

0,64 0,64 0,64 0,82 0,82 0,82 0,82 0,82 1,37 1,37 1,37 1,37 1,37 1,37 1,37 1,92 1,92 1,92 1,92 1,92 1,92 1,92 1,92 1,92

0,99 1,11 1,15 1,21 1,38 1,38 1,38 1,38 2,01 2,01 2,01 2,01 2,01 2,01 2,01 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16 3,16

15

15

18

22

GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements.

NOTES • The characteristic shear and tensile strengths were evaluated considering both an ε angle of 90° (Rax,90,k) between the grains of the timber element and the connector.

• The screws must be positioned in accordance with the minimum distances.

• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρ k , the strength values in the table can be converted by the kdens,V coefficient (see page 19).

• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

• For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 18).

• The characteristic shear strengths were evaluated by considering the threaded part fully inserted in the second element.

TIMBER | SHS AISI410 | 25


HTS

EN 14592

FULLY THREADED COUNTERSUNK SCREW 3 THORNS TIP Thanks to the 3 THORNS tip, the screw can be installed without pre-drilling hole on even very thin joinery and furniture wood, such as melamine-faced panels, plated panels or MDF.

FINE THREAD A fine thread is ideal for utmost screwing precision, even on MDF panels. The cavity for the Torx bit ensures stability and security.

LONG THREAD The thread is 80% the length of the screw and the smooth part under head guarantees maximum coupling efficiency with fibreboard panels.

BIT INCLUDED

DIAMETER [mm] 3 3

5

12

LENGTH [mm] 12 12

80

1000

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • • • •

26 | HTS | TIMBER

timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL


CODES AND DIMENSIONS d1

CODE

[mm]

3 TX 10

3,5 TX 15

4 TX 20

HTS312( * ) HTS316( * ) HTS320 HTS325 HTS330 HTS3516( * ) HTS3520( * ) HTS3525 HTS3530 HTS3535 HTS3540 HTS3550 HTS420( * ) HTS425 HTS430 HTS435

L

b

[mm]

[mm]

12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35

6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27

pcs

d1

CODE

[mm] 500 500 1000 1000 1000 1000 1000 1000 500 500 500 400 1000 1000 500 500

4 TX 20

4,5 TX 20

5 TX 25

HTS440 HTS445 HTS450 HTS4530 HTS4535 HTS4540 HTS4545 HTS4550 HTS530 HTS535 HTS540 HTS545 HTS550 HTS560 HTS570 HTS580

L

b

[mm]

[mm]

pcs

40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80

32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70

500 400 400 500 500 400 400 200 500 400 200 200 200 200 100 100

( * ) Not holding CE marking.

GEOMETRY AND MECHANICAL CHARACTERISTICS

XX

dK

HTS

dS d2 d1

90° b

t1 L Nominal diameter

d1

[mm]

3

3,5

4

4,5

5

Head diameter

dK

[mm]

6,00

7,00

8,00

8,80

9,70

Thread diameter

d2

[mm]

2,00

2,20

2,50

2,80

3,20

Shank diameter

dS

[mm]

2,20

2,45

2,75

3,20

3,65

Head thickness

t1

[mm]

2,20

2,40

2,70

2,80

2,80

Pre-drilling hole diameter(1)

dV

[mm]

2,0

2,0

2,5

2,5

3,0

Characteristic tensile strength

ftens,k

[kN]

4,2

4,5

5,5

7,8

11,0

Characteristic yield moment

My,k

[Nm]

2,2

2,7

3,7

5,8

8,8

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

18,5

17,9

17,1

17,0

15,5

Associated density

ρa

[kg/m3]

350

350

350

350

350

Characteristic head-pull-through parameter

fhead,k [N/mm2]

26,0

25,1

24,1

23,1

22,5

Associated density

ρa

350

350

350

350

350

[kg/m3]

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

HINGES AND FURNITURE The total thread and countersunk head geometry are ideal for fastening metal hinges when building furniture. Ideal for use with single bit (included in the package), easily exchanged in the driver bit holder. The new self-perforating tip increases the initial grip capacity of the screw.

TIMBER | HTS | 27


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

15

18

20

a3,t

[mm]

15∙d

45

53

60

a3,c

[mm]

10∙d

30

35

40

a4,t

[mm]

5∙d

15

18

20

a4,c

[mm]

5∙d

15

18

20

10∙d

F

3

3,5

4

4,5

30

35

40

45

α=90°

5

d1

[mm]

12∙d

60

a1

[mm]

23

5∙d

25

a2

[mm]

5∙d

15

18

20

23

5∙d

25

68

15∙d

75

a3,t

[mm]

10∙d

30

35

40

45

10∙d

50

45

10∙d

50

a3,c

[mm]

10∙d

30

35

40

45

10∙d

50

23

5∙d

25

a4,t

[mm]

7∙d

21

25

28

32

10∙d

50

23

5∙d

25

a4,c

[mm]

5∙d

15

18

20

23

5∙d

25

5∙d

3

3,5

4

4,5

15

18

20

23

5 5∙d

25

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

9

11

12

14

a3,t

[mm]

12∙d

36

42

48

54

a3,c

[mm]

7∙d

21

25

28

32

7∙d

a4,t

[mm]

3∙d

9

11

12

14

3∙d

a4,c

[mm]

3∙d

9

11

12

14

3∙d

5∙d

3

3,5

4

4,5

15

18

20

23

5

d1

[mm]

25

a1

[mm]

3∙d

15

a2

12∙d

60

a3,t

35

a3,c

[mm]

15

a4,t

[mm]

15

a4,c

[mm]

3∙d

5∙d

α=90°

3

3,5

4

4,5

5

4∙d

12

14

16

18

4∙d

20

[mm]

4∙d

12

14

16

18

4∙d

20

[mm]

7∙d

21

25

28

32

7∙d

35

7∙d

21

25

28

32

7∙d

35

5∙d

15

18

20

23

7∙d

35

9

11

12

14

3∙d

15

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

MINIMUM DISTANCES NOTES • Minimum distances in accordance with EN 1995:2014. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

STRUCTURAL VALUES NOTES • The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector. • The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The shear strength characteristics on the plate are calculated considering the case of a thin plate (SPLATE = 0.5 d1). • The characteristic thread withdrawal strength was evaluated by considering a 90° angle ε between the fibers of the timber element and the connector.

28 | HTS | TIMBER

• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens (see page 42). • The values in the table are independent of the load-to-grain angle. • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 34).


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-to-timber thin plate

panel-to-timber

SPAN

A L

panel-to-timber

thread withdrawal

head pull-through

SPLATE

timber-to-timber

SPAN

geometry

TENSION

b

d1

d1

L

b

A

RV,k

SPAN

RV,k

SPAN

RV,k

SPLATE

RV,k

Rax,k

Rhead,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

[kN]

[kN]

12 16 20 25 30 16 20 25 30 35 40 50 20 25 30 35 40 45 50 30 35 40 45 50 30 35 40 45 50 60 70 80

6 10 14 19 24 10 14 19 24 27 32 42 14 19 24 27 32 37 42 24 27 32 37 42 24 27 32 37 42 50 60 70

7 12 9 14 19 29 6 11 16 21 26 3 8 13 18 23 5 10 15 20 30 40 50

0,38 0,60 0,53 0,77 0,82 0,91 0,38 0,71 0,97 1,02 1,08 0,21 0,56 0,90 1,15 1,21 0,38 0,76 1,14 1,39 1,52 1,71 1,71

0,23 0,32 0,41 0,52 0,62 0,33 0,43 0,55 0,66 0,78 0,90 1,13 0,46 0,59 0,72 0,85 0,97 1,10 1,23 0,77 0,91 1,05 1,19 1,33 0,84 0,99 1,14 1,30 1,45 1,75 2,06 2,36

0,36 0,60 0,84 1,14 1,44 0,68 0,95 1,28 1,62 1,83 2,16 2,84 1,03 1,40 1,77 1,99 2,36 2,73 3,10 1,98 2,23 2,64 3,05 3,47 2,01 2,26 2,68 3,09 3,51 4,18 5,02 5,85

1,01 1,01 1,01 1,01 1,01 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,66 1,66 1,66 1,66 1,66 1,66 1,66 1,93 1,93 1,93 1,93 1,93 2,28 2,28 2,28 2,28 2,28 2,28 2,28 2,28

3

3,5

4

4,5

5

9

9

9

12

12

0,76 0,83 0,92 0,92 0,92 0,99 0,99 0,99 0,99 1,31 1,40 1,40 1,46 1,46 1,46 1,46 1,46

12

12

12

15

15

0,72 0,94 0,99 0,99 1,17 1,17 1,17 1,42 1,46 1,51 1,70 1,74 1,74 1,74

1,5

1,75

2

2,25

2,5

GENERAL PRINCIPLES • Characteristic values according to EN 1995:2014.

• The screws must be positioned in accordance with the minimum distances.

• Design values can be obtained from characteristic values as follows:

• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Sizing and verification of the timber elements, panels and metal plates must be done separately.

• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

TIMBER | HTS | 29


HBS

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

COUNTERSUNK SCREW 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

FAST With the 3 THORNS tip, screw grip becomes more reliable and faster, while maintaining the usual mechanical performance. More speed, less effort.

JOINTS WITH SOUNDPROOFING PROFILES The screw has been tested and characterised in applications with soundproofing layers (XYLOFON) interposed on the shear plane. The impact of acoustic profiles on the mechanical performance of the HBS screw is described on page 74.

NEW-GENERATION WOODS Tested and certified for use on a wide variety of engineered timbers such as CLT, GL, LVL, OSB and Beech LVL. Extremely versatile, the HBS screw guarantees the use of new-generation woods for the creation of increasingly innovative and sustainable structures.

BIT INCLUDED

DIAMETER [mm]

3

LENGTH [mm]

12

3,5

12 12 30

1000 1000

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • • • • •

30 | HBS | TIMBER

timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods

ETA-11/0030


CLT, LVL AND HARDWOOD Values also tested, certified and calculated for CLT, LVL and high density woods such as beech LVL.

TIMBER | HBS | 31


Wall insulation boards fastening with THERMOWASHER and HBS 8 mm diameter.

Fastening CLT walls with 6 mm diameter HBS screws.

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

HBS

A

d2 d1

90° t1

dS

b L

GEOMETRY Nominal diameter

d1

[mm]

3,5

4

4,5

5

6

8

10

12

Head diameter

dK

[mm]

7,00

8,00

9,00

10,00

12,00

14,50

18,25

20,75

Thread diameter

d2

[mm]

2,25

2,55

2,80

3,40

3,95

5,40

6,40

6,80

Shank diameter

dS

[mm]

2,45

2,75

3,15

3,65

4,30

5,80

7,00

8,00

Head thickness

t1

[mm]

2,20

2,80

2,80

3,10

4,50

4,50

5,80

7,20

Pre-drilling hole diameter(1)

dV,S

[mm]

2,0

2,5

2,5

3,0

4,0

5,0

6,0

7,0

Pre-drilling hole diameter(2)

dV,H

[mm]

-

-

-

3,5

4,0

6,0

7,0

8,0

4

4,5

5

6

8

10

12

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

3,5

Tensile strength

ftens,k

[kN]

3,8

5,0

6,4

7,9

11,3

20,1

31,4

33,9

Yield moment

My,k

[Nm]

2,1

3,0

4,1

5,4

9,5

20,1

35,8

48,0

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

32 | HBS | TIMBER


CODES AND DIMENSIONS d1

CODE

[mm] 3,5 TX 15

4 TX 20

4,5 TX 20

5 TX 25

6 TX 30

HBS3540 HBS3545 HBS3550 HBS430 HBS435 HBS440 HBS445 HBS450 HBS460 HBS470 HBS480 HBS4540 HBS4545 HBS4550 HBS4560 HBS4570 HBS4580 HBS540 HBS545 HBS550 HBS560 HBS570 HBS580 HBS590 HBS5100 HBS5120 HBS640 HBS650 HBS660 HBS670 HBS680 HBS690 HBS6100 HBS6110 HBS6120 HBS6130 HBS6140 HBS6150 HBS6160 HBS6180 HBS6200 HBS6220 HBS6240 HBS6260 HBS6280 HBS6300 HBS6320 HBS6340 HBS6360 HBS6380 HBS6400

L

b

A

[mm]

[mm]

[mm]

40 45 50 30 35 40 45 50 60 70 80 40 45 50 60 70 80 40 45 50 60 70 80 90 100 120 40 50 60 70 80 90 100 110 120 130 140 150 160 180 200 220 240 260 280 300 320 340 360 380 400

18 24 24 18 18 24 30 30 35 40 40 24 30 30 35 40 40 24 24 24 30 35 40 45 50 60 35 35 30 40 40 50 50 60 60 60 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75

22 21 26 12 17 16 15 20 25 30 40 16 15 20 25 30 40 16 21 26 30 35 40 45 50 60 8 15 30 30 40 40 50 50 60 70 65 75 85 105 125 145 165 185 205 225 245 265 285 305 325

pcs

XYLOFON WASHER page 73

CODE

[mm] 500 400 400 500 500 500 400 400 200 200 200 400 400 200 200 200 200 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

8 TX 40

10 TX 40

12 TX 50

RELATED PRODUCTS

HUS page 68

d1

THERMOWASHER page 396

HBS880 HBS8100 HBS8120 HBS8140 HBS8160 HBS8180 HBS8200 HBS8220 HBS8240 HBS8260 HBS8280 HBS8300 HBS8320 HBS8340 HBS8360 HBS8380 HBS8400 HBS8440 HBS8480 HBS8520 HBS8560 HBS8580 HBS8600 HBS1080 HBS10100 HBS10120 HBS10140 HBS10160 HBS10180 HBS10200 HBS10220 HBS10240 HBS10260 HBS10280 HBS10300 HBS10320 HBS10340 HBS10360 HBS10380 HBS10400 HBS10440 HBS10480 HBS10520 HBS10560 HBS10600 HBS12120 HBS12160 HBS12200 HBS12240 HBS12280 HBS12320 HBS12360 HBS12400 HBS12440 HBS12480 HBS12520 HBS12560 HBS12600 HBS12700 HBS12800 HBS12900 HBS121000

L

b

A

[mm]

[mm]

[mm]

80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 580 600 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 120 160 200 240 280 320 360 400 440 480 520 560 600 700 800 900 1000

52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 100 100 100 52 52 60 60 80 80 80 80 80 80 80 100 100 100 100 100 100 100 100 100 100 100 80 80 80 80 80 120 120 120 120 120 120 120 120 120 120 120 120

28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 340 380 420 460 480 500 28 48 60 80 80 100 120 140 160 180 200 200 220 240 260 280 300 340 380 420 460 500 40 80 120 160 200 200 240 280 320 360 400 440 480 580 680 780 880

pcs 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

TIMBER | HBS | 33


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

3,5

4

4,5

a1

[mm] 10∙d

35

40

45

a2

[mm]

5∙d

18

20

a3,t

[mm] 15∙d

53

60

a3,c [mm] 10∙d

35

40

[mm]

5∙d

18

20

a4,c [mm]

5∙d

18

20

a4,t

F

10

α=90°

5

6

8

12

d1

[mm]

10∙d

50

60

80 100 120

a1

[mm]

5∙d

23

5∙d

25

30

40

60

a2

[mm]

5∙d

18

20

23

5∙d

25

68

15∙d

75

90

120 150 180

a3,t

[mm] 10∙d

35

40

45

10∙d

50

45

10∙d

50

60

80 100 120

a3,c [mm] 10∙d

35

40

45

10∙d

50

60

80 100 120

23

5∙d

25

30

40

50

60

a4,t

[mm]

7∙d

25

28

32

10∙d

50

60

80 100 120

23

5∙d

25

30

40

50

60

a4,c [mm]

5∙d

18

20

23

5∙d

25

30

40

50

60

50

3,5

4

4,5

18

20

23

5∙d

5

6

8

10

12

25

30

40

50

60

30

40

50

60

60

80 100 120

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

3,5

4

4,5

F

5

6

8

10

12

d1

[mm]

α=90°

3,5

4

4,5

5

6

8

10

12

a1

[mm]

5∙d

18

20

23

5∙d

25

30

40

50

60

a1

[mm]

4∙d

14

16

18

4∙d

20

24

32

40

48

a2

[mm]

3∙d

11

12

14

3∙d

15

18

24

30

36

a2

[mm]

4∙d

14

16

18

4∙d

20

24

32

40

48

a3,t

[mm] 12∙d

42

48

54

12∙d

60

72

96

120 144

a3,t

[mm]

7∙d

25

28

32

7∙d

35

42

56

70

84

a3,c [mm]

7∙d

25

28

32

7∙d

35

42

56

70

84

a3,c [mm]

7∙d

25

28

32

7∙d

35

42

56

70

84

a4,t

[mm]

3∙d

11

12

14

3∙d

15

18

24

30

36

a4,t

[mm]

5∙d

18

20

23

7∙d

35

42

56

70

84

a4,c [mm]

3∙d

11

12

14

3∙d

15

18

24

30

36

a4,c [mm]

3∙d

11

12

14

3∙d

15

18

24

30

36

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTE on page 42.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

34 | HBS | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber timber-to-timber ε=90° ε=0°

steel-to-timber thin plate

panel-to-timber

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

Rax,90,k

Rax,0,k

Rhead,k

SPLATE

geometry

TENSION

SPAN

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 40 3,5

4

4,5

5

18

RV,90,k

RV,0,k

SPAN [mm]

[kN]

[kN]

22

0,73

0,40

45

24

21

0,79

0,47

50

24

26

0,79

0,47

30

18

12

0,72

35

18

17

0,79

40

24

16

45

30

50

30

RV,k

SPLATE

[kN]

[mm]

0,72 12

1,75

[kN]

[kN]

[kN]

[kN]

0,85

0,80

0,24

0,56

0,91

1,06

0,32

0,56

0,72

0,91

1,06

0,32

0,56

0,38

0,76

0,93

0,91

0,27

0,73

0,47

0,84

1,04

0,91

0,27

0,73

0,83

0,51

0,84

1,12

1,21

0,36

0,73

15

0,81

0,56

1,19

1,52

0,45

0,73

20

0,91

0,62

1,19

1,52

0,45

0,73

12

0,72

RV,k

0,84 0,84

2

60

35

25

0,99

0,69

0,84

1,26

1,77

0,53

0,73

70

40

30

0,99

0,77

0,84

1,32

2,02

0,61

0,73

80

40

40

0,99

0,77

0,84

1,32

2,02

0,61

0,73

40

24

16

0,98

0,55

1,06

1,33

1,36

0,41

0,92

45

30

15

0,96

0,61

1,06

1,42

1,70

0,51

0,92

50

30

20

1,06

0,69

1,06

1,42

1,70

0,51

0,92

60

35

25

1,18

0,79

1,49

1,99

0,60

0,92

70

40

30

1,22

0,86

1,06

1,56

2,27

0,68

0,92

80

40

40

1,22

0,86

1,06

1,56

2,27

0,68

0,92

40

24

16

1,12

0,60

1,16

1,46

1,52

0,45

1,13

45

24

21

1,19

0,70

1,20

1,56

1,52

0,45

1,13

15

1,06

2,25

50

24

26

1,29

0,73

1,20

1,56

1,52

0,45

1,13

60

30

30

1,46

0,81

1,20

1,65

1,89

0,57

1,13

15

1,20

2,5

70

35

35

1,46

0,88

1,73

2,21

0,66

1,13

80

40

40

1,46

0,96

1,20

1,81

2,53

0,76

1,13

90

45

45

1,46

1,05

1,20

1,89

2,84

0,85

1,13

100

50

50

1,46

1,13

1,20

1,97

3,16

0,95

1,13

120

60

60

1,46

1,17

1,20

2,13

3,79

1,14

1,13

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 42.

Complete calculation reports for designing in wood? Download MyProject and simplify your work!

TIMBER | HBS | 35


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber timber-to-timber ε=90° ε=0°

steel-to-timber thin plate

A

steel-to-timber thick plate

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

SPLATE

SPLATE

geometry

TENSION

L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 40 35 8 50 35 15 60 30 30 70 40 30 80 40 40 90 50 40 100 50 50 110 60 50 120 60 60 130 60 70 140 75 65 150 75 75 160 75 85 6 180 75 105 200 75 125 220 75 145 240 75 165 260 75 185 280 75 205 300 75 225 320 75 245 340 75 265 360 75 285 380 75 305 400 75 325 80 52 28 100 52 48 120 60 60 140 60 80 160 80 80 180 80 100 200 80 120 220 80 140 240 80 160 260 80 180 280 80 200 8 300 100 200 320 100 220 340 100 240 360 100 260 380 100 280 400 100 300 440 100 340 480 100 380 520 100 420 560 100 460 580 100 480 600 100 500

36 | HBS | TIMBER

RV,90,k

RV,0,k

SPLATE

RV,k

SPLATE

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN] 0,89 1,53 1,78 1,88 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,08 2,59 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,28

[kN] 0,72 0,85 1,04 1,20 1,20 1,38 1,38 1,58 1,58 1,58 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,67 1,70 1,95 2,13 2,13 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62 2,62

[mm]

[kN] 1,64 2,08 2,24 2,43 2,43 2,61 2,61 2,80 2,80 2,80 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,09 4,00 4,00 4,20 4,20 4,70 4,70 4,70 4,70 4,70 4,70 4,70 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21 5,21

[mm]

[kN] 2,58 2,98 2,93 3,12 3,12 3,31 3,31 3,49 3,49 3,49 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 3,78 5,11 5,11 5,31 5,31 5,81 5,81 5,81 5,81 5,81 5,81 5,81 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32 6,32

[kN] 2,65 2,65 2,27 3,03 3,03 3,79 3,79 4,55 4,55 4,55 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,68 5,25 5,25 6,06 6,06 8,08 8,08 8,08 8,08 8,08 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10

[kN] 0,80 0,80 0,68 0,91 0,91 1,14 1,14 1,36 1,36 1,36 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,58 1,58 1,82 1,82 2,42 2,42 2,42 2,42 2,42 2,42 2,42 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03

[kN] 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 1,63 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38

3

4

6

8


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber timber-to-timber ε=90° ε=0°

steel-to-timber thin plate

A

steel-to-timber thick plate

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

SPLATE

SPLATE

geometry

TENSION

L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 80 52 28 100 52 48 120 60 60 140 60 80 160 80 80 180 80 100 200 80 120 220 80 140 240 80 160 260 80 180 280 80 200 10 300 100 200 320 100 220 340 100 240 360 100 260 380 100 280 400 100 300 440 100 340 480 100 380 520 100 420 560 100 460 600 100 500 120 80 40 160 80 80 200 80 120 240 80 160 280 80 200 320 120 200 360 120 240 400 120 280 12 440 120 320 480 120 360 520 120 400 560 120 440 600 120 480 700 120 580 800 120 680 900 120 780 1000 120 880

RV,90,k

RV,0,k

SPLATE

RV,k

SPLATE

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN] 3,63 4,22 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,81 4,87 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00

[kN] 2,02 2,56 2,75 2,75 3,28 3,28 3,28 3,28 3,28 3,28 3,28 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,86 3,49 3,88 3,88 3,88 3,88 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83 4,83

[mm]

[kN] 4,75 5,51 5,76 5,76 6,40 6,40 6,40 6,40 6,40 6,40 6,40 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,03 7,81 7,81 7,81 7,81 7,81 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32 9,32

[mm]

[kN] 6,94 7,12 7,37 7,37 8,00 8,00 8,00 8,00 8,00 8,00 8,00 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 8,63 9,79 9,79 9,79 9,79 9,79 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30 11,30

[kN] 6,57 6,57 7,58 7,58 10,10 10,10 10,10 10,10 10,10 10,10 10,10 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,63 12,12 12,12 12,12 12,12 12,12 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18 18,18

[kN] 1,97 1,97 2,27 2,27 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,79 3,64 3,64 3,64 3,64 3,64 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45 5,45

[kN] 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 3,77 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88 4,88

5

6

10

12

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 42.

TIMBER | HBS | 37


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT-CLT lateral face

geometry

CLT-CLT lateral face-narrow face

panel-CLT lateral face

A

CLT-panel-CLT lateral face

t

SPAN

L

SPAN b d1

d1

L

b

A

RV,k

RV,k

SPAN

[mm]

[mm]

[mm]

[kN]

[mm]

30 40 50 60 75 52 60 80 100 52 60 80 100 80 80 120

[mm] ≥ 30 ≥ 30 ≥ 40 ≥ 50 ≥ 65 ≥ 28 ≥ 60 ≥ 80 ≥ 200 ≥ 28 ≥ 60 ≥ 80 ≥ 200 ≥ 40 ≥ 80 ≥ 200

[kN]

60 70÷80 90÷100 110÷130 140÷400 80÷100 120÷140 160÷280 300÷600 80÷100 120÷140 160÷280 300÷600 120 160÷280 320÷1000

1,63 1,74 1,97 1,97 1,97 2,42 3,11 3,11 3,11 3,40 4,45 4,56 4,56 4,54 5,69 5,69

1,84 2,26 2,58 2,58 2,34 3,03 3,37 3,76 3,56 4,00 4,65

6

8

10

12

18

22

25

25

RV,k

SPAN

[kN]

[mm] [mm]

[kN]

1,62 1,62 1,62 1,62 1,62 2,55 2,55 2,55 2,55 3,62 3,62 3,62 3,62 4,37 4,37 4,37

20 ≥ 25 ≥ 35 ≥ 45 ≥ 60 ≥ 25 ≥ 45 ≥ 65 ≥ 135 ≥ 25 ≥ 45 ≥ 65 ≥ 135 ≥ 45 ≥ 65 ≥ 145

2,67 2,67 2,67 2,67 2,67 3,64 3,64 3,64 3,64 4,47 4,47 4,47 4,47 4,72 4,72 4,72

18

22

25

25

t

RV,k

SHEAR CLT-timber lateral face

geometry

timber-CLT narrow face

CLT-CLT narrow face

A L tCLT

b

45°

d1

d1

L

b

A

[mm]

[mm]

[mm]

60 70÷80 90÷100 110÷130 140÷400 80÷100 120÷140 160÷280 300÷600 80÷100 120÷140 160÷280 300÷600 120÷280 320÷1000

30 40 50 60 75 52 60 80 100 52 60 80 100 80 120

6

8

10

12

RV,k

RV,k

tCLT

RV,k

[mm]

[kN]

[kN]

[mm]

[kN]

30 ≥ 30 ≥ 40 ≥ 50 ≥ 65 ≥ 28 ≥ 60 ≥ 80 ≥ 200 ≥ 28 ≥ 60 ≥ 80 ≥ 200 40 ≥ 200

1,69 1,77 2,01 2,01 2,01 2,46 3,17 3,17 3,17 3,45 4,55 4,65 4,65 4,60 5,79

1,89 2,27 2,61 2,61 2,40 3,05 3,39 3,79 3,65 4,69

≥ 65 ≥ 80 ≥ 100 ≥ 80 ≥ 85 ≥ 115 ≥ 215 ≥ 100 ≥ 100 ≥ 115 ≥ 215 ≥ 120 ≥ 230

1,54 1,66 1,66 1,84 2,26 2,58 2,58 2,34 3,03 3,37 3,76 3,56 4,65

NOTES and GENERAL PRINCIPLES on page 42.

38 | HBS | TIMBER


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 TENSION

geometry

thread withdrawal narrow face

thread withdrawal narrow face

head pull-through

head pull-through with HUS washer

Rhead,k

A L b d1

d1

L

b

Rax,k

Rax,k

Rhead,k

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

6

60 70÷80 90÷100 110÷130 140÷400

30 40 50 60 75

2,11 2,81 3,51 4,21 5,27

-

1,51 1,51 1,51 1,51 1,51

4,20 4,20 4,20 4,20 4,20

8

80÷100 120÷140 160÷280 300÷600

52 60 80 100

4,87 5,62 7,49 9,36

3,70 4,21 5,45 6,66

2,21 2,21 2,21 2,21

6,56 6,56 6,56 6,56

10

80÷100 120÷140 160÷280 300÷600

52 60 80 100

6,08 7,02 9,36 11,70

4,42 5,03 6,51 7,96

3,50 3,50 3,50 3,50

9,45 9,45 9,45 9,45

12

120÷280 320÷1000

80 120

11,23 16,85

7,54 10,86

4,52 4,52

14,37 14,37

MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole

lateral face d1

[mm]

a1

[mm]

4∙d

a2

[mm]

2,5∙d

15

a3,t

[mm]

6∙d

36

a3,c

[mm]

6∙d

36

a4,t

[mm]

6∙d

36

a4,c

[mm]

2,5∙d

15

narrow face

6

8

10

12

d1

[mm]

24

32

40

48

a1

[mm]

6

8

10

12

10∙d

60

80

100

120

20

25

30

a2

48

60

72

a3,t

[mm]

4∙d

24

32

40

48

[mm]

12∙d

72

96

120

144

48

60

72

a3,c

48

60

72

a4,t

[mm]

7∙d

42

56

70

84

[mm]

6∙d

36

48

60

72

20

25

30

a4,c

[mm]

3∙d

18

24

30

36

d = d1 = nominal screw diameter

a2 a2

a1

a3,c

a4,t F

α

α

a3,t

a3,c

F

a4,c

a4,c

a4,c

tCLT

a3,t

F a3,c a4,c a4,t

F

tCLT

NOTES and GENERAL PRINCIPLES on page 42.

TIMBER | HBS | 39


STRUCTURAL VALUES | LVL TENSION geometry

thread withdrawal flat

thread withdrawal edge

head pull-through flat

head pull-through with HUS washer flat

Rhead,k

Rhead,k

A L b d1

d1 [mm]

5

6

8

10

L

b

Rax,k

Rax,k

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

40÷50

24

1,74

1,16

1,94

-

60

30

2,18

1,45

1,94

-

70

35

2,54

1,69

1,94

-

80

40

2,90

1,94

1,94

-

90

45

3,27

2,18

1,94

-

100

50

3,63

2,42

1,94

-

120

60

4,36

2,90

1,94

-

40÷50

35

3,05

2,03

2,79

7,74

60

30

2,61

1,74

2,79

7,74

70÷80

40

3,48

2,32

2,79

7,74

90÷100

50

4,36

2,90

2,79

7,74

110÷130

60

5,23

3,48

2,79

7,74

140÷150

75

6,53

4,36

2,79

7,74

160÷400

75

6,53

4,36

2,79

7,74

80÷100

52

6,04

4,03

4,07

12,10

120÷140

60

6,97

4,65

4,07

12,10

160÷180

80

9,29

6,19

4,07

12,10

200÷280

80

9,29

6,19

4,07

12,10

300÷600

100

11,61

7,74

4,07

12,10

80÷100

52

7,55

5,03

6,45

17,42

120÷140

60

8,71

5,81

6,45

17,42

160÷200

80

11,61

7,74

6,45

17,42

220÷280

80

11,61

7,74

6,45

17,42

300÷600

100

14,52

9,68

6,45

17,42

NOTES and GENERAL PRINCIPLES on page 42.

Internationality is also measured in the details. Check the availability of our technical data sheets in your language and measuring system.

40 | HBS | TIMBER


STRUCTURAL VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

LVL-LVL

LVL-LVL-LVL

LVL-timber

timber-LVL

t2 A L b d1

A

A

A

A

d1

L

b

A

RV,k

A

t2

RV,k

A

RV,k

A

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

60 70 80 90 100 120 90÷100 110÷130 140÷150 160÷400 120÷140 160÷180 200÷280 300÷600 120÷140 160÷200 220÷280 300÷600

30 35 40 45 50 60 50 60 75 75 60 80 80 100 60 80 80 100

33 40 45 50 60 ≥ 45 ≥ 55 ≥ 70 ≥ 80 ≥ 60 ≥ 80 ≥ 120 ≥ 200 ≥ 75 ≥ 140 ≥ 200

1,80 1,80 1,80 1,80 1,80 2,56 2,56 2,56 2,56 4,01 4,01 4,01 4,01 5,93 5,93 5,93

≥ 45 ≥ 65 ≥ 100 ≥ 75 ≥ 100

≥ 70 ≥ 75 ≥ 105 ≥ 75 ≥ 105

5,12 8,03 8,03 11,87 11,87

33 40 45 50 60 ≥ 45 ≥ 55 ≥ 70 ≥ 80 ≥ 60 ≥ 80 ≥ 120 ≥ 200 ≥ 75 ≥ 140 ≥ 200

1,73 1,73 1,73 1,73 1,73 2,45 2,45 2,45 2,45 3,84 3,84 3,84 3,84 5,69 5,69 5,69

27 35 40 45 50 60 ≥ 40 ≥ 50 ≥ 65 ≥ 85 ≥ 60 ≥ 80 ≥ 120 ≥ 200 ≥ 45 ≥ 80 ≥ 140 ≥ 200

1,45 1,53 1,53 1,53 1,53 1,53 2,16 2,16 2,16 2,16 3,42 3,42 3,42 3,42 4,34 5,02 5,02 5,02

5

6

8

10

RV,k

MINIMUM DISTANCES FOR SHEAR LOADS | LVL screws inserted WITHOUT pre-drilled hole F

F

α=0°

α=90°

d1

[mm]

5

6

8

10

d1

[mm]

a1

[mm]

12∙d

60

72

96

120

a1

[mm]

a2

[mm]

5∙d

25

30

40

50

a2

[mm]

5d

25

30

40

50

a3,t

[mm]

15∙d

75

90

120

150

a3,t

[mm]

10d

50

60

80

100

a3,c

[mm]

10∙d

50

60

80

100

a3,c

[mm]

10d

50

60

80

100

a4,t

[mm]

5∙d

25

30

40

50

a4,t

[mm]

10d

50

60

80

100

a4,c

[mm]

5∙d

25

30

40

50

a4,c

[mm]

5d

25

30

40

50

5d

5

6

8

10

25

30

40

50

α = load-to-grain angle d = d1 = nominal screw diameter

a2 a2

a1

a4,t F

α

α

a3,t

α

F

a4,c

F F α

a3,c

NOTES and GENERAL PRINCIPLES on page 42.

TIMBER | HBS | 41


STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | TIMBER

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic strength to head pull-through, with and without a washer, was evaluated using timber or timber based elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) . • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk

[kg/m3 ]

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

• In the case of combined shear and tensile stress, the following verification must be satisfied:

Fv,d Rv,d

2

+

Fax,d Rax,d

2

≥ 1

• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

NOTES | LVL • For the calculation process, a mass density of ρk = 480 kg/m3 has been considered for the softwood LVL elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements. • The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.

NOTES | CLT

• The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.

• The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K.

• Screws shorter than the minimum in the table are not compatible with the calculation assumptions and are therefore not reported.

• For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements. • The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 .

MINIMUM DISTANCES NOTES | TIMBER

NOTES | LVL

• The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels.

• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

NOTES | CLT • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels. • Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 . • The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .

42 | HBS | TIMBER

• The minimum distances are applicable when using both parallel and cross grain softwood LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin: t1 ≥ 8,4 d - 9 t2 ≥

11,4 d 75

where: - t 1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; - t 2 is the thickness in mm of the central element in a connection with 3 or more elements.


INSTALLATION SUGGESTIONS SCREWING USING CATCH

Place the bit inside the CATCH screwing device and fasten it to the correct depth depending on the chosen connector.

CATCH is suitable with long connectors where the insert would otherwise tend to come out of the screw head space.

Useful in case of screwing in corners, which usually do not allow exerting a great screwing force.

PARTIALLY THREADED SCREWS vs FULLY THREADED SCREW

Compressible elements are interposed between two timber beams and a screw is screwed centrally to evaluate its effect on the connection.

The partial thread screw (e.g. HBS) allows the joint to be closed. The threaded portion, inserted all the way inside the second element, allows the first element to slide on the smooth shank.

The fully threaded screw (e.g. VGZ) transfers the force by exploiting its axial strength and penetrates inside the timber elements without moving.

Install the screw (e.g. HBS).

Alternatively, specific screws for hardwood applications (e.g. HBSH) can be used, which can be inserted without the aid of pre-drill hole

APPLICATION ON HARDWOODS

Pre-drill a hole of the required diameter (dV,H) and length equal to the chosen connector size using the SNAIL tip.

RELATED PRODUCTS

CATCH page 408

LEWIS page 414

SNAIL page 415

A 18 | ASB 18 page 402

TIMBER | HBS | 43


HBS SOFTWOOD

EN 14592

COUNTERSUNK SCREW SAW TIP Special self-perforating tip with serrated thread (SAW tip) that cuts the timber grains, facilitating initial grip and subsequent pull-through.

LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.

SOFTWOOD Optimised geometry for maximum performance on the most common construction timbers.

DIAMETER [mm]

3

LENGTH [mm]

12

5

8

12

50

400

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

1000

electrogalvanized carbon steel

FIELDS OF USE • • • • •

44 | HBS SOFTWOOD | TIMBER

timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT and LVL


TIMBER ROOF The screws’ fast initial grip makes it possible to create secure structural connections in all assembly conditions.

SIP PANELS The size range is specially designed for the application of fasteners on medium and large structural elements, such as lightweight boards and frames, up to SIP and Sandwich panels.

TIMBER | HBS SOFTWOOD | 45


CODES AND DIMENSIONS d1

CODE

[mm] HBSS550 HBSS560 5 TX 25

b

A

[mm]

[mm]

50

30

20

60

HBSS570

35

70

pcs

25

40

d1

CODE

[mm]

30

L

b

A

[mm]

[mm]

[mm]

pcs

200

HBSS880

80

52

28

100

200

HBSS8100

100

60

40

100

200

HBSS8120

120

80

40

100

HBSS8140

140

80

60

100

HBSS8160

160

90

70

100

HBSS8180

180

90

90

100

HBSS8200

200

100

100

100

HBSS8220

220

100

120

100

HBSS8240

240

100

140

100

HBSS580

80

50

30

100

HBSS5100

100

60

40

100

HBSS5120

120

60

60

100

HBSS660

60

35

25

100

HBSS670

70

40

30

100

HBSS680

80

50

30

100

HBSS8260

260

100

160

100

HBSS690

90

55

35

100

HBSS8280

280

100

180

100

HBSS6100

100

60

40

100

HBSS8300

300

100

200

100

100

HBSS8320

320

100

220

100

HBSS8340

340

100

240

100

HBSS8360

360

100

260

100

HBSS8380

380

100

280

100

HBSS8400

400

100

300

100

HBSS6120 6 TX 30

L [mm]

120

75

45

8 TX 40

HBSS6140

140

80

60

100

HBSS6160

160

90

70

100

HBSS6180

180

100

80

100

HBSS6200

200

100

100

100

HBSS6220

220

100

120

100

HBSS6240

240

100

140

100

HBSS6260

260

100

160

100

HUS

HBSS6280

280

100

180

100

TURNED WASHER

HBSS6300

300

100

200

100

see page 68

RELATED PRODUCTS

GEOMETRY AND MECHANICAL CHARACTERISTICS A

BS

S

XXX

H

dK

d2 d1

90° t1

b

dS L

GEOMETRY Nominal diameter

d1

[mm]

5

6

8

Head diameter

dK

[mm]

10,00

12,00

14,50

Thread diameter

d2

[mm]

3,40

3,95

5,40

Shank diameter

dS

[mm]

3,65

4,30

5,80

Head thickness

t1

[mm]

3,10

4,50

4,50

Pre-drilling hole diameter(1)

dV

[mm]

3,0

4,0

5,0

6

8

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

5

Tensile strength

ftens,k

[kN]

8,0

12,0

19,0

Yield moment

My,k

[Nm]

6,0

10,0

20,5

Withdrawal resistance parameter

fax,k

[N/mm2]

12,0

12,0

12,0

Associated density

ρa

[kg/m3]

350

350

350

Head-pull-through parameter

fhead,k

[N/mm2]

13,0

13,0

13,0

Associated density

ρa

[kg/m3]

350

350

350

46 | HBS SOFTWOOD | TIMBER


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

5 60 25 75 50 25 25

12∙d 5∙d 15∙d 10∙d 5∙d 5∙d

6 72 30 90 60 30 30

F

8 96 40 120 80 40 40

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 25 25 50 50 50 25

5∙d 5∙d 10∙d 10∙d 10∙d 5∙d

6 30 30 60 60 60 30

8 40 40 80 80 80 40

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

5 25 15 60 35 15 15

5∙d 3∙d 12∙d 7∙d 3∙d 3∙d

6 30 18 72 42 18 18

F

8 40 24 96 56 24 24

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 20 20 35 35 35 15

4∙d 4∙d 7∙d 7∙d 7∙d 3∙d

6 24 24 42 42 42 18

8 32 32 56 56 56 24

α = load-to-grain angle d = d1 = nominal screw diameter

stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTE on page 49.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00

( * ) For intermediate a values a linear interpolation is possible. 1

TIMBER | HBS SOFTWOOD | 47


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

TENSION

steel-to-timber thin plate

panel-to-timber

steel-to-timber thick plate

thread withdrawal

head pull-through

Rhead,k

A

SPLATE

SPAN

SPLATE

Splate

L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 50

5

6

8

30

20

RV,90,k

SPAN

RV,k

SPLATE

RV,k

SPLATE

RV,k

Rax,90,k

[kN]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

[kN]

[kN]

2,06

1,94

1,40

1,18

1,44

1,48

60

35

25

1,27

1,44

1,68

2,14

2,27

1,40

70

40

30

1,37

1,44

1,76

2,22

2,59

1,40

80

50

30

1,37

2,38

3,24

1,40

100

60

40

1,46

1,44

2,08

2,55

3,89

1,40

120

60

60

1,46

1,44

2,08

2,55

3,89

1,40

18

1,44

2,5

1,92

5

60

35

25

1,62

1,85

2,00

2,83

2,72

2,02

70

40

30

1,75

1,85

2,30

2,93

3,11

2,02

80

50

30

1,75

1,85

2,49

3,12

3,89

2,02

90

55

35

1,86

1,85

2,59

3,22

4,27

2,02

100

60

40

1,98

1,85

2,69

3,32

4,66

2,02

120

75

45

2,03

1,85

2,98

3,61

5,83

2,02

140

80

60

2,03

160

90

70

2,03

1,85 18

1,85

3,05 3

3,05

6

3,71

6,22

2,02

3,90

6,99

2,02

180

100

80

2,03

1,85

3,05

4,10

7,77

2,02

200

100

100

2,03

1,85

3,05

4,10

7,77

2,02

220

100

120

2,03

1,85

3,05

4,10

7,77

2,02

240

100

140

2,03

1,85

3,05

4,10

7,77

2,02

260

100

160

2,03

1,85

3,05

4,10

7,77

2,02

280

100

180

2,03

1,85

3,05

4,10

7,77

2,02

300

100

200

2,03

1,85

3,05

4,10

7,77

2,02

80

52

28

2,46

2,65

3,29

4,77

5,39

2,95 2,95

100

60

40

2,75

2,65

3,97

4,98

6,22

120

80

40

2,75

2,65

4,49

5,50

8,29

2,95

140

80

60

3,16

2,65

4,49

5,50

8,29

2,95 2,95

160

90

70

3,16

2,65

4,75

5,75

9,32

180

90

90

3,16

2,65

4,75

5,75

9,32

2,95

200

100

100

3,16

2,65

4,84

6,01

10,36

2,95

220

100

120

3,16

240

100

140

3,16

2,65 18

2,65

4,84 4

4,84

8

6,01

10,36

2,95

6,01

10,36

2,95

260

100

160

3,16

2,65

4,84

6,01

10,36

2,95

280

100

180

3,16

2,65

4,84

6,01

10,36

2,95

300

100

200

3,16

2,65

4,84

6,01

10,36

2,95

320

100

220

3,16

2,65

4,84

6,01

10,36

2,95

340

100

240

3,16

2,65

4,84

6,01

10,36

2,95 2,95

360

100

260

3,16

2,65

4,84

6,01

10,36

380

100

280

3,16

2,65

4,84

6,01

10,36

2,95

400

100

300

3,16

2,65

4,84

6,01

10,36

2,95

NOTES and GENERAL PRINCIPLES on page 49.

48 | HBS SOFTWOOD | TIMBER


STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) . • The characteristic thread withdrawal strength was evaluated by considering a 90° angle ε between the fibers of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk

[kg/m3 ]

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

NOTES • The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector. • The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The values in the table are independent of the load-to-grain angle.

MINIMUM DISTANCES NOTES • Minimum distances in accordance with EN 1995:2014. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

TIMBER | HBS SOFTWOOD | 49


HBS COIL

ETA-11/0030

UKTA-0836 22/6195

ETA-11/0030

HBS BOUND SCREWS QUICK, IN SERIES USE Quick and precise installation. Fast and safe execution thanks to the special binding.

HBS 6,0 mm Also available in a diameter of 6,0 mm, ideal for quick wall-to-wall fastening in CLT structures.

FAST With the 3 THORNS tip, screw grip becomes more reliable and faster, while maintaining the usual mechanical performance. More speed, less effort.

BIT INCLUDED

DIAMETER [mm] 3

4

6

12

LENGTH [mm] 12

25

80

1000

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • • • • •

50 | HBS COIL | TIMBER

timber based panels fibreboard, MDF, HDF and LDF plated and melamine faced panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods


CODES AND DIMENSIONS d1

CODE

L

b

A

[mm]

[mm]

[mm]

[mm]

HH10600459( * ) HZB430 4 TX 20 HZB440 HZB450

25 30 40 50

18 16 24 30

7 14 16 20

pcs/

pcs

167 167 125

3000 3000 2000 1500

d1

(*) Full threaded screw.

CODE

L

b

A

pcs/

pcs

[mm]

[mm]

[mm]

[mm]

4,5 HZB4550 TX 20

50

30

20

125

1500

HZB560 5 HZB570 TX 25 HZB580 HZB670 6 TX 30 HZB680

60 70 80 70 80

30 35 40 40 40

30 35 40 30 40

125 125 125 135 135

1250 625 625 625 625

GEOMETRY | HZB

H

XXX

dK

BS

A

d2 d1

90° t1

dS

b L

Nominal diameter

d1

[mm]

4

4,5

5

6

Head diameter

dK

[mm]

8,00

9,00

10,00

12,00

Thread diameter

d2

[mm]

2,55

2,80

3,40

3,95

Shank diameter

dS

[mm]

2,75

3,15

3,65

4,30

Head thickness

t1

[mm]

2,80

2,80

3,10

4,50

Pre-drilling hole diameter(1)

dV,S

[mm]

2,5

2,5

3,0

4,0

(1) Pre-drilling valid for softwood.

C5

For mechanical properties and structural values see HBS on page 30.

ADDITIONAL PRODUCTS CODE

description

d1

lengths

[mm]

[mm]

pcs

HH3373

automatic loader for cordless screwdriver A 18 M BL

4,0

25-50

1

HH3372

automatic loader for cordless screwdriver A 18 M BL

4,5 - 6,0

40-80

1

HH3352

powered screwdriver

4,0

25-50

1

HH3338

powered screwdriver

4,5 - 6,0

40-80

1

HH14411591

extension

-

-

1

HZB6PLATE

adapter plate for HZB Ø6

-

-

1

HH14001469

TX30 M6 bit for HZB Ø6

-

-

1

HH3372

HH3338

Further information on page 401.

Ø6 mm HBS COIL APPLICATION The adapter plates for use of 4,0, 4,5 and 5,0 diameter HBS COIL screws are already supplied with the respective screwdriver loaders. To use HBS COIL screws with a diameter of 6.0, the adapter plates supplied must be replaced with the adapter plate HZB6PLATE. For HBS COIL screws diameter 6,0 it is also necessary to use the appropriate TX30 bit (code HH14001469). We recommend using the extension HH14411591 for an easier installation of the screws on horizontal planes.

HH14411591

HZB6PLATE

HH14001469

TIMBER | HBS COIL | 51


HBS EVO

ETA-11/0030

UKTA-0836 22/6195

AC233 | AC257 ESR-4645

COUNTERSUNK SCREW C4 EVO COATING Multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt sprayexposure test, as per ISO 9227. It can be used for service class 3 outdoor applications and under class C4 atmospheric corrosion conditions tested by the Research Institutes of Sweden - RISE.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use with ACQ-treated timber.

T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).

BIT INCLUDED

DIAMETER [mm]

3

LENGTH [mm]

12

4

8 40

12 320

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

C4

EVO COATING

1000

carbon steel with C4 EVO coating

FIELDS OF USE • • • • •

52 | HBS EVO | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber

ETA-11/0030


SERVICE CLASS 3 Certified for use in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions. Ideal for fastening timber framed panels and trusses (Rafter, Truss).

PERGOLAS AND DECKS The smaller sizes are ideal for securing boards and battens of decks set up outdoors.

TIMBER | HBS EVO | 53


CODES AND DIMENSIONS d1

CODE

[mm] 4 TX 20

4,5 TX 20

5 TX 25

6 TX 30

HBSEVO440 HBSEVO450 HBSEVO460 HBSEVO4545 HBSEVO4550 HBSEVO4560 HBSEVO4570 HBSEVO550 HBSEVO560 HBSEVO570 HBSEVO580 HBSEVO590 HBSEVO5100 HBSEVO660 HBSEVO670 HBSEVO680 HBSEVO6100 HBSEVO6120 HBSEVO6140 HBSEVO6160 HBSEVO6180 HBSEVO6200

L

b

A

[mm]

[mm]

[mm]

40 50 60 45 50 60 70 50 60 70 80 90 100 60 70 80 100 120 140 160 180 200

24 30 35 30 30 35 40 24 30 35 40 45 50 30 40 40 50 60 75 75 75 75

16 20 25 15 20 25 30 26 30 35 40 45 50 30 30 40 50 60 65 85 105 125

pcs

d1

CODE

[mm] 500 500 500 400 200 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100 100 100

HBSEVO8100 HBSEVO8120 HBSEVO8140 HBSEVO8160 HBSEVO8180 HBSEVO8200 HBSEVO8220 HBSEVO8240 HBSEVO8260 HBSEVO8280 HBSEVO8300 HBSEVO8320

8 TX 40

L

b

A

[mm]

[mm]

[mm]

100 120 140 160 180 200 220 240 260 280 300 320

52 60 60 80 80 80 80 80 80 80 100 100

48 60 80 80 100 120 140 160 180 200 200 220

pcs 100 100 100 100 100 100 100 100 100 100 100 100

RELATED PRODUCTS HUS EVO TURNED WASHER

see page 68

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

HBS

A

d2 d1

90° t1

dS

b L

GEOMETRY Nominal diameter

d1

[mm]

4

4,5

5

6

8

Head diameter

dK

[mm]

8,00

9,00

10,00

12,00

14,50

Thread diameter

d2

[mm]

2,55

2,80

3,40

3,95

5,40

Shank diameter

dS

[mm]

2,75

3,15

3,65

4,30

5,80

Head thickness

t1

[mm]

2,80

2,80

3,10

4,50

4,50

Pre-drilling hole diameter(1)

dV,S

[mm]

2,5

2,5

3,0

4,0

5,0

Pre-drilling hole diameter(2)

dV,H

[mm]

-

-

3,5

4,0

6,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

4

4,5

5

6

8

Tensile strength

ftens,k

[kN]

5,0

6,4

7,9

11,3

20,1

Yield moment

My,k

[Nm]

3,0

4,1

5,4

9,5

20,1

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

54 | HBS EVO | TIMBER


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

4

4,5

F

5

6

8

d1

[mm]

α=90° 4

4,5

5

6

8

a1

[mm]

10∙d

40

45

10∙d

50

60

80

a1

[mm]

5∙d

20

23

5∙d

25

30

40

a2

[mm]

5∙d

20

23

5∙d

25

30

40

a2

[mm]

5∙d

20

23

5∙d

25

30

40

a3,t

[mm]

15∙d

60

68

15∙d

75

90

120

a3,t

[mm]

10∙d

40

45

10∙d

50

60

80

a3,c

[mm]

10∙d

40

45

10∙d

50

60

80

a3,c

[mm]

10∙d

40

45

10∙d

50

60

80

a4,t

[mm]

5∙d

20

23

5∙d

25

30

40

a4,t

[mm]

7∙d

28

32

10∙d

50

60

80

a4,c

[mm]

5∙d

20

23

5∙d

25

30

40

a4,c

[mm]

5∙d

20

23

5∙d

25

30

40

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

7∙d

28

32

7∙d

35

a3,t

[mm]

20∙d

80

90

20∙d

100

a3,c

[mm]

15∙d

60

68

15∙d

75

90

a4,t

[mm]

7∙d

28

32

7∙d

35

42

a4,c

[mm]

7∙d

28

32

7∙d

35

42

15∙d

4

4,5

60

68

F

15∙d

α=90°

5

6

8

d1

[mm]

75

90

120

a1

[mm]

42

56

a2

[mm]

7∙d

28

120

160

a3,t

[mm]

15∙d

60

120

a3,c

[mm]

15∙d

60

68

56

a4,t

[mm]

9∙d

36

41

56

a4,c

[mm]

7∙d

28

32

7∙d

4

4,5

28

32

5

6

8

7∙d

35

42

56

32

7∙d

35

42

56

68

15∙d

75

90

120

15∙d

75

90

120

12∙d

60

72

96

7∙d

35

42

56

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

12

14

3∙d

15

a3,t

[mm]

12∙d

48

54

12∙d

60

a3,c

[mm]

7∙d

28

32

7∙d

35

42

a4,t

[mm]

3∙d

12

14

3∙d

15

18

a4,c

[mm]

3∙d

12

14

3∙d

15

18

5∙d

4

4,5

20

23

F

5∙d

α=90°

5

6

8

d1

[mm]

25

30

40

a1

[mm]

4∙d

4

4,5

5

6

8

16

18

4∙d

20

24

32

18

24

a2

[mm]

4∙d

72

96

a3,t

[mm]

7∙d

16

18

4∙d

20

24

32

28

32

7∙d

35

42

56

56

a3,c

[mm]

7∙d

24

a4,t

[mm]

5∙d

28

32

7∙d

35

42

56

20

23

7∙d

35

42

56

24

a4,c

[mm]

3∙d

12

14

3∙d

15

18

24

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

TIMBER | HBS EVO | 55


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber timber-to-timber ε=90° ε=0°

panel-to-timber

steel-to-timber thin plate

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

SPLATE

geometry

TENSION

SPAN

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 4

4,5

5

6

8

RV,90,k

RV,0,k

SPAN

RV,k

SPLATE

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN]

[kN]

[mm]

[kN]

[mm]

[kN]

[kN]

[kN]

[kN]

1,12

1,21

0,36

0,73

2

1,19

1,52

0,45

0,73

40

24

16

0,83

0,51

50

30

20

0,91

0,62

60

35

25

0,99

0,69

0,84

1,26

1,77

0,53

0,73

45

30

15

0,96

0,61

0,97

1,42

1,70

0,51

0,92

50

30

20

1,06

0,69

60

35

25

1,18

0,79

0,84 12

12

0,84

0,97 0,97

2,25

1,42

1,70

0,51

0,92

1,49

1,99

0,60

0,92

70

40

30

1,22

0,86

0,97

1,56

2,27

0,68

0,92

50

24

26

1,29

0,73

1,20

1,56

1,52

0,45

1,13

60

30

30

1,46

0,81

1,20

1,65

1,89

0,57

1,13

70

35

35

1,46

0,88

1,20

1,73

2,21

0,66

1,13

80

40

40

1,46

0,96

1,81

2,53

0,76

1,13

15

1,20

2,5

90

45

45

1,46

1,05

1,20

1,89

2,84

0,85

1,13

100

50

50

1,46

1,13

1,20

1,97

3,16

0,95

1,13

60

30

30

1,78

1,04

1,65

2,24

2,27

0,68

1,63

70

40

30

1,88

1,20

1,65

2,43

3,03

0,91

1,63

80

40

40

2,08

1,20

1,65

2,43

3,03

0,91

1,63

100

50

50

2,08

1,38

1,65

2,61

3,79

1,14

1,63

120

60

60

2,08

1,58

2,80

4,55

1,36

1,63

140

75

65

2,08

1,67

1,65

3,09

5,68

1,70

1,63

18

1,65

3

160

75

85

2,08

1,67

1,65

3,09

5,68

1,70

1,63

180

75

105

2,08

1,67

1,65

3,09

5,68

1,70

1,63

200

75

125

2,08

1,67

1,65

3,09

5,68

1,70

1,63

100

52

48

3,28

1,95

2,60

4,00

5,25

1,58

2,38

120

60

60

3,28

2,13

2,60

4,20

6,06

1,82

2,38

140

60

80

3,28

2,13

2,60

4,20

6,06

1,82

2,38

160

80

80

3,28

2,60

2,60

4,70

8,08

2,42

2,38

180

80

100

3,28

2,60

2,60

4,70

8,08

2,42

2,38

200

80

120

3,28

2,60

2,60

4,70

8,08

2,42

2,38

22

220

80

140

3,28

2,60

4,70

8,08

2,42

2,38

240

80

160

3,28

2,60

2,60

4,70

8,08

2,42

2,38

260

80

180

3,28

2,60

2,60

4,70

8,08

2,42

2,38

280

80

200

3,28

2,60

2,60

4,70

8,08

2,42

2,38

300

100

200

3,28

2,62

2,60

5,21

10,10

3,03

2,38

320

100

220

3,28

2,62

2,60

5,21

10,10

3,03

2,38

ε = screw-to-grain angle

56 | HBS EVO | TIMBER

2,60

4


EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00

( * ) For intermediate a values a linear interpolation is possible. 1

GENERAL PRINCIPLES

NOTES

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances.

• The characteristic panel-timber and steel-timber shear strengths were evaluated by considering a α angle of 90° between the grains of the timber element and the connector. • The shear strength characteristics on the plate are calculated considering the case of a thin plate (SPLATE = 0.5 d1). For the case of a thick plate, refer to the structural values of the HBS screw on page 30. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered.

• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.

• Shear strengths were calculated considering the threaded part fully inserted in the second element.

R’V,k = kdens,v RV,k

• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3.

R’head,k = kdens,ax Rhead,k

• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

R’ax,k = kdens,ax Rax,k ρk

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

• For minimum distances and structural values on CLT and LVL see HBS on page 30. • The characteristic strengths of HBS EVO screws with HUS EVO can be found on page 52.

Complete calculation reports for designing in wood? Download MyProject and simplify your work!

TIMBER | HBS EVO | 57


HBS EVO C5

AC233 ESR-4645

ETA-11/0030

COUNTERSUNK SCREW C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. SST (Salt Spray Test) with exposure time greater than 3000h carried out on screws previously screwed and unscrewed in Douglas fir timber.

MAXIMUM STRENGTH It is the screw of choice when high mechanical performance is required under very adverse environmental and wood corrosive conditions.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements, reducing costs and time.

BIT INCLUDED

LENGTH [mm] 3

3,5

8

12

DIAMETER [mm] 12

30

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C5

C5

EVO COATING

carbon steel with C5 EVO coating with very high corrosion resistance

FIELDS OF USE • • • •

58 | HBS EVO C5 | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods

1000


CODES AND DIMENSIONS d1

CODE

[mm] 3,5 TX 15 4 TX 20 4,5 TX 20

5 TX 25

6 TX 30

HBSEVO3530C5 HBSEVO3540C5 HBSEVO440C5 HBSEVO450C5 HBSEVO4550C5 HBSEVO4560C5 HBSEVO550C5 HBSEVO560C5 HBSEVO570C5 HBSEVO580C5 HBSEVO590C5 HBSEVO5100C5 HBSEVO680C5 HBSEVO6100C5 HBSEVO6120C5 HBSEVO6140C5 HBSEVO6160C5 HBSEVO6180C5 HBSEVO6200C5

L

b

A

[mm]

[mm]

[mm]

30 40 40 50 50 60 50 60 70 80 90 100 80 100 120 140 160 180 200

18 18 24 30 30 35 24 30 35 40 45 50 40 50 60 75 75 75 75

12 22 16 20 20 25 26 30 35 40 45 50 40 50 60 65 85 105 125

pcs

d1

CODE

[mm] 500 500 500 400 200 200 200 200 100 100 100 100 100 100 100 100 100 100 100

8 TX 40

L

b

A

[mm]

[mm]

[mm]

100 120 140 160 180 200 220 240 280 320

52 60 60 80 80 80 80 80 80 100

48 60 80 80 100 120 140 160 200 220

HBSEVO8100C5 HBSEVO8120C5 HBSEVO8140C5 HBSEVO8160C5 HBSEVO8180C5 HBSEVO8200C5 HBSEVO8220C5 HBSEVO8240C5 HBSEVO8280C5 HBSEVO8320C5

pcs 100 100 100 100 100 100 100 100 100 100

RELATED PRODUCTS HUS EVO TURNED WASHER

see page 68

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

HBS

A

d2 d1

90° dS

t1

b L

GEOMETRY Nominal diameter

d1

[mm]

3,5

4

4,5

5

6

8

Head diameter

dK

[mm]

7,00

8,00

9,00

10,00

12,00

14,50

Thread diameter

d2

[mm]

2,25

2,55

2,80

3,40

3,95

5,40

Shank diameter

dS

[mm]

2,45

2,75

3,15

3,65

4,30

5,80

Head thickness

t1

[mm]

2,20

2,80

2,80

3,10

4,50

4,50

Pre-drilling hole diameter(1)

dV,S

[mm]

2,0

2,5

2,5

3,0

4,0

5,0

Pre-drilling hole diameter(2)

dV,H

[mm]

-

-

-

3,5

4,0

6,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

3,5

4

4,5

5

6

8

Tensile strength

ftens,k

[kN]

3,8

5,0

6,4

7,9

11,3

20,1

Yield moment

My,k

[Nm]

2,1

3,0

4,1

5,4

9,5

20,1

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

C5

For minimum distances and structural values see HBS EVO on page 52. TIMBER | HBS EVO C5 | 59


HBS HARDWOOD

ETA-11/0030

UKTA-0836 22/6195

ETA-11/0030

COUNTERSUNK SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA11/0030 certification for use with high density timber without any predrill. Approved for structural applications subject to stresses in any direction vs the grain (α = 0° - 90°).

INCREASED DIAMETER Internal thread diameter increased to ensure tightening in the highest density woods. Excellent twisting moment values. HBS H Ø6 mm, comparable to a diameter of 7 mm; HBS H Ø8 mm, comparable to a diameter of 9 mm.

60° COUNTERSUNK HEAD Concealed head, 60°, for effective, minimally invasive insertion, even in high density woods.

HYBRID SOFTWOOD-HARDWOOD Approved for different types of applications without the need for predrill hole with softwood and hardwood used simultaneously. For example: composite beam (softwood and hardwood) and hybrid engineered timbers (softwood and hardwood).

BIT INCLUDED

DIAMETER [mm]

3

LENGTH [mm]

12

6

8

12

80

480

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

1000

electrogalvanized carbon steel

FIELDS OF USE • • • • •

60 | HBS HARDWOOD | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods beech, oak, cypress, ash, eucalyptus, bamboo


HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drilling on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.

BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use without pre-drilling, for densities of up to 800 kg/m3.

TIMBER | HBS HARDWOOD | 61


CODES AND DIMENSIONS d1

CODE

[mm]

6 TX 30

L

b

A

[mm]

[mm]

[mm]

d1

pcs

CODE

[mm]

L

b

A

[mm]

[mm]

[mm]

pcs

HBSH680

80

50

30

100

HBSH8120

120

70

50

100

HBSH6100

100

60

40

100

HBSH8140

140

80

60

100

HBSH6120

120

70

50

100

HBSH8160

160

90

70

100

HBSH6140

140

80

60

100

HBSH8180

180

100

80

100

HBSH6160

160

90

70

100

HBSH8200

200

100

100

100

HBSH8220

220

100

120

100

HBSH8240

240

100

140

100

HBSH8280

280

100

180

100

HBSH8320

320

100

220

100

HBSH8360

360

100

260

100

HBSH8400

400

100

300

100

HBSH8440

440

100

340

100

HBSH8480

480

100

380

100

8 TX 40

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

SH HB

A

d2 d1

60° t1

dS

b L

GEOMETRY Nominal diameter

d1

[mm]

6

8

Head diameter

dK

[mm]

12,00

14,50

Thread diameter

d2

[mm]

4,50

5,90

Shank diameter

dS

[mm]

4,80

6,30

Head thickness

t1

[mm]

7,50

8,40

Pre-drilling hole diameter(1)

dV,S

[mm]

4,0

5,0

Pre-drilling hole diameter(2)

dV,H

[mm]

4,0

6,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

6

8

Tensile strength

ftens,k

[kN]

18,0

32,0

Yield moment

My,k

[Nm]

15,8

33,4

softwood (softwood)

oak, beech (hardwood)

ash (hardwood)

beech LVL (Beech LVL)

22,0

30,0

42,0

28,0 (d1 = 6 mm)

28,0 (d1 = 6 mm)

24,0 (d1 = 8 mm)

24,0 (d1 = 8 mm)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

Head-pull-through parameter

fhead,k [N/mm2]

10,5

Associated density

ρa

[kg/m3]

350

530

530

730

Calculation density

ρk

[kg/m3]

≤ 440

≤ 590

≤ 590

590 ÷ 750

For applications with different materials please see ETA-11/0030.

62 | HBS HARDWOOD | TIMBER

50,0


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk > 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

7∙d

a3,t

[mm]

20∙d

a3,c

[mm]

15∙d

a4,t

[mm]

a4,c

[mm]

F

α=90°

6

8

d1

[mm]

90

120

a1

[mm]

42

56

a2

[mm]

7∙d

42

56

120

120

a3,t

[mm]

15∙d

90

120

90

80

a3,c

[mm]

15∙d

90

120

7∙d

42

40

a4,t

[mm]

12∙d

72

96

7∙d

42

40

a4,c

[mm]

7∙d

42

56

15∙d

7∙d

6

8

42

56

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

a3,t

[mm]

12∙d

a3,c

[mm]

7∙d

42

a4,t

[mm]

3∙d

18

a4,c

[mm]

3∙d

18

5∙d

F

α=90°

6

8

d1

[mm]

30

40

a1

[mm]

4∙d

6

8

24

32

18

24

a2

[mm]

4∙d

24

32

72

96

a3,t

[mm]

7∙d

42

56

56

a3,c

[mm]

7∙d

42

56

24

a4,t

[mm]

7∙d

42

56

24

a4,c

[mm]

3∙d

18

24

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTE on page 66.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00

( * ) For intermediate a values a linear interpolation is possible. 1

TIMBER | HBS HARDWOOD | 63


STRUCTURAL VALUES | TIMBER(SOFTWOOD)

CHARACTERISTIC VALUES EN 1995:2014

SHEAR timber-to-timber timber-to-timber ε=90° ε=0°

steel-to-timber thin plate

A

steel-to-timber thick plate

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

SPLATE

SPLATE

geometry

TENSION

L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 80 50 30 100 60 40 6 120 70 50 140 80 60 160 90 70 120 70 50 140 80 60 160 90 70 180 100 80 200 100 100 220 100 120 240 100 140 8 280 100 180 320 100 220 360 100 260 400 100 300 440 100 340 480 100 380

RV,90,k

RV,0,k

SPLATE

RV,k

SPLATE

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN] 2,07 2,35 2,56 2,56 2,56 3,62 4,00 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05 4,05

[kN] 1,37 1,70 1,89 2,03 2,03 2,58 2,79 2,95 3,13 3,13 3,13 3,13 3,13 3,13 3,13 3,13 3,13 3,13

[mm]

[kN] 3,10 3,29 3,48 3,67 3,86 5,23 5,48 5,73 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98

[mm]

[kN] 3,99 4,18 4,37 4,56 4,75 6,66 6,91 7,16 7,42 7,42 7,42 7,42 7,42 7,42 7,42 7,42 7,42 7,42

[kN] 3,79 4,55 5,30 6,06 6,82 7,07 8,08 9,09 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10

[kN] 1,14 1,36 1,59 1,82 2,05 2,12 2,42 2,73 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03

[kN] 1,63 1,63 1,63 1,63 1,63 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38

3

4

6

8

ε = screw-to-grain angle

STRUCTURAL VALUES | HARDWOOD SHEAR hardwood-hard- hardwood-hardwood wood ε=90° ε=0°

steel-hardwood thin plate

A

steel-hardwood thick plate

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

SPLATE

SPLATE

geometry

TENSION

L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 80 50 30 100 60 40 6 120 70 50 140 80 60 160 90 70 120 70 50 140 80 60 160 90 70 180 100 80 8 200 100 100 220 100 120 240 100 140

RV,90,k

RV,0,k

SPLATE

RV,k

SPLATE

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN] 3,21 3,61 3,61 3,61 3,61 5,35 5,43 5,43 5,43 5,43 5,43 5,43

[kN] 2,06 2,42 2,66 2,76 2,86 3,65 4,02 4,35 4,42 4,42 4,42 4,42

[mm]

[kN] 4,27 4,61 4,95 5,14 5,14 7,31 7,76 8,21 8,27 8,27 8,27 8,27

[mm]

[kN] 5,33 5,67 6,01 6,35 6,69 9,02 9,47 9,92 10,38 10,38 10,38 10,38

[kN] 6,80 8,16 9,52 10,88 12,24 12,69 14,50 16,32 18,13 18,13 18,13 18,13

[kN] 2,04 2,45 2,86 3,26 3,67 3,81 4,35 4,89 5,44 5,44 5,44 5,44

[kN] 4,15 4,15 4,15 4,15 4,15 5,20 5,20 5,20 5,20 5,20 5,20 5,20

ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 66.

64 | HBS HARDWOOD | TIMBER

3

4

6

8


STRUCTURAL VALUES | BEECH LVL

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

beech LVL-beech LVL

steel-beech LVL thin plate

A

steel-beech LVL thick plate

thread withdrawal

steel tension

head pull-through

Rax,90,k

Rtens,k

Rhead,k

[kN]

[kN]

[kN]

7,94 8,57 9,20 9,29 9,29 13,75 14,59 15,43 15,74 15,74 15,74 15,74

12,60 15,12 17,64 20,16 22,68 23,52 26,88 30,24 33,60 33,60 33,60 33,60

SPLATE

SPLATE

geometry

TENSION

L b

d1

d1

L

b

A

[mm] [mm] [mm] [mm]

6

8

80 100 120 140 160 120 140 160 180 200 220 240

50 60 70 80 90 70 80 90 100 100 100 100

30 40 50 60 70 50 60 70 80 100 120 140

RV,90,k

SPLATE

[kN]

[mm]

5,19 5,19 5,19 5,19 5,19 8,19 8,19 8,19 8,19 8,19 8,19 8,19

3

4

RV,k

SPLATE

[kN]

[mm]

6,54 6,77 6,77 6,77 6,77 11,13 11,13 11,13 11,13 11,13 11,13 11,13

6

8

RV,k

18,00

32,00

[kN] 7,20 7,20 7,20 7,20 7,20 10,51 10,51 10,51 10,51 10,51 10,51 10,51

STRUCTURAL VALUES | HYBRID CONNECTIONS SHEAR geometry

timber-beech LVL

A

L

timber-hardwood

beech LVL-timber

A

A

hardwood-timber

A

b

d1

d1

L

b

A

RV,k

A

RV,k

A

RV,k

A

RV,k

[mm]

[mm] 80 100 120 140 160 120 140 160 180 200 220 240 280 320 360 400 440 480

[mm] 50 60 70 80 90 70 80 90 100 100 100 100 100 100 100 100 100 100

[mm] 30 40 50 60 70 50 60 70 80 100 120 140 180 220 260 300 340 380

[kN] 2,31 2,61 2,96 2,98 2,98 4,06 4,47 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75 4,75

[mm] 30 40 50 60 70 50 60 70 80 100 120 140 180 220 260 300 340 380

[kN] 2,18 2,61 2,74 2,74 2,74 4,06 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35 4,35

[mm] 30 40 50 60 70 50 60 70 80 100 120 120 120 120 120 120 120 120

[kN] 3,50 3,70 3,89 4,08 4,27 5,92 6,17 6,43 6,68 6,68 6,68 6,68 6,68 6,68 6,68 6,68 6,68 6,68

[mm] 30 40 50 60 70 50 60 70 80 100 120 120 120 120 120 120 120 120

[kN] 2,97 3,37 3,37 3,37 3,37 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05 5,05

6

8

NOTES and GENERAL PRINCIPLES on page 66.

TIMBER | HBS HARDWOOD | 65


STRUCTURAL VALUES NOTES | HARDWOOD

GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements.

• Design values can be obtained from characteristic values as follows:

• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• The characteristic steel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • The characteristic strength are calculated for screws inserted without pre-drilling hole.

• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) . • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • A suitable pilot hole may be required for the insertion of some connectors. For further details please see ETA-11/0030.

NOTES | TIMBER (SOFTWOOD) • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic steel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.

NOTES | BEECH LVL • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered for individual timber elements in the calculation. • The characteristic strength are calculated for screws inserted without pre-drilling hole.

NOTES | HYBRID CONNECTIONS • In the calculation, a density ρ k = 385 kg/m3 was assumed for softwood elements, a density ρk = 550 kg/m3 for hardwood (oak) elements and a density ρk = 730 kg/m3 for beech LVL elements. • For softwood and hardwood elements, an angle ε = 90° between the connector and the grain was considered in the calculation. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered in the calculation. • The characteristic strength are calculated for screws inserted without pre-drilling hole.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

MINIMUM DISTANCES NOTES | TIMBER • The minimum distances comply with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of 420 kg/m3 < ρk ≤ 500 kg/m3. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

66 | HBS HARDWOOD | TIMBER

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.


BUILDING INFORMATION MODELING

Structural connection elements in digital format Complete with three-dimensional geometric features and additional parametric information, they are available in IFC, REVIT, ALLPLAN, ARCHICAD and TEKLA format, and are ready to integrate into your next successful project. Down-load them now!

www.rothoblaas.com


HUS

ETA-11/0030

UKTA-0836 22/6195

AC233 | AC257 ESR-4645

AC233 ESR-4645

ETA-11/0030

TURNED WASHER COMPATIBILITY It is the ideal coupling for countersunk screws (HBS, VGS, SBS-SPP, SCI, etc.) when the axial strength of the connection is to be increased.

TIMBER-TO-METAL It is the optimal choice for connections on metal plates with cylindrical holes.

HUS EVO The HUS EVO version increases the washer's corrosion resistance due to the special surface treatment. This allows it to be used in service class 3 and atmospheric corrosion class C4.

HUS 15° The 15° angled washer is specifically designed for particular timber-to-metal applications where just a small angle is needed for screw insertion. The HUS BAND double-sided adhesive tape holds the washer in place during overhead applications.

MATERIAL HUS 15°

alu

SC1

SC2

SC3

SC4

C1

C2

C3

C4

T2

T3

T4

T5

SC1

SC2

SC3

SC4

C1

C2

C3

C4

T1

T2

T3

T4

SC2

SC3

SC4

C1 coating C2 C3 carbon steel with C4 EVO

C4

C5 T4

aluminium alloy EN AW 6082-T6 T1

HUS

Zn

ELECTRO PLATED

HUS

HUS 15°

electrogalvanized carbon steel

HUS EVO

C4

EVO COATING

SC1

T1

T2

T3

SC2

SC3

SC4

A4 | AISI316 austenitic stainless C1 C2 C3 steel

C4

C5

T4

T5

HUS A4

A4

AISI 316

HUS EVO

SC1

T1

T2

T3

HUS A4

FIELDS OF USE • • • • •

68 | HUS | TIMBER

thin, thick metal plates with cylindrical holes timber based panels solid timber and glulam CLT and LVL high density woods

T5


CODES AND DIMENSIONS

alu

HUS 15° - 15° angled washer CODE HUS815

dHBS

dVGS

[mm]

[mm]

8

9

Zn

ELECTRO PLATED

HUS - turned washer CODE

pcs

dHBS [mm] 6 8 10 12

HUS6 HUS8 HUS10 HUS12

50

dint

dVGS [mm] 9 11 13

pcs 100 50 50 25

C4

CODE

HUS BAND - double-sided adhesive for HUS washers CODE HUSBAND

EVO COATING

HUS EVO - turned washer

dext

dint

dext

[mm]

[mm]

22

30

dHBS EVO [mm] 6 8

HUSEVO6 HUSEVO8

pcs

dVGS EVO [mm] 9

pcs 100 50

50

Compatible with HUS815, HUS10, HUS12, HUS10A4.

A4

AISI 316

HUS A4 - turned washer CODE

dSCI [mm] 6 8 -

HUS6A4 HUS8A4 HUS10A4

dVGS A4 [mm] 9 11

pcs 100 100 50

GEOMETRY AND MECHANICAL CHARACTERISTICS h

D2 D1

h

D2 D1

dH

dHBS

BS

15° 90° SPLATE

SPLATE DF

DF

HUS 15°

HUS - HUS EVO - HUS A4

GEOMETRY Washer [mm]

HUS815

HUS6 HUSEVO6 HUS6A4

HUS8 HUSEVO8 HUS8A4

HUS10

HUS12

HUS10A4

9,50

7,50

8,50

10,80

14,00 37,00

Internal diameter

D1

External diameter

D2

[mm]

31,40

20,00

25,00

30,00

Height

h

[mm]

13,60

4,50

5,50

6,50

8,50

Plate hole diameter (1)

DF

[mm]

20÷22

6,5÷8,0

8,5÷10,0

10,5÷12,0

12,5÷14,0

Steel plate thickness

SPLATE [mm]

4÷18

-

-

-

-

(1)The choice of diameter is also linked to the diameter of the screw used.

CHARACTERISTIC MECHANICAL PARAMETERS softwood (softwood) Head-pull-through parameter

fhead,k [N/mm2]

10,5

Associated density

ρa

[kg/m3]

350

Calculation density

ρk

[kg/m3]

≤ 440

For applications with different materials or with high density please see ETA-11/0030.

TIMBER | HUS | 69


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

HUS 15°

SHEAR steel-to-timber thin plate

steel-to-timber thick plate SPLATE

SPLATE

SPLATE

steel-to-timber thick plate SPLATE

steel-to-timber thin plate

geometry

L b d1

d1,HBS

L

SPLATE

RV,k

SPLATE

RV,k

SPLATE

RV,k

SPLATE

RV,k

[mm]

[mm]

[mm] [mm]

[kN]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

80

52

3,61

HUS 15°

8

b

100

52

120÷140

60

4,93

3,86 4

4,05

3,74

4,93 8

5,11

4,00

5,13

4

4,20

5,11 8

5,31

160÷280

80

4,54

5,62

4,70

5,81

≥ 300

100

5,03

6,10

5,21

6,32

STRUCTURAL VALUES | CLT HUS 15°

SHEAR steel-CLT thin plate

steel-CLT thick plate SPLATE

SPLATE

SPLATE

steel-CLT thick plate SPLATE

steel-CLT thin plate

geometry

L b d1

HUS 15°

d1,HBS

L

SPLATE

RV,k

SPLATE

RV,k

SPLATE

RV,k

SPLATE

RV,k

[mm]

[mm]

[mm] [mm]

[kN]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

80

52

3,28

8

b

4,67

3,65

3,40

100

52

120÷140

60

160÷280

80

4,28

5,30

4,43

5,49

≥ 300

100

4,73

5,75

4,90

5,96

4

3,83

NOTES and GENERAL PRINCIPLES on page 71.

70 | HUS | TIMBER

4,67

4,83

8

4,85

3,77 4

3,96

4,83 8

5,02


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

HUS/HUS EVO

SHEAR steel-to-timber thin plate

A

steel-to-timber thick plate

head pull-through with washer

SPLATE

A

timber-to-timber ε=0° SPLATE

timber-to-timber ε=90°

geometry

TENSION

L b d1

d1,HBS

L

b

A

RV,90,k

A

RV,0,k

SPLATE

RV,k

SPLATE

RV,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

[kN]

80

40

35

2,38

35

1,20

3,12

4,53

3,31

4,53

HUS HUSEVO

90

50

35

2,57

35

1,38

100

50

45

2,61

45

1,38

110÷130

60

45÷65

2,80

45÷65

1,58

≥ 140

75

≥ 60

2,80

≥ 60

80

52

22

2,98

22

6

HUS HUSEVO

HUS

HUS

8

2,61

3,31

4,53

2,80

3,49

4,53

1,69

3,09

3,78

4,53

1,58

3,79

5,11

7,08

5,11

7,08

100

52

42

3,78

42

1,95

120÷140

60

54÷74

4,20

54÷74

2,13

160÷280

80

74÷194

4,45

74÷194

2,61

≥ 300

100

≥ 194

4,45

≥ 194

80

52

21

3,32

21

100

52

41

4,73

41

2,41

3

2,61

6

4,00 4

4,20

5,31

7,08

4,70

5,81

7,08

2,79

5,21

6,32

7,08

1,86

4,30

6,55

10,20

5,51

7,12

10,20

7,37

10,20

7,37

10,20

120

60

53

5,50

53

2,75

60

73

5,76

73

2,75

160÷280

80

73÷193

6,40

73÷193

3,28

6,40

8,00

10,20

≥ 300

100

≥ 193

6,42

≥ 193

3,87

7,03

8,63

10,20

120

80

31

5,57

31

3,27

7,55

9,79

15,51

160÷280

80

71÷191

7,81

71÷191

3,88

≥ 320

120

≥ 191

8,66

≥ 191

4,98

5

6

5,76

8

140

10

12

2,43

Rhead,k

5,76

7,81 9,32

10

12

9,79

15,51

11,30

15,51

ε = screw-to-grain angle

GENERAL PRINCIPLES

NOTES

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic steel-timber shear strengths were evaluated by considering the bearing plane of the washer parallel to the grains.

• Design values can be obtained from characteristic values as follows:

• The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1) .

Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the screws and washers, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The values in the table are independent of the load-to-grain angle. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element.

• A density of ρk = 385 kg/m3 for the timber elements and ρk = 350 kg/m3 for the CLT elements was considered during the calculation. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 34). • The characteristic values on CLT are according to the national specifications ÖNORM EN 1995 - Annex K. • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The characteristic shear and pull-through strength of the head with HUS on CLT can be found on page 39. • For available HBS and HBS EVO screw sizes and structural values see pages 30 and 52. • Characteristic strengths for HUS A4 can be found on page 323.

• The characteristic strength to head pull-through with washer was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

TIMBER | HUS | 71


HUS 15° INSTALLATION

1

2

3

Drill a D F = 20 mm diameter hole in the metal plate at the insertion point of the HUS815 washer.

We recommend applying HUSBAND adhesive underneath the HUS815 washer to facilitate application.

Remove the liner and apply the washer at the hole, paying attention to the insertion direction.

4

5

6

Drill a guide hole with a diameter of 5 mm and a minimum length of 20 mm, preferably using the JIGVGU945 template to ensure the correct installation direction.

Install the HBS screw of the desired length. Do not use pulse screw guns. Pay attention when tightening the connection.

Installation completed. The 15° screw angle ensures that the distance to the head of the panel (or beam) is maintained.

STEEL-TIMBER INSTALLATION FROM BELOW

F

F F

F < 200 mm

F = 200 ÷ 300 mm

F > 300 mm

If the clearance (F) is small, the screws are installed using a long insert; both flanges must be drilled.

In this F range, there are not enough long bits and not enough free space for the operator to manoeuvre. The slight inclination of the HUS 15° allows for easy fastening.

When sufficient free space is available for installation, a HUS washer can also be used, within the minimum distances.

RELATED PRODUCTS

HBS page 30

72 | HUS | TIMBER

VGS page 164

CATCH page 408

TORQUE LIMITER page 408

JIG VGU page 409


XYLOFON WASHER SEPARATING WASHER FOR SCREWS ACOUSTIC PERFORMANCE It improves soundproofing by decoupling of timber-to-timber joints made with screws.

STATICS The washer increases the rope effect in the connection, thus improving the static performance of the detail.

SWELLING OF TIMBER It gives the joint a certain adaptability to mitigate stresses resulting from shrinkage/swelling of the wood.

CODES AND DIMENSIONS

GEOMETRY

SEPARATING WASHER FOR SCREWS CODE XYLW803811

dSCREW Ø8 - Ø10

dext

dint

s

[mm]

[mm]

[mm]

38

11

6,0

dext

dint

s

[mm]

[mm]

[mm]

34

11

3,0

pcs

dint s

50

ULS 440 - WASHER CODE ULS11343

dext dSCREW

Ø8 - Ø10

For more information on the product, go to www.rothoblaas.com.

pcs MATERIAL 200

PU

polyurethane

TESTED The static performance has been tested at the University of Innsbruck for safe use in structural applications.

SAFE Thanks to its modified polyurethane blend, it is extremely chemically stable and resistant to creep deformation.

TIMBER | XYLOFON WASHER | 73


RESEARCH & DEVELOPMENT

STRUCTURAL DESIGN AND ACOUSTICS

The mechanical behaviour of timber-to-timber shear connections with a resilient sound insulation profile in between was studied in depth, both in terms of strength and stiffness, through an extensive experimental campaign.

EXPERIMENTAL INVESTIGATION 1

ANALYTICAL CHARACTERISATION OF A GAP CONNECTION USING PREDICTIVE MODELS For the analytical evaluation of the mechanical parameters of the connection (strength and stiffness), models available in the literature were applied, which modify Johansen's basic theory.

2

APPLICATION OF THE MODEL TO CONNECTIONS WITH AN INTERPOSED RESILIENT PROFILE Over 50 configurations considered by varying numerous parameters. RESILIENT PROFILES

CONNECTORS

Thickness investigated: 6 mm, 2 x 6 mm, 3 x 6 mm

3

XYLOFON 35-50-70-80-90

PIANO A-B

PIANO C-D-E

Polyurethane (monolithic and deformable)

EPDM (expanded and compressible)

EPDM (monolithic and deformable)

ASSESSMENT OF THE FRICTION COEFFICIENT μ FOR XYLOFON ACOUSTIC PROFILES

HBS Ø6 | HBS Ø8 | HBS Ø10 | HBS + SHARP METAL

timber XYLOFON 35

The tests carried out revealed interface properties of a frictional nature that seem to particularly influence the behaviour of the timber connections, especially in terms of strength.

XYLOFON 70 XYLOFON 90 air 0

0,25

0,50

0,75

1

Friction coefficient μ [-]

4

EXECUTION OF MONOTONIC TESTS For the validation of the predictive model studied, samples with one and two shear planes were tested.

5

air

timber F

F

s

XYLOFON 70 F

s

EXECUTION OF CYCLIC TESTS For the comparison of the behaviour under monotonic and cyclic loads, samples with two shear planes were tested.

over 250 TESTS Experimental campaign carried out in cooperation with: CIRI Edilizia e Costruzioni Interdepartmental Centre for Industrial Research Alma Mater Studiorum - Università di Bologna

74 | RESEARCH & DEVELOPMENT | TIMBER

F

F


The results were analysed by bi-linearising the experimental curves. It can be seen that the cyclic behaviour is consistent with the monotonic behaviour.

6

8

5

6 4

4 Force [kN]

CAMPAIGN RESULTS

Force [kN]

6

3 2

2 -25

0 -5 -2

-15

5

15

25

-4 1 0

-6 0

3

6

9

12

15

-8

18

Displacement [mm]

Displacement [mm] Graphical representation of experimental data from monotonic tests (left) and cyclic tests (right).

cyclic XYLOFON 70 monotonic XYLOFON 70

INTERPRETATION OF RESULTS The comparative analysis focused mainly on strength and stiffness parameters. The values obtained in the various configurations were dimensioned with respect to the TIMBER case.

parameter

0,4

0,2

0,2

0,0

0,0

influence on strength

PIANO B

k/kref

0,6

XYLOFON 70

0,4

PIANO B

0,6

0,8

air

1,0

XYLOFON 70

1,0 air

1,2

0,8

With expanded and compressible profiles (represented by PLAN B in the graphs), on the other hand, the variation from the reference configuration is more significant.

STIFFNESS

1,2

timber

STRENGTH

timber

Monolithic, deformable polyurethane and EPDM profiles (represented by XYLOFON 70 in the graphs) do not significantly change the strength of the connection when the elastic modulus of the material changes compared to the timber-to-timber case.

Ry/Rref

7

PIANO B air

XYLOFON 70 timber monotonic

influence on stiffness

profile structure

medium-high

Ry

as compressibility increases(*)

medium

s

profile thickness

significant

Ry

as thickness increases (for s > 6 mm)

significant

d

connector diameter

medium

ΔRy

as the diameter increases

medium

interface properties

significant

Ry

as the profile hardness decreases (shore)

low

(*) Directly proportional to the % of air contained in the material.

According to the analytical model, the use of large thickness values ( s > 6 mm ) leads to a progressive degradation of strength and stiffness regardless of the type of profile interposed. Mechanical stiffness, on the other hand, shows a more or less marked degradation trend depending on the different parameters investigated and their interconnection.

In conclusion, the mechanical behaviour of the investigated connections under monotonic and cyclic loading conditions is not particularly influenced by the presence of the monolithic XYLOFON and PIANO acoustic profiles.

COMPLETE SCIENTIFIC REPORT

CATALOGUE SOUNDPROOFING SOLUTIONS

The strength values, as a first approximation, can, in the case of profiles with a thickness not exceeding 6 mm, always be traced back to the case of direct timber-to-timber connection, thus neglecting the presence of the acoustic profile.

TIMBER | RESEARCH & DEVELOPMENT | 75


TBS

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

FLANGE HEAD SCREW INTEGRATED WASHER The flange h ead s erves a s w asher a nd e nsures h igh h ead s trength and pull-through. Ideal in the presence of wind or variations in timber dimensions.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

NEW-GENERATION WOODS

Ø6 - Ø8

Tested and certified for use on a wide variety of engineered timbers such as CLT, GL, LVL, OSB and Beech LVL. Extremely versatile, the TBS screw guarantees the use of new-generation woods for the creation of increasingly innovative and sustainable structures.

FAST With the 3 THORNS tip, screw grip becomes more reliable and faster, while maintaining the usual mechanical performance. More speed, less effort.

Ø10 - Ø12

BIT INCLUDED

DIAMETER [mm]

tbs

6 6

12

16

LENGTH [mm]

40 40

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

1000 1000

electrogalvanized carbon steel

FIELDS OF USE • • • • •

76 | TBS | TIMBER

timber based panels fibreboard and MDF panels solid timber and glulam CLT and LVL high density woods

ETA-11/0030


SECONDARY BEAMS Ideal for fastening joists to sill beams to achieve high wind uplift resistance. The flange head guarantees excellent tensile strength which means the use of additional lateral fastening systems can be avoided.

I-JOIST Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.

TIMBER | TBS | 77


Fastening SIP panels with 8 mm diameter TBS screws.

Fastening CLT walls with TBS screws.

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

TBS

A

dK d2 d1

dS

dK

b

Ø6 - Ø8

L

Ø10 - Ø12

GEOMETRY Nominal diameter

d1

[mm]

6

8

10

12

Head diameter

dK

[mm]

15,50

19,00

25,00

29,00

Thread diameter

d2

[mm]

3,95

5,40

6,40

6,80

Shank diameter

dS

[mm]

4,30

5,80

7,00

8,00

Pre-drilling hole diameter(1)

dV,S

[mm]

4,0

5,0

6,0

7,0

Pre-drilling hole diameter(2)

dV,H

[mm]

4,0

6,0

7,0

8,0

10

12

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

6

8

Tensile strength

ftens,k

[kN]

11,3

20,1

31,4

33,9

Yield moment

My,k

[Nm]

9,5

20,1

35,8

48,0

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

78 | TBS | TIMBER


CODES AND DIMENSIONS d1

dK

[mm]

[mm]

CODE

L

b

A

[mm]

[mm]

[mm]

60

40

20

TBS670

70

40

TBS680

80

50

TBS690

90

50

TBS6100

100

TBS6120

TBS660

6 TX 30

8 TX 40

15,5

19,0

pcs

d1

dK

[mm]

[mm]

CODE

L

b

A

[mm]

[mm]

[mm]

pcs

100

52

48

50

100

TBS10100

30

100

TBS10120

120

60

60

50

30

100

TBS10140

140

60

80

50

40

100

TBS10160

160

80

80

50

60

40

100

TBS10180

180

80

100

50

120

75

45

100

TBS10200

200

100

100

50

TBS6140

140

75

65

100

TBS10220

220

100

120

50

TBS6160

160

75

85

100

TBS10240

240

100

140

50

TBS6180

180

75

105

100

TBS10260

260

100

160

50

TBS6200

200

75

125

100

TBS10280

280

100

180

50

TBS6220

220

100

120

100

TBS10300

300

100

200

50

TBS6240

240

100

140

100

TBS10320

320

120

200

50

TBS6260

260

100

160

100

TBS10340

340

120

220

50

TBS6280

280

100

180

100

TBS10360

360

120

240

50

TBS6300

300

100

200

100

TBS10380

380

120

260

50

TBS6320

320

100

220

100

TBS10400

400

120

280

50

TBS6360

360

100

260

100

TBS10440

440

120

320

50

TBS6400

400

100

300

100

TBS10480

480

120

360

50

TBS840

40

32

8

100

TBS10520

520

120

400

50

TBS860

60

52

8

100

TBS10560

560

120

440

50

TBS880

80

52

28

50

TBS10600

600

120

480

50

TBS8100

100

52

48

50

TBS12200

200

120

80

25

TBS8120

120

80

40

50

TBS12240

240

120

120

25

TBS8140

140

80

60

50

TBS12280

280

120

160

25

TBS8160

160

100

60

50

TBS12320

320

120

200

25

TBS8180

180

100

80

50

TBS12360

360

120

240

25

TBS8200

200

100

100

50

TBS12400

400

140

260

25

TBS8220

220

100

120

50

TBS12440

440

140

300

25

TBS8240

240

100

140

50

TBS12480

480

140

340

25

TBS8260

260

100

160

50

TBS12520

520

140

380

25

TBS8280

280

100

180

50

TBS12560

560

140

420

25

TBS8300

300

100

200

50

TBS12600

600

140

460

25

TBS8320

320

100

220

50

TBS12800

800

160

640

25

TBS8340

340

100

240

50

TBS121000

1000

160

840

25

TBS8360

360

100

260

50

TBS8380

380

100

280

50

TBS8400

400

100

300

50

TBS8440

440

100

340

50

TBS8480

480

100

380

50

TBS8520

520

100

420

50

TBS8560

560

100

460

50

TBS8580

580

100

480

50

TBS8600

600

100

500

50

10 TX 50

12 TX 50

25,0

29,0

RELATED PRODUCTS

TBS MAX page 92

XYLOFON WASHER page 73

TORQUE LIMITER page 408

TIMBER | TBS | 79


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

30

40

a3,t

[mm]

15∙d

90

120

a3,c

[mm]

10∙d

60

80

a4,t

[mm]

5∙d

30

40

a4,c

[mm]

5∙d

30

40

10∙d

F

α=90°

6

8

10

12

d1

[mm]

60

80

100

120

a1

[mm]

50

60

a2

[mm]

5∙d

30

40

50

60

150

180

a3,t

[mm]

10∙d

60

80

100

120

100

120

a3,c

[mm]

10∙d

60

80

100

120

50

60

a4,t

[mm]

10∙d

60

80

100

120

50

60

a4,c

[mm]

5∙d

30

40

50

60

5∙d

6

8

10

12

30

40

50

60

screws inserted WITH pre-drilled hole

α=0°

F

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

18

24

a3,t

[mm]

12∙d

72

96

a3,c

[mm]

7∙d

42

56

70

a4,t

[mm]

3∙d

18

24

30

a4,c

[mm]

3∙d

18

24

30

5∙d

6

8

10

12

d1

[mm]

30

40

50

60

a1

[mm]

4∙d

30

36

a2

[mm]

4∙d

120

144

a3,t

[mm]

7∙d

84

a3,c

[mm]

7∙d

36

a4,t

[mm]

7∙d

36

a4,c

[mm]

3∙d

α=90° 6

8

10

12

24

32

40

48

24

32

40

48

42

56

70

84

42

56

70

84

42

56

70

84

18

24

30

36

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTE on page 87.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

80 | TBS | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole

lateral face

narrow face

d1

[mm]

6

8

10

12

d1

[mm]

6

8

10

12

a1

[mm]

4∙d

24

32

40

48

a1

[mm]

10∙d

60

80

100

120

a2

[mm]

2,5∙d

15

20

25

30

a2

[mm]

4∙d

24

32

40

48

a3,t

[mm]

6∙d

36

48

60

72

a3,t

[mm]

12∙d

72

96

120

144

a3,c

[mm]

6∙d

36

48

60

72

a3,c

[mm]

7∙d

42

56

70

84

a4,t

[mm]

6∙d

36

48

60

72

a4,t

[mm]

6∙d

36

48

60

72

a4,c

[mm]

2,5∙d

15

20

25

30

a4,c

[mm]

3∙d

18

24

30

36

a4,t

a3,c

d = d1 = nominal screw diameter

a2 a2

F

a1

α

α

a3,t

F

a4,c

a3,c

a4,c

F

a3,t

a3,c a4,c a4,t

a4,c

F

tCLT

tCLT

NOTE on page 87.

MINIMUM DISTANCES FOR SHEAR LOADS | LVL screws inserted WITHOUT pre-drilled hole

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

30

a3,t

[mm]

15∙d

90

a3,c

[mm]

10∙d

60

a4,t

[mm]

5∙d

30

a4,c

[mm]

12∙d

5∙d

F

α=0°

6

8

10

72

96

30

α=90°

d1

[mm]

120

a1

[mm]

40

50

a2

[mm]

5d

30

40

50

120

150

a3,t

[mm]

10d

60

80

100

80

100

a3,c

[mm]

10d

60

80

100

40

50

a4,t

[mm]

10d

60

80

100

50

a4,c

[mm]

5d

30

40

50

40

5d

6

8

10

30

40

50

α = load-to-grain angle d = d1 = nominal screw diameter

a2 a2

a1

a4,t F

α

α

a3,t

α

F

a4,c

F F α

a3,c

NOTE on page 87.

TIMBER | TBS | 81


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR panel-to-timber

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

RV,0,k

SPAN

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[mm]

[kN]

[kN]

[kN]

[kN]

50

2,14 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 2,50

3,03 3,03 3,79 3,79 4,55 5,68 5,68 5,68 5,68 5,68 7,58 7,58 7,58 7,58 7,58 7,58 7,58 7,58

0,91 0,91 1,14 1,14 1,36 1,70 1,70 1,70 1,70 1,70 2,27 2,27 2,27 2,27 2,27 2,27 2,27 2,27

2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72

65

3,22 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89

3,23 5,25 5,25 5,25 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10

0,97 1,58 1,58 1,58 2,42 2,42 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03

4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09

timber-to-timber ε=90°

timber-to-timber ε=0°

RV,90,k

SPAN

geometry

TENSION

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

[kN]

[kN]

6

60 70 80 90 100 120 140 160 180 200 220 240 260 280 300 320 360 400

40 40 50 50 60 75 75 75 75 75 100 100 100 100 100 100 100 100

20 30 30 40 40 45 65 85 105 125 120 140 160 180 200 220 260 300

1,89 2,15 2,15 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35 2,35

1,02 1,20 1,37 1,38 1,58 1,69 1,69 1,69 1,69 1,69 1,83 1,83 1,83 1,83 1,83 1,83 1,83 1,83

8

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 580 600

32 52 52 52 80 80 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

8 8 28 48 40 60 60 80 100 120 140 160 180 200 220 240 260 280 300 340 380 420 460 480 500

1,08 1,08 3,02 3,71 3,41 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71

0,90 1,08 1,70 1,95 2,54 2,61 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79

ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 87.

82 | TBS | TIMBER


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR panel-to-timber

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

RV,0,k

SPAN

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN]

[kN]

[mm]

[kN]

[kN]

[kN]

[kN]

4,92

2,56

-

6,57

1,97

7,08

timber-to-timber ε=90°

timber-to-timber ε=0°

RV,90,k

SPAN

geometry

TENSION

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 100

10

12

52

48

120

60

60

5,64

2,75

-

7,58

2,27

7,08

140

60

80

5,64

2,75

5,84

7,58

2,27

7,08

160

80

80

5,64

3,28

5,85

10,10

3,03

7,08

180

80

100

5,64

3,28

5,85

10,10

3,03

7,08

200

100

100

5,64

3,87

5,85

12,63

3,79

7,08

220

100

120

5,64

3,87

5,85

12,63

3,79

7,08

240

100

140

5,64

3,87

5,85

12,63

3,79

7,08

260

100

160

5,64

3,87

5,85

12,63

3,79

7,08

280

100

180

5,64

3,87

5,85

12,63

3,79

7,08

300

100

200

5,64

3,87

5,85

12,63

3,79

7,08

320

120

200

5,64

4,06

5,85

15,15

4,55

7,08

340

120

220

5,64

4,06

5,85

15,15

4,55

7,08

80

360

120

240

5,64

4,06

5,85

15,15

4,55

7,08

380

120

260

5,64

4,06

5,85

15,15

4,55

7,08

400

120

280

5,64

4,06

5,85

15,15

4,55

7,08

440

120

320

5,64

4,06

5,85

15,15

4,55

7,08

480

120

360

5,64

4,06

5,85

15,15

4,55

7,08

520

120

400

5,64

4,06

5,85

15,15

4,55

7,08

560

120

440

5,64

4,06

5,85

15,15

4,55

7,08

600

120

480

5,64

4,06

5,85

15,15

4,55

7,08

200

120

80

7,16

4,98

7,35

18,18

5,45

9,53

240

120

120

7,16

4,98

7,35

18,18

5,45

9,53

280

120

160

7,16

4,98

7,35

18,18

5,45

9,53 9,53

320

120

200

7,16

4,98

7,35

18,18

5,45

360

120

240

7,16

4,98

7,35

18,18

5,45

9,53

400

140

260

7,16

5,20

7,35

21,21

6,36

9,53

440

140

300

7,16

5,20

7,35

21,21

6,36

9,53

480

140

340

7,16

5,20

7,35

21,21

6,36

9,53

95

520

140

380

7,16

5,20

7,35

21,21

6,36

9,53

560

140

420

7,16

5,20

7,35

21,21

6,36

9,53 9,53

600

140

460

7,16

5,20

7,35

21,21

6,36

800

160

640

7,16

5,43

7,35

24,24

7,27

9,53

1000

160

840

7,16

5,43

7,35

24,24

7,27

9,53

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 87.

TIMBER | TBS | 83


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 SHEAR CLT-CLT lateral face

geometry

CLT-CLT lateral face-narrow face

A

panel-CLT lateral face

CLT-panel-CLT lateral face

t

SPAN

L

SPAN b d1

d1

L

b

A

RV,k

RV,k

SPAN

RV,k

SPAN

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[kN]

60÷70 80÷90 100 120÷200 220÷400 40 60÷100 120÷140 160÷600 100 120÷140 160÷180 200÷300 320÷600 200÷360 400÷600 800÷1000

40 50 60 75 100 32 52 80 100 52 60 80 100 120 120 140 160

[mm] ≥ 20 ≥ 30

1,77 2,00 2,22 2,22 2,22 0,98 2,23 3,16 3,51 4,50 5,22 5,33 5,33 5,33 6,76 6,76 6,76

0,98 1,70 2,80 2,98 3,14 3,41 4,12 4,52 4,52 5,72 5,72 5,72

[mm] [mm] ≥ 20 ≥ 30 ≥ 40 18 ≥ 50 ≥ 100 ≥5 ≥ 15 22 ≥ 45 ≥ 65 ≥ 35 ≥ 45 ≥ 65 25 ≥ 85 ≥ 145 ≥ 85 25 ≥ 185 ≥ 385

6

8

10

12

40 ≥ 45 ≥ 120 8 ≥ 30 ≥ 40 ≥ 60 48 ≥ 60 ≥ 80 ≥ 100 ≥ 200 ≥ 80 ≥ 260 ≥ 640

18

22

25

25

1,82 1,82 1,82 1,82 1,82 1,65 2,66 2,98 2,98 4,20 4,44 4,44 4,44 4,44 4,72 4,72 4,72

SHEAR CLT-timber lateral face

geometry

timber-CLT narrow face

A L b d1

d1

L

b

A

RV,k

RV,k

[mm]

[mm]

[mm]

[kN]

[kN]

60-70 80-90 100 120-200 220-400 40 60-100 120-140 160-600 100 120-140 160-180 200-300 320-600 200-360 400-600 800-1000

40 50 60 75 100 32 52 80 100 52 60 80 100 120 120 140 160

[mm] ≥ 20 ≥ 30

1,79 2,02 2,26 2,26 2,26 0,98 2,36 3,20 3,57 4,78 5,32 5,42 5,42 5,42 6,87 6,87 6,87

1,08 1,70 2,90 3,01 3,17 3,43 4,15 4,56 4,57 5,77 5,77 5,77

6

8

10

12

84 | TBS | TIMBER

40 ≥ 45 ≥ 120 8 ≥ 30 ≥ 40 ≥ 60 48 ≥ 60 ≥ 80 ≥ 100 ≥ 200 ≥ 80 ≥ 260 ≥ 640

t

RV,k [kN] 2,67 2,67 2,67 2,67 2,67 1,23 3,64 3,64 3,64 4,47 4,47 4,47 4,47 4,47 4,72 4,72 4,72


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 TENSION

geometry

thread withdrawal narrow face

thread withdrawal narrow face

head pull-through

A L b d1

d1

L

b

Rax,k

Rax,k

Rhead,k

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

6

60÷70 80÷90 100 120÷200 220÷400

40 50 60 75 100

2,81 3,51 4,21 5,27 7,02

-

2,52 2,52 2,52 2,52 2,52

8

40 60÷100 120÷140 160÷600

32 52 80 100

3,00 4,87 7,49 9,36

2,39 3,70 5,45 6,66

3,79 3,79 3,79 3,79

10

100 120÷140 160÷180 200÷300 320÷600

52 60 80 100 120

6,08 7,02 9,36 11,70 14,04

4,42 5,03 6,51 7,96 9,38

6,56 6,56 6,56 6,56 6,56

12

200÷360 400÷600 800÷1000

120 140 160

16,85 19,66 22,46

10,86 12,47 14,06

8,83 8,83 8,83

NOTES and GENERAL PRINCIPLES on page 87.

Complete calculation reports for designing in wood? Download MyProject and simplify your work!

TIMBER | TBS | 85


STRUCTURAL VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

LVL-LVL

LVL-LVL- LVL

LVL-timber

timber-LVL

t2 A L b d1

d1 [mm]

6

8

10

A

A

A

A

A

L

b

A

RV,k

A

t2

RV,k

A

RV,k

A

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[kN]

[mm]

[kN]

[mm]

[kN]

80÷90

50

-

-

-

-

-

-

-

≥ 30

2,21

100

60

3,02

≥ 75

5,47

≥ 70

≥ 85

6,05

2,92

40 ≥ 45 ≥ 120

2,44

3,02

45 ≥ 45 ≥ 120

2,80

3,02

≥ 45

120÷200

75

220÷400

100

45 ≥ 45 ≥ 120

120÷140

80

≥ 60

4,74

-

-

-

≥ 60

4,34

≥ 40

3,51

160÷180

100

≥ 60

4,74

-

-

-

≥ 60

4,57

≥ 60

3,85

200÷600

100

≥ 60

4,74

≥ 60

≥ 75

9,48

≥ 60

4,57

≥ 60

3,85 5,84

120÷140

60

160÷180

80

200

100

220÷300 320÷600

≥ 75

2,92

-

≥ 80

5,85

7,10 7,10

100 ≥ 100

5,85

13,73

100 ≥ 100

14,69

≥ 200

7,10

≥ 200

5,85

-

-

-

-

-

-

7,35

-

-

-

100

100 ≥ 120

7,35

120

≥ 200

7,35

≥ 75 ≥ 100

≥ 75 ≥ 125

≥ 75

thread withdrawal flat

thread withdrawal edge

head pull-through flat

Rax,k

Rax,k

Rhead,k

A L b d1

[mm]

6

8

10

L

b

[mm]

[mm]

[kN]

[kN]

[kN]

60÷70 80÷90 100 120÷200 220÷400 40 60÷100 120÷140 160÷180 200÷600 100 120÷140 160÷180 200÷300 320÷600

40 50 60 75 100 32 52 80 100 100 52 60 80 100 120

3,48 4,36 5,23 6,53 8,71 3,72 6,04 9,29 11,61 11,61 7,55 8,71 11,61 14,52 17,42

2,32 2,90 3,48 4,36 5,81 2,48 4,03 6,19 7,74 7,74 5,03 5,81 7,74 9,68 11,61

4,65 4,65 4,65 4,65 4,65 6,99 6,99 6,99 6,99 6,99 12,10 12,10 12,10 12,10 12,10

NOTES and GENERAL PRINCIPLES on page 87.

86 | TBS | TIMBER

2,44

6,60

7,23

geometry

2,44

≥ 60

TENSION

d1

RV,k

5,85


STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values consistent with EN 1995:2014 and in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 .

• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.

• The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer.

• Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances.

• The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 .

• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

NOTES | LVL

• Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strength are calculated considering an OSB panel or particle board with a SPAN thickness and density ρk = 500 kg/m3.

• For the calculation process, a mass density of ρk = 480 kg/m3 has been considered for the softwood LVL elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.

• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.

• The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.

• The head pull-through characteristic strength was calculated using timber elements.

• The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.

• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

• Screws shorter than the minimum in the table are not compatible with the calculation assumptions and are therefore not reported.

NOTES | TIMBER • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

MINIMUM DISTANCES NOTES | TIMBER

NOTES | LVL

• The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels.

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

NOTES | CLT • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels. • Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .

• The minimum distances are applicable when using both parallel and cross grain softwood LVL. • The minimum distances without pre-drilling hole are valid for minimum thickness of LVL elements tmin: t1 ≥ 8,4 d - 9 t2 ≥

11,4 d 75

where: - t 1 is the thickness in mm of the LVL element in a connection with 2 wooden elements. For connections with 3 or more elements, t 1 represents the thickness of the most external LVL; - t 2 is the thickness in mm of the central element in a connection with 3 or more elements.

• The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .

TIMBER | TBS | 87


TBS SOFTWOOD

EN 14592

FLANGE HEAD SCREW SAW TIP Special self-perforating tip with serrated thread (SAW tip) that cuts the timber grains, facilitating initial grip and subsequent pull-through.

INTEGRATED WASHER The flange head serves as washer and ensures high head strength and pull-through. Ideal in the presence of wind or variations in timber dimensions.

LONGER THREAD Greater thread length (60%) to ensure superb joint closure and great versatility.

SOFTWOOD Optimised geometry for maximum performance on the most common construction timbers.

DIAMETER [mm]

6 6

8

LENGTH [mm]

40

80

16 400

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

1000

electrogalvanized carbon steel

FIELDS OF USE • • • • •

88 | TBS SOFTWOOD | TIMBER

timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT and LVL


CODES AND DIMENSIONS d1

dK

[mm]

[mm]

6 TX 30

15,5

CODE

L

b

A

[mm]

[mm]

[mm]

pcs

d1

dK

[mm]

[mm]

CODE

L

b

A

[mm]

[mm]

[mm]

pcs

TBSS680

80

50

30

100

TBSS8180

180

100

80

50

TBSS6100

100

60

40

100

TBSS8200

200

100

100

50

TBSS6120

120

75

45

100

TBSS8220

220

100

120

50

TBSS6140

140

80

60

100

TBSS8240

240

100

140

50

TBSS6160

160

90

70

100

TBSS8260

260

100

160

50

TBSS8280

280

100

180

50

TBSS8300

300

100

200

50

TBSS8320

320

120

200

50

TBSS8340

340

120

220

50

TBSS8360

360

120

240

50

8 TX 40

19,0

TBSS8380

380

120

260

50

TBSS8400

400

120

280

50

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

S TB S

A

d2 d1 dS

b L

GEOMETRY Nominal diameter Head diameter Thread diameter Shank diameter Pre-drilling hole diameter (softwood)(1)

d1 dK d2 dS dV

[mm] [mm] [mm] [mm] [mm]

6 15,50 3,95 4,30 4,0

8 19,00 5,40 5,80 5,0

6 12,0 9,5 12,0 350 13,0 350

8 19,0 18,5 12,0 350 13,0 350

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield moment Withdrawal resistance parameter Associated density Head-pull-through parameter Associated density

d1 ftens,k My,k fax,k ρa fhead,k ρa

[mm] [kN] [Nm] [N/mm2] [kg/m3] [N/mm2] [kg/m3]

TIMBER FRAME & SIP PANELS Range of sizes designed for fastening applications of medium to large structural elements such as lightweight boards and frames up to SIP and Sandwich type panels.

TIMBER | TBS SOFTWOOD | 89


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

F

6

8

d1

[mm]

α=90° 6

8

a1

[mm]

12∙d

72

96

a1

[mm]

5∙d

30

40

a2

[mm]

5∙d

30

40

a2

[mm]

5∙d

30

40

a3,t

[mm]

15∙d

90

120

a3,t

[mm]

10∙d

60

80

a3,c

[mm]

10∙d

60

80

a3,c

[mm]

10∙d

60

80

a4,t

[mm]

5∙d

30

40

a4,t

[mm]

10∙d

60

80

a4,c

[mm]

5∙d

30

40

a4,c

[mm]

5∙d

30

40

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

a3,t

[mm]

12∙d

a3,c

[mm]

7∙d

a4,t

[mm]

a4,c

[mm]

F

α=90°

6

8

d1

[mm]

30

40

a1

[mm]

4∙d

18

24

a2

[mm]

4∙d

24

32

72

96

a3,t

[mm]

7∙d

42

56

42

56

a3,c

[mm]

7∙d

42

56

3∙d

18

24

a4,t

[mm]

7∙d

42

56

3∙d

18

24

a4,c

[mm]

3∙d

18

24

5∙d

6

8

24

32

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTE on page 91.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

90 | TBS SOFTWOOD | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

TENSION

timber-to-timber ε=90°

panel-to-timber

thread withdrawal

head pull-through

SPAN

geometry

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 80 50 30 100 60 40 6 120 75 45 140 80 60 160 90 70 180 100 80 200 100 100 220 100 120 240 100 140 260 100 160 280 100 180 8 300 100 200 320 120 200 340 120 220 360 120 240 380 120 260 400 120 280

RV,90,k

SPAN

RV,k

Rax,90,k

Rhead,k

[kN] 2,07 2,31 2,33 2,33 2,33 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57 3,57

[mm]

[kN] 1,92 2,64 2,70 2,70 2,70 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10 4,10

[kN] 3,89 4,66 5,83 6,22 6,99 10,36 10,36 10,36 10,36 10,36 10,36 10,36 12,43 12,43 12,43 12,43 12,43

[kN] 3,37 3,37 3,37 3,37 3,37 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06 5,06

50

65

STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES

• Characteristic values according to EN 1995:2014.

• The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. •

Mechanical strength values and screw geometry comply with CE marking according to EN 14592.

• Sizing and verification of the timber elements, panels and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The values in the table are independent of the load-to-grain angle.

• The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal strength was evaluated by considering a 90° angle ε between the fibers of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k

• The screws must be positioned in accordance with the minimum distances.

R’head,k = kdens,ax Rhead,k

• The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN.

[kg/m3 ]

C-GL

• The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.

kdens,v kdens,ax

0,92

• The head pull-through characteristic strength was calculated using timber elements.

ρk

380

385

405

425

430

440

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

0,90

0,98

1,00

1,02

1,05

1,05

1,07

0,98

1,00

1,04

1,08

1,09

1,11

350

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

MINIMUM DISTANCES NOTES • Minimum distances in accordance with EN 1995:2014. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

TIMBER | TBS SOFTWOOD | 91


TBS MAX

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

XL FLANGE HEAD SCREW FLANGE HEAD OF INCREASED SIZE The oversized head provides excellent head pull-through strength and joint tightening capacity.

LONGER THREAD The oversized thread of the TBS MAX guarantees excellent withdrawal resistance and closing strength of the joint.

RIBBED FLOORS Thanks to its large head and oversized thread, it is the ideal screw in the production of ribbed floors (Rippendecke). Used in conjunction with SHARP METAL, it optimises the number of fasteners by avoiding the use of presses when gluing timber elements together.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

BIT INCLUDED

DIAMETER [mm] LENGTH [mm]

tbs max

6

8

40

16 120

400

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

1000

electrogalvanized carbon steel

FIELDS OF USE • • • • • •

92 | TBS MAX | TIMBER

timber based panels fibreboard and MDF panels SIP and ribbed panels. solid timber and glulam CLT and LVL high density woods

ETA-11/0030


CODES AND DIMENSIONS d1

dK

[mm]

[mm]

8 TX 40

24,5

CODE

L

b

A

[mm]

[mm]

[mm]

120 160 180 200 220

100 120 120 120 120

20 40 60 80 100

TBSMAX8120 TBSMAX8160 TBSMAX8180 TBSMAX8200 TBSMAX8220

pcs 50 50 50 50 50

d1

dK

[mm]

[mm]

8 TX 40

24,5

CODE TBSMAX8240 TBSMAX8280 TBSMAX8320 TBSMAX8360 TBSMAX8400

L

b

A

[mm]

[mm]

[mm]

240 280 320 360 400

120 120 120 120 120

120 160 200 240 280

pcs 50 50 50 50 50

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

TBS

A

d2 d1 dS

b L

GEOMETRY Nominal diameter Head diameter Thread diameter Shank diameter Pre-drilling hole diameter(1) Pre-drilling hole diameter(2)

d1 dK d2 dS dV,S dV,H

[mm] [mm] [mm] [mm] [mm] [mm]

8 24,50 5,40 5,80 5,0 6,0

d1 ftens,k My,k

[mm] [kN] [Nm]

8 20,1 20,1

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield moment

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

TBS MAX FOR RIB TIMBER With its increased thread (120 mm) and enlarged head (24,5 mm), the TBS MAX guarantees excellent grip and superb joint closure. Ideal for the production of ribbed floors (Rippendecke), optimising the number of fastenings.

SHARP METAL Ideal in combination with the SHARP METAL system, as the enlarged head guarantees excellent joint tightening, making the use of presses unnecessary when gluing wooden elements together.

TIMBER | TBS MAX | 93


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

a3,t

[mm]

a3,c

[mm]

a4,t a4,c

F

α=90°

8

d1

[mm]

80

a1

[mm]

5∙d

40

a2

[mm]

5∙d

40

15∙d

120

a3,t

[mm]

10∙d

80

10∙d

80

a3,c

[mm]

10∙d

80

[mm]

5∙d

40

a4,t

[mm]

10∙d

80

[mm]

5∙d

40

a4,c

[mm]

5∙d

40

10∙d

8 5∙d

40

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

5∙d

F

8

d1

[mm]

40

a1

[mm]

4∙d

α=90° 8 32

a2

[mm]

3∙d

24

a2

[mm]

4∙d

32

a3,t

[mm]

12∙d

96

a3,t

[mm]

7∙d

56

a3,c

[mm]

7∙d

56

a3,c

[mm]

7∙d

56

a4,t

[mm]

3∙d

24

a4,t

[mm]

7∙d

56

a4,c

[mm]

3∙d

24

a4,c

[mm]

3∙d

24

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

α F α

a4,t

F a4,c

a3,c

NOTES • Minimum distances are in accordance with EN 1995:2014 as per ETA-11/0030 considering a timber characteristic density of ρk ≤ 420 kg/m3. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

SHARP METAL STEEL HOOKED PLATES The joint between the two timber elements is made by the mechanical engagement of the metal hooks in the timber. The system is non-invasive can be uninstalled. www.rothoblaas.com

94 | TBS MAX | TIMBER


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR panel-to-timber

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

RV,0,k

SPAN

Rax,90,k

Rax,0,k

Rhead,k

[mm]

timber-to-timber ε=90°

timber-to-timber ε=0°

RV,90,k

SPAN

geometry

TENSION

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

8

[kN]

[kN]

120

100

20

2,71

2,17

RV,k [kN]

[kN]

[kN]

[kN]

4,27

10,10

3,03

9,72

160

120

40

4,78

2,84

5,28

12,12

3,64

9,72

180

120

60

5,11

2,94

5,28

12,12

3,64

9,72

200

120

80

5,11

2,94

5,28

12,12

3,64

9,72

220

120

100

5,11

2,94

5,28

12,12

3,64

9,72

240

120

120

5,11

2,94

5,28

12,12

3,64

9,72

280

120

160

5,11

2,94

5,28

12,12

3,64

9,72

320

120

200

5,11

2,94

5,28

12,12

3,64

9,72

360

120

240

5,11

2,94

5,28

12,12

3,64

9,72

400

120

280

5,11

2,94

5,28

12,12

3,64

9,72

65

ε = screw-to-grain angle NOTES | TIMBER • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.

ρk

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

GENERAL PRINCIPLES on page 97.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00

( * ) For intermediate a values a linear interpolation is possible. 1

TIMBER | TBS MAX | 95


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

CLT-CLT lateral face

geometry

CLT-CLT lateral face-narrow face

A

panel-CLT lateral face

CLT-panel-CLT lateral face

t

SPAN

L

SPAN b d1

d1

L

b

A

RV,k

RV,k

SPAN

RV,k

SPAN

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[kN]

[mm] [mm]

8

t

RV,k [kN]

120

100

20

2,46

2,46

3,64

45

3,64

160

120

40

4,43

3,71

3,64

65

3,64

180

120

60

4,81

3,99

3,64

75

3,64

200

120

80

4,81

3,99

220

120

100

4,81

3,99

3,64 22

3,64

22

85

3,64

95

3,64

240

120

120

4,81

3,99

3,64

105

3,64

280

120

160

4,81

3,99

3,64

125

3,64

320

120

200

4,81

3,99

3,64

145

3,64

360

120

240

4,81

3,99

3,64

165

3,64

SHEAR geometry

TENSION

CLT-timber lateral face

timber-CLT narrow face

thread withdrawal narrow face

thread withdrawal narrow face

head pull-through

RV,k

RV,k

Rax,k

Rax,k

Rhead,k

A L b d1

d1

L

b

A

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

[kN]

120

100

20

2,46

2,71

9,36

6,66

9,00

160

120

40

4,50

3,91

11,23

7,85

9,00

180

120

60

4,87

4,02

11,23

7,85

9,00

8

200

120

80

4,87

4,02

11,23

7,85

9,00

220

120

100

4,87

4,02

11,23

7,85

9,00

240

120

120

4,87

4,02

11,23

7,85

9,00

280

120

160

4,87

4,02

11,23

7,85

9,00

320

120

200

4,87

4,02

11,23

7,85

9,00

360

120

240

4,87

4,02

11,23

7,85

9,00

NOTES and GENERAL PRINCIPLES on page 97.

96 | TBS MAX | TIMBER


MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole

lateral face

narrow face

d1

[mm]

8

d1

[mm]

a1

[mm]

4∙d

32

a1

[mm]

10∙d

80

8

a2

[mm]

2,5∙d

20

a2

[mm]

4∙d

32

a3,t

[mm]

6∙d

48

a3,t

[mm]

12∙d

96

a3,c

[mm]

6∙d

48

a3,c

[mm]

7∙d

56

a4,t

[mm]

6∙d

48

a4,t

[mm]

6∙d

48

a4,c

[mm]

2,5∙d

20

a4,c

[mm]

3∙d

24

d = d1 = nominal screw diameter

a2 a2

a3,c

a4,t α

F

a4,c

F

a4,c α

a1

a3,t

a3,c

a4,c

tCLT

a3,t

F a3,c a4,c a4,t

F

tCLT

NOTES • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

• The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .

• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .

STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | CLT

• Characteristic values consistent with EN 1995:2014 and in accordance with ETA-11/0030.

• The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K.

• Design values can be obtained from characteristic values as follows:

• For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements.

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately.

• The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The axial thread withdrawal resistance is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 .

• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The characteristic panel-timber shear strengths are calculated considering an OSB panel or particle board with a SPAN thickness. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

TIMBER | TBS MAX | 97


TBS FRAME

AC233 ESR-4645

FLAT FLANGE HEAD SCREW FLAT FLANGE HEAD The flange head ensures excellent tightening capacity of the joint; the flat shape allows a joint without additional thickness on the wooden surface, thus enabling the fixing of plates on the same element without interference.

SHORT THREAD The short, fixed-length thread at 1 1/3" (34 mm) is optimised for fastening multi-layer elements (Multi-ply) for lightweight frame construction.

BLACK E-COATING Coated with black E-coating for easy recognition on site and increased corrosion resistance.

3 THORNS TIP TBSF is easily installed without pre-drilling hole. More screws can be used in less space and larger screws in smaller elements.

BIT INCLUDED

DIAMETER [mm]

6

8

LENGTH [mm]

40

73

16 175

1000

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

C5

Zn

E-COATING

electrogalvanised carbon steel with black E-Coating

FIELDS OF USE • • • • •

98 | TBS FRAME | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods multilayer lattice beams

ETA-11/0030


CODES AND DIMENSIONS d1

dK

[mm]

[mm]

8 TX 40

19

CODE

L

b

T

L

b

T

[mm]

[mm]

[mm]

[in]

[in]

[in]

pcs

TBSF873

73

34

76

2 7/8''

1 5/16''

3''

50

TBSF886

86

34

90

3 3/8''

1 5/16''

3 1/2''

50

TBSF898

98

34

102

3 7/8''

1 5/16''

4''

50

TBSF8111

111

34

114

4 3/8''

1 5/16''

4 1/2''

50

TBSF8130

130

34

134

5 1/8''

1 5/16''

5 1/4''

50

TBSF8149

149

34

152

5 7/8''

1 5/16''

6''

50

TBSF8175

175

34

178

6 7/8''

1 5/16''

7''

50

GEOMETRY AND MECHANICAL CHARACTERISTICS

T

XXX

dK

BSF

T

d2 d1 dS

b L

Nominal diameter Head diameter Thread diameter Shank diameter Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment

d1 dK d2 dS dV,S dV,H ftens,k My,k

[mm] [mm] [mm] [mm] [mm] [mm] [kN] [Nm]

8 19,00 5,40 5,80 5,0 6,0 20,1 20,1

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Characteristic withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Characteristic head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

MULTILAYER LATTICE It is available in optimised lengths for fastening 2-, 3- and 4-layer lattice elements of the most common solid timber and LVL dimensions.

TIMBER | TBS FRAME | 99


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

F

8 80 40 120 80 40 40

10∙d 5∙d 15∙d 10∙d 5∙d 5∙d

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 8 40 40 80 80 80 40

5∙d 5∙d 10∙d 10∙d 10∙d 5∙d

screws inserted WITH pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

F

8 40 24 96 56 24 24

5∙d 3∙d 12∙d 7∙d 3∙d 3∙d

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90°

4∙d 4∙d 7∙d 7∙d 7∙d 3∙d

8 32 32 56 56 56 24

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014. • For minimum distances on LVL see TBS on page 81.

APPLICATION EXAMPLES: LIGHTWEIGHT FRAME

screw: TBSF873

screw: TBSF8111

screw: TBSF8149

timber element: 2 x 38 mm (1 1/2'')

timber element: 3 x 38 mm (1 1/2'')

timber element: 4 x 38 mm (1 1/2'')

total thickness:

total thickness: 114 mm (4 1/2'')

total thickness: 152 mm (6 '')

76 mm (3 '')

100 | TBS FRAME | TIMBER


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

TENSION

timber-to-timber ε=90°

geometry

A L

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

Rax,90,k [kN] 3,43 3,43 3,43 3,43 3,43 3,43 3,43

Rax,0,k [kN] 1,03 1,03 1,03 1,03 1,03 1,03 1,03

Rhead,k [kN] 4,09 4,09 4,09 4,09 4,09 4,09 4,09

A T

A

b d1

d1 L b T T A A [mm] [mm] [mm] [mm] [in] [mm] [in] 73 34 76 3'' 38 1 1/2'' 86 34 90 3 1/2'' 45 1 3/4'' 98 34 102 4'' 51 2'' 111 34 114 4 1/2'' 57 2 1/4'' 8 130 34 134 5 1/4'' 67 2 5/8'' 149 34 152 6'' 76 3'' 175 34 178 7'' 89 3 1/2''

RV,90,k [kN] 2,91 3,27 3,51 3,54 3,54 3,54 3,54

STRUCTURAL VALUES | LVL SHEAR LVL-LVL ε=90°

geometry

A L

TENSION thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

Rax,90,k [kN] 3,95 3,95 3,95 3,95 3,95 3,95 3,95

Rax,0,k [kN] 2,63 2,63 2,63 2,63 2,63 2,63 2,63

Rhead,k [kN] 6,99 6,99 6,99 6,99 6,99 6,99 6,99

A T

A

b d1

d1 L b T T A A [mm] [mm] [mm] [mm] [in] [mm] [in] 73 34 76 3'' 38 1 1/2'' 86 34 90 3 1/2'' 45 1 3/4'' 98 34 102 4'' 51 2'' 111 34 114 4 1/2'' 57 2 1/4'' 8 130 34 134 5 1/4'' 67 2 5/8'' 149 34 152 6'' 76 3'' 175 34 178 7'' 89 3 1/2''

RV,90,k [kN] 3,54 3,90 3,98 3,98 3,98 3,98 3,98

ε = screw-to-grain angle GENERAL PRINCIPLES

NOTES | TIMBER

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic timber-to-timber shear strengths were evaluated considering an angle ε of 90° (RV,90,k) between the grains of the second element and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately.

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 87). • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 80).

• The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The characteristic shear strengths were evaluated by considering the threaded part fully inserted in the second element. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements.

NOTES | LVL • For the calculation process a mass density equal to ρk = 480 kg/m3 has been considered for softwood LVL elements. • The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain. • The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector.

TIMBER | TBS FRAME | 101


TBS EVO

ETA-11/0030

UKTA-0836 22/6195

AC233 | AC257 ESR-4645

FLANGE HEAD SCREW C4 EVO COATING Multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure test, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

INTEGRATED WASHER The flange head serves as washer and ensures high head strength and pullthrough. Ideal in the presence of wind or variations in timber dimensions.

AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use in ACQ-treated wood.

T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).

BIT INCLUDED

DIAMETER [mm]

6 6

LENGTH [mm]

40

10

16

60

400

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

C4

EVO COATING

1000

carbon steel with C4 EVO coating

FIELDS OF USE • • • • •

102 | TBS EVO | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber

ETA-11/0030


OUTDOOR WALKWAYS Ideal for the construction of outdoor structures such as walkways and arcades. Values also certified for screw insertion parallel to the grain. Ideal for fastening aggressive woods containing tannins.

SIP PANELS Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Suitable for fastening SIP and sandwich panels.

TIMBER | TBS EVO | 103


Fastening Wood Trusses outdoors.

Multi-ply beam fastening.

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

TBS

A

dK d2 d1

dS

dK

b

Ø6 - Ø8

L

Ø10

GEOMETRY Nominal diameter

d1

[mm]

6

8

10

Head diameter

dK

[mm]

15,50

19,00

25,00

Thread diameter

d2

[mm]

3,95

5,40

6,40

Shank diameter

dS

[mm]

4,30

5,80

7,00

Pre-drilling hole diameter(1)

dV,S

[mm]

4,0

5,0

6,0

Pre-drilling hole diameter(2)

dV,H

[mm]

4,0

6,0

7,0

10

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

6

8

Tensile strength

ftens,k

[kN]

11,3

20,1

31,4

Yield moment

My,k

[Nm]

9,5

20,1

35,8

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

104 | TBS EVO | TIMBER


CODES AND DIMENSIONS d1

dK

[mm]

[mm]

6 TX 30

8 TX 40

15,5

19,0

CODE TBSEVO660 TBSEVO680 TBSEVO6100 TBSEVO6120 TBSEVO6140 TBSEVO6160 TBSEVO6180 TBSEVO6200 TBSEVO8100 TBSEVO8120 TBSEVO8140 TBSEVO8160 TBSEVO8180 TBSEVO8200 TBSEVO8220 TBSEVO8240 TBSEVO8280 TBSEVO8320 TBSEVO8360 TBSEVO8400

L

b

A

[mm]

[mm]

[mm]

60 80 100 120 140 160 180 200 100 120 140 160 180 200 220 240 280 320 360 400

40 50 60 75 75 75 75 75 52 80 80 100 100 100 100 100 100 100 100 100

20 30 40 45 65 85 105 125 48 40 60 60 80 100 120 140 180 220 260 300

pcs 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 50

d1

dK

[mm]

[mm]

10 TX 50

25,0

CODE TBSEVO10120 TBSEVO10140 TBSEVO10160 TBSEVO10180 TBSEVO10200 TBSEVO10220 TBSEVO10240 TBSEVO10280

L

b

A

[mm]

[mm]

[mm]

120 140 160 180 200 220 240 280

60 60 80 80 100 100 100 100

60 80 80 100 100 120 140 180

pcs 50 50 50 50 50 50 50 50

WBAZ WASHER D1 H

D2

CODE WBAZ25A2

screw

D2

H

D1

[mm]

[mm]

[mm]

[mm]

6,0 - 6,5

25

15

6,5

pcs 100

INSTALLATION

A

TBS EVO + WBAZ ØxL 6 x 60 6 x 80 6 x 100 6 x 120 6 x 140 6 x 160 6 x 180 6 x 200

A

Correct tightening

Excessive tightening

fastening package [mm] min. 0 - max. 30 min. 10 - max. 50 min. 30 - max. 70 min. 50 - max. 90 min. 70 - max. 110 min. 90 - max. 130 min. 110 - max. 150 min. 130 - max. 170

Insufficient tightening

Tightening off axis

NOTE: The thickness of the washer after installation is approximately 8-9 mm. The maximum thickness of the fastening package was calculated by ensuring a minimum penetration length into the wood of 4∙d.

FASTENING METAL SHEET Can be installed on sheets up to 0,7 mm thick without pre-drilling. TBS EVO Ø6 mm is ideal when used in combination with washer WBAZ. For outdoor use (Service class 3).

TIMBER | TBS EVO | 105


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

30

a3,t

[mm]

15∙d

90

a3,c

[mm]

10∙d

60

a4,t

[mm]

5∙d

30

a4,c

[mm]

5∙d

30

10∙d

F

α=90°

6

8

10

d1

[mm]

60

80

100

a1

[mm]

40

50

a2

[mm]

5∙d

30

40

50

120

150

a3,t

[mm]

10∙d

60

80

100

80

100

a3,c

[mm]

10∙d

60

80

100

40

50

a4,t

[mm]

10∙d

60

80

100

40

50

a4,c

[mm]

5∙d

30

40

50

5∙d

6

8

10

30

40

50

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

7∙d

42

a3,t

[mm]

20∙d

120

a3,c

[mm]

15∙d

90

120

a4,t

[mm]

7∙d

42

56

a4,c

[mm]

7∙d

42

56

15∙d

F

α=90°

6

8

10

d1

[mm]

90

120

150

a1

[mm]

56

70

a2

[mm]

7∙d

42

56

70

160

200

a3,t

[mm]

15∙d

90

120

150

150

a3,c

[mm]

15∙d

90

120

150

70

a4,t

[mm]

12∙d

72

96

120

70

a4,c

[mm]

7∙d

42

56

70

7∙d

6

8

10

42

56

70

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

18

a3,t

[mm]

12∙d

72

a3,c

[mm]

7∙d

42

a4,t

[mm]

3∙d

a4,c

[mm]

3∙d

5∙d

F

6

8

10

d1

[mm]

30

40

50

a1

[mm]

4∙d

24

30

a2

[mm]

4∙d

96

120

a3,t

[mm]

7∙d

56

70

a3,c

[mm]

7∙d

18

24

30

a4,t

[mm]

18

24

30

a4,c

[mm]

α=90° 6

8

10

24

32

40

24

32

40

42

56

70

42

56

70

7∙d

42

56

70

3∙d

18

24

30

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

106 | TBS EVO | TIMBER

• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber ε=90°

timber-to-timber ε=0°

RV,90,k [kN] 1,89 2,15 2,35 2,35 2,35 2,35 2,35 2,35 3,71 3,41 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71 5,64 5,64 5,64 5,64 5,64 5,64 5,64 5,64

RV,0,k [kN] 1,02 1,37 1,58 1,69 1,69 1,69 1,69 1,69 1,95 2,54 2,61 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,79 2,75 2,75 3,28 3,28 3,87 3,87 3,87 3,87

panel-to-timber

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

Rax,90,k [kN] 3,03 3,79 4,55 5,68 5,68 5,68 5,68 5,68 5,25 8,08 8,08 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 10,10 7,58 7,58 10,10 10,10 12,63 12,63 12,63 12,63

Rax,0,k [kN] 0,91 1,14 1,36 1,70 1,70 1,70 1,70 1,70 1,58 2,42 2,42 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 2,27 2,27 3,03 3,03 3,79 3,79 3,79 3,79

Rhead,k [kN] 2,72 2,72 2,72 2,72 2,72 2,72 2,72 2,72 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 4,09 7,08 7,08 7,08 7,08 7,08 7,08 7,08 7,08

SPAN

geometry

TENSION

A L b d1

d1 L b A [mm] [mm] [mm] [mm] 60 40 20 80 50 30 100 60 40 120 75 45 6 140 75 65 160 75 85 180 75 105 200 75 125 100 52 48 120 80 40 140 80 60 160 100 60 180 100 80 200 100 100 8 220 100 120 240 100 140 280 100 180 320 100 220 360 100 260 400 100 300 120 60 60 140 60 80 160 80 80 180 80 100 10 200 100 100 220 100 120 240 100 140 280 100 180

SPAN [mm]

50

65

80

RV,k [kN] 2,14 2,50 2,50 2,50 2,50 2,50 2,50 3,22 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 3,89 5,84 5,85 5,85 5,85 5,85 5,85 5,85

ε = screw-to-grain angle GENERAL PRINCIPLES • Characteristic values consistent with EN 1995:2014 and in accordance with ETA-11/0030.

• For minimum distances and structural values on CLT and LVL see TBS on page 76.

• Design values can be obtained from characteristic values as follows:

• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

Rk kmod Rd = γM The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strength are calculated considering an OSB panel or particle board with a SPAN thickness and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.

NOTES • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains of the timber element and the connector. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (timber-to-timber shear and tensile strength) can be converted using the kdens coefficient (see page 87). • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 80).

• The head pull-through characteristic strength was calculated using timber elements.

TIMBER | TBS EVO | 107


TBS EVO C5

AC233 ESR-4645

ETA-11/0030

FLANGE HEAD SCREW C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. SST (Salt Spray Test) with exposure time greater than 3000h carried out on screws previously screwed and unscrewed in Douglas fir timber.

MAXIMUM STRENGTH It is the screw of choice when high mechanical performance is required under very adverse environmental and wood corrosive conditions. The wide head provides additional tensile strength, which is ideal in the presence of wind or variations in timber dimensions.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

BIT INCLUDED

LENGTH [mm] 6 6

tbs evo c5

8

16

DIAMETER [mm] 40

60

240

1000

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C5

C5

EVO COATING

carbon steel with C5 EVO coating with very high corrosion resistance

FIELDS OF USE • • • •

108 | TBS EVO C5 | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods


CODES AND DIMENSIONS d1

dK

[mm]

[mm]

6 TX 30

15,5

CODE

L

b

A

pcs

[mm] [mm] [mm] TBSEVO660C5 TBSEVO680C5 TBSEVO6100C5 TBSEVO6120C5 TBSEVO6140C5 TBSEVO6160C5 TBSEVO6180C5 TBSEVO6200C5

60 80 100 120 140 160 180 200

40 50 60 75 75 75 75 75

20 30 40 45 65 85 105 125

100 100 100 100 100 100 100 100

d1

dK

[mm]

[mm]

8 TX 40

CODE

L

b

A

pcs

[mm] [mm] [mm] TBSEVO8100C5 TBSEVO8120C5 TBSEVO8140C5 TBSEVO8160C5 TBSEVO8180C5 TBSEVO8200C5 TBSEVO8220C5 TBSEVO8240C5

19,0

100 120 140 160 180 200 220 240

52 80 80 100 100 100 100 100

48 40 60 60 80 100 120 140

50 50 50 50 50 50 50 50

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dK

TBS

A

d2 d1 dS

b L

Nominal diameter Head diameter Thread diameter

d1 dK d2

[mm] [mm] [mm]

6 15,50 3,95

8 19,00 5,40

Shank diameter

dS

[mm]

4,30

5,80

Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment

dV,S dV,H ftens,k My,k

[mm] [mm] [kN] [Nm]

4,0 4,0 11,3 9,5

5,0 6,0 20,1 20,1

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

Withdrawal resistance parameter Head-pull-through parameter Associated density Calculation density

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

[N/mm2]

11,7

15,0

29,0

fhead,k [N/mm2]

10,5

20,0

-

ρa ρk

350 ≤ 440

500 410 ÷ 550

730 590 ÷ 750

fax,k

[kg/m3] [kg/m3]

For applications with different materials please see ETA-11/0030.

C5

For minimum distances and structural values see TBS EVO on page 102.

LIGHT FRAME & MASS TIMBER The extensive size range allows a wide variety of applications: from lightweight and lattice frames to the joining of engineered timbers such as LVL and CLT, in the aggressive environments that characterise atmospheric class C5.

TIMBER | TBS EVO C5 | 109


KOP

EN 14592

COACH SCREW DIN571 CE MARKING Screws with the CE mark, in accordance with EN 14592.

HEXAGONAL HEAD Appropriate for use on plates in steel-to-timber applications, thanks to its hexagonal head.

OUTDOOR VERSION Also available in stainless steel A2 | AISI304 for outdoor use (service class 3).

DIAMETER [mm]

6

LENGTH [mm]

40

8

16 16

50

400

AI571

1000

MATERIAL

Zn

electrogalvanized carbon steel

A2

SC1 A2 | AISI304 austenitic stainless steel (CRC II)C1

ELECTRO PLATED

SC1

SC2 C1

SC3 T1 C2

SC4 T2 C3

T3 C4

SC2 T1 C2

SC3 T2 C3

SC4 T3 C4

T4 C5

T5

T4 C5

T5

KOP AISI 304

FIELDS OF USE • • • • •

110 | KOP | TIMBER

timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT, LVL


CODES AND DIMENSIONS

Zn

KOP d1

ELECTRO PLATED

CODE

[mm]

8 SW 13

10 SW 17

12 SW 19

L

pcs

[mm]

d1

CODE

[mm]

L

pcs

[mm]

KOP850( * )

50

100

KOP12150

150

25

KOP860

60

100

KOP12160

160

25

KOP870

70

100

KOP12180

180

25

KOP880

80

100

KOP12200

200

25

KOP8100

100

50

KOP12220

220

25

KOP8120

120

50

KOP12240

240

25

KOP8140

140

50

KOP12260

260

25

KOP8160

160

50

KOP12280

280

25

KOP8180

180

50

KOP12300

300

25

KOP8200

200

50

KOP12320

320

25

KOP1050( * )

50

50

KOP12340

340

25

KOP1060( * )

60

50

KOP12360

360

25

KOP1080

80

50

KOP12380

380

25

KOP10100

100

50

KOP12400

400

25

80

25

100

25

12 SW 19

KOP10120

120

50

KOP1680( * )

KOP10140

140

50

KOP16100( * )

KOP10150

150

50

KOP16120

120

25

KOP10160

160

50

KOP16140

140

25

KOP10180

180

50

KOP16150

150

25

KOP10200

200

50

KOP16160

160

25

KOP10220

220

50

KOP16180

180

25

KOP10240

240

50

KOP16200

200

25

KOP10260

260

50

KOP16220

25

KOP10280

280

50

16 SW 24 KOP16240

220 240

25

KOP10300

300

50

KOP16260

260

25

KOP1250( * )

50

50

KOP16280

280

25

KOP1260( * )

60

50

KOP16300

300

25

KOP1270( * )

70

50

KOP16320

320

25

KOP1280

80

50

KOP16340

340

25

KOP1290

90

50

KOP16360

360

25

KOP12100

100

25

KOP16380

380

25

KOP12120

120

25

KOP16400

400

25

KOP12140

140

25

( * ) Not holding CE marking.

A2

AI571 - A2 | AISI304 VERSION d1 [mm]

8 SW 13

10 SW 17

AISI 304

CODE

L [mm]

pcs

AI571850

50

100

AI571860

60

100

AI571880

80

100

AI5718100

100

100

AI5718120

120

100

AI5711050

50

100

AI5711060

60

100

AI5711080

80

100

AI57110100

100

50

AI57110120

120

50

AI57110140

140

50

AI57110160

160

50

AI57110180

180

50

AI57110200

200

50

d1 [mm]

12 SW 19

CODE

L [mm]

pcs

AI57112100

100

50

AI57112120

120

25

AI57112140

140

25

AI57112160

160

25

AI57112180

180

25

The stainless steel screws have not been granted the CE mark.

TIMBER | KOP | 111


GEOMETRY AND MECHANICAL CHARACTERISTICS | KOP A

d2 d1 SW

k

dS

b L

Nominal diameter

d1

[mm]

8

10

12

16

Wrench size

SW

[mm]

13

17

19

24

Head thickness

k

[mm]

5,50

7,00

8,00

10,00

Thread diameter

d2

[mm]

5,60

7,00

9,00

12,00

Shank diameter

dS

[mm]

8,00

10,00

12,00

16,00

Diameter pre-drilling hole - smooth part

dV1

[mm]

8,0

10,0

12,0

16,0

Diameter pre-drilling hole - threaded part

dV2

[mm]

5,5

7,0

8,5

11,0

Thread length

b

[mm]

≥ 0,6 L

Characteristic tensile strength

ftens,k

[kN]

15,7

23,6

37,3

75,3

Characteristic yield moment

My,k

[Nm]

16,9

32,2

65,7

138,0

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

12,9

10,6

10,2

10,0

Associated density

ρa

[kg/m3]

400

400

440

360

Characteristic head-pull-through parameter

fhead,k

[N/mm2]

22,8

19,8

16,4

16,5

Associated density

ρa

[kg/m3]

440

420

430

430

MINIMUM DISTANCES FOR SHEAR LOADS screws inserted WITH pre-drilled hole

α=0°

F

F

d1

[mm]

a1

[mm]

a2

[mm]

4∙d

32

40

48

a3,t

[mm]

min (7∙d;80)

80

80

84

a3,c

[mm]

4∙d

32

40

48

a4,t

[mm]

3∙d

24

30

a4,c

[mm]

3∙d

24

30

5∙d

α=90°

8

10

12

16

d1

[mm]

40

50

60

80

a1

[mm]

64

a2

[mm]

4∙d

32

40

48

64

112

a3,t

[mm]

min (7∙d;80)

80

80

84

112

64

a3,c

[mm]

7∙d

56

70

84

112

36

48

a4,t

[mm]

4∙d

32

40

48

64

36

48

a4,c

[mm]

3∙d

24

30

36

48

4∙d

8

10

12

16

32

40

48

64

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

a3,c

NOTES • Minimum distances in accordance with EN 1995:2014. • For KOP screws a pre-drill is required as per EN 1995:2014: - pre-drill hole for smooth part of the shank, dimensions matching that of the shank itself, depth equal to the length of the shank. - pre-drill hole for the threaded portion, equal to approximately 70% of the shank diameter.

112 | KOP | TIMBER

F a4,c


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-timber thick plate α=0°

timber-to-timber α=0°

timber-to-timber α=90°

RV,90,k

SPLATE [mm]

SPLATE

A

steel-timber thick plate α=90°

thread withdrawal

head pull-through

Rax,k

Rhead,k

SPLATE

geometry

TENSION

L b d1

d1

L

b

A

RV,0,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

50 60 70 80 100 120 140 160 180 200 50 60 80 100 120 140 150 160 180 200 220 240 260 280 300 50 60 70 80 90 100 120 140 150 160 180 200 220 240 260 280 300 320 340 360 380 400

30 36 42 48 60 72 84 96 108 120 30 36 48 60 72 84 90 96 108 120 132 144 156 168 180 30 36 42 48 54 60 72 84 90 96 108 120 132 144 156 168 180 192 195( * ) 195( * ) 195( * ) 195

20 24 28 32 40 48 56 64 72 80 20 24 32 40 48 56 60 64 72 80 88 96 104 112 120 20 24 28 32 36 40 48 56 60 64 72 80 88 96 104 112 120 128 145 165 185 205

3,17 3,53 3,83 4,08 4,18 4,18 4,18 4,18 4,18 4,18 3,81 4,56 5,40 6,25 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39 4,39 5,27 6,15 6,97 7,42 7,75 8,45 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11 9,11

2,44 2,89 3,08 3,24 3,59 3,61 3,61 3,61 3,61 3,61 2,80 3,36 4,31 4,91 5,32 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49 3,16 3,79 4,42 5,05 5,68 6,08 6,47 6,92 7,16 7,40 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65 7,65

8

10

12

8

10

12

RV,k

SPLATE

[kN]

[mm]

5,31 5,46 5,61 5,76 6,06 6,36 6,66 6,96 7,26 7,56 6,58 7,70 8,19 8,50 8,81 9,12 9,27 9,42 9,73 10,04 10,35 10,66 10,97 11,27 11,58 8,37 9,48 10,72 12,05 12,25 12,41 12,74 13,07 13,24 13,40 13,73 14,06 14,39 14,72 15,05 15,38 15,71 16,04 16,13 16,13 16,13 16,13

8

10

12

RV,k [kN]

[kN]

[kN]

4,05 4,66 4,81 4,96 5,26 5,56 5,86 6,16 6,46 6,76 4,99 5,73 6,91 7,22 7,53 7,84 7,99 8,15 8,46 8,76 9,07 9,38 9,69 10,00 10,31 6,49 7,15 7,93 8,78 9,69 10,35 10,68 11,01 11,18 11,34 11,67 12,00 12,33 12,66 12,99 13,32 13,65 13,98 14,06 14,06 14,06 14,06

3,00 3,60 4,20 4,80 6,01 7,21 8,41 9,61 10,81 12,01 3,08 3,70 4,93 6,17 7,40 8,64 9,25 9,87 11,10 12,34 13,57 14,80 16,04 17,27 18,51 3,30 3,96 4,62 5,28 5,94 6,60 7,92 9,24 9,90 10,56 11,88 13,20 14,52 15,84 17,16 18,48 19,80 21,12 21,45 21,45 21,45 21,45

3,82 3,82 3,82 3,82 3,82 3,82 3,82 3,82 3,82 3,82 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,89 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98 5,98

α = load-to-grain angle

TIMBER | KOP | 113


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-timber thick plate α=0°

timber-to-timber α=0°

timber-to-timber α=90°

RV,0,k

RV,90,k

SPLATE [mm]

SPLATE

A

steel-timber thick plate α=90°

thread withdrawal

head pull-through

Rax,k

Rhead,k

SPLATE

geometry

TENSION

L b d1

d1

L

b

A

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

80

48

32

9,29

6,60

100

60

40

11,48

120

72

48

12,28

16

RV,k

SPLATE

[kN]

[mm]

RV,k [kN]

[kN]

[kN]

16,21

11,98

8,10

9,59

8,11

19,57

14,06

10,13

9,59

9,26

20,64

16,37

12,16

9,59

140

84

56

13,13

9,96

21,15

17,50

14,18

9,59

150

90

60

13,58

10,20

21,40

17,76

15,19

9,59

160

96

64

14,05

10,46

21,65

18,01

16,21

9,59

180

108

72

14,84

11,00

22,16

18,52

18,23

9,59

200

120

80

14,84

11,58

22,66

19,02

20,26

9,59 9,59

220

132

88

14,84

12,19

240

144

96

14,84

12,27

260

156

104

14,84

12,27

16

23,17

19,53

22,29

20,04

24,31

9,59

24,18

20,54

26,34

9,59

23,68

16

280

168

112

14,84

12,27

24,69

21,05

28,36

9,59

300

180

120

14,84

12,27

25,20

21,55

30,39

9,59

320

192

128

14,84

12,27

25,70

22,06

32,42

9,59

340

204

136

14,84

12,27

26,21

22,57

34,44

9,59

360

205( * )

155

14,84

12,27

26,25

22,61

34,61

9,59

380

205( * )

175

14,84

12,27

26,25

22,61

34,61

9,59

400

205( * )

195

14,84

12,27

26,25

22,61

34,61

9,59

α = load-to-grain angle

STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES

• Characteristic values are consistent with EN 1995:2014 and in accordance with EN 14592.

• The characteristic timber-to-timber shear strengths were evaluated by considering an angle α between the acting force and the grains of the timber elements of both 0° (Rv,0,k) and 90° (Rv,90,k).

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and KOP screw geometry according to CE marking according to EN 14592. • Dimensioning and verification of the timber elements must be carried out separately. • The characteristic shear resistance values are calculated for screws inserted with pre-drilling hole. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

114 | KOP | TIMBER

• The characteristic steel-timber shear strengths were evaluated considering an angle α between the acting force and the grains of the timber element of both 0° (Rv,0,k) and 90° (Rv,90,k). • The shear strength characteristics on the plate are calculated considering the case of a thick plate (SPLATE = d1). • The characteristic thread withdrawal resistances were evaluated by considering an angle α of 90° (Rax,90,k) between the acting force and the grains of the timber elements. • During calculation, a thread length of b = 0,6 L is used, with the exception of the measures (*). • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 87). • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 80).


SMALL IN SIZE YET BIG IN PERFORMANCE

NINO, the universal fastening solution for timber walls. NINO angle brackets introduce the new concept of universal angle brackets into the Rothoblaas range. They combine the simplicity of WBR building angle brackets with the technical quality of TITAN angle brackets.

www.rothoblaas.com


AXIALLY LOADED CONNECTORS FULLY THREADED SCREWS STRENGTH The strength is proportional to the effective thread length within the timber element. The connectors guarantee high performance with small diameters. The stresses are distributed, in the form of tangential stresses, along the entire wood surface affected by the screw thread. For the verification of a connection with axially stressed connectors, it will be necessary to evaluate the limiting strength, depending on the acting load. The strength of the full thread connector is related to its mechanical performance and the type of wood material in which it is applied.

TIMBER

TIMBER

TIMBER

STEEL

total F withdrawal thread

partial thread withdrawal

head pull-through

tension/head separation

Rhead

Rtens

Rax

Rax

TENSILE-stressed full thread connectors

TIMBER

STEEL + TIMBER

total thread withdrawal

instability

Rax

Rki

COMPRESION-stressed full thread connectors

STIFFNESS

kSER VGZ

F - load [kN]

The joint made with full thread connectors, which utilise their axial strength, guarantees very high stiffness, limited element displacements and reduced ductility.

kSER VGZ

kSER HBS kSER HBS

A B

The graph refers to shear tests to control displacement for HBS screws under lateral stress (shear) and crossed VGZ axially loaded screws.

PARTIAL THREAD SCREWS The strength is proportional to the diameter and is related to the bearing stress of the timber and the yielding of the screw. The partial thread is mainly used to transfer shear forces that stress the screw perpendicular to its axis. If the screw is under tensile stress, the pull-through strength of the head must be taken into account, which is often a constraint compared to the withdrawal resistance of the threaded part and compared to the tensile strength on the steel side.

116 | AXIALLY LOADED CONNECTORS | TIMBER

A

A

A

B

B

s - slip [mm]

B


APPLICATIONS To optimise the performance of full thread or double thread connectors, it is essential to use them in such a way that they are subjected to axial stress. The load is distributed parallel to the axis of the connectors along the effective thread portion. They are used to transfer shear and sliding stresses, for structural reinforcement or for fixing continuous insulation.

CROSSED SCREWS TIMBER-TO-TIMBER SHEAR JOINT F

CONNECTORS VGZ or VGS INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension and compression F

INCLINED SCREWS

section

plan

TIMBER-TO-TIMBER SHEAR JOINT F

CONNECTORS VGZ or VGS INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension

section

plan

TIMBER-TO-TIMBER SLIDING JOINT CONNECTORS VGZ or VGS

F

INSERTION 45° to the shear plane

F

STRESSES ON CONNECTORS Tension

section

plan

STEEL-TIMBER SLIDING JOINT CONNECTORS VGS (with VGU)

F F

INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension

section

F

F

plan

CONCRETE-TIMBER SLIDING JOINT CONNECTORS CTC

F

INSERTION 45° to the shear plane STRESSES ON CONNECTORS Tension

F

section

F

plan TIMBER | APPLICATIONS | 117


STRUCTURAL REINFORCEMENT Wood is an anisotropic material. Therefore, it has different mechanical characteristics depending on the direction of the grain and the stress. It provides less strength and stiffness for stresses orthogonal to the grain, but can be reinforced with full thread connectors (VGS, VGZ or RTR).

NOTCHED BEAM TYPE OF REINFORCEMENT Tension perpendicular to the grains

FAILURE

REINFORCEMENT F

F

INSERTION 90° to the grains STRESSES ON CONNECTORS Tension

BEAM WITH HANGING LOAD TYPE OF REINFORCEMENT Tension perpendicular to the grains

FAILURE

REINFORCEMENT

INSERTION 90° to the grains STRESSES ON CONNECTORS Tension

F

F

SPECIAL BEAM (curved, tapered, with double inclination) TYPE OF REINFORCEMENT Tension perpendicular to the grains

FAILURE

REINFORCEMENT

INSERTION 90° to the grains STRESSES ON CONNECTORS Tension

F

F

BEAM WITH OPENINGS TYPE OF REINFORCEMENT Tension perpendicular to the grains

FAILURE

REINFORCEMENT

INSERTION 90° to the grains STRESSES ON CONNECTORS Tension

F

F

SUPPORT BEAM TYPE OF REINFORCEMENT Compression perpendicular to the grains

FAILURE

REINFORCEMENT

INSERTION 90° to the grains STRESSES ON CONNECTORS Compression

118 | APPLICATIONS | TIMBER

F

F


FASTENING FOR CONTINUOUS INSULATION Installation of a continuous layer of insulation guarantees excellent energy performance, limiting thermal bridges. Efficiency is bound to the use of appropriate fastening systems (ex. DGZ), suitably designed.

SLIDING OF INSULATION AND COATING PROBLEM The connectors for fixing insulation prevent the package from sliding due to the load component parallel to the pitch, resulting in damage to the roof system and loss of insulating power.

SOLUTION F

F

CRUSHING OF INSULATION PROBLEM

SOLUTION

If insulation does not have sufficient compressive strength, the connectors with double threads effectively transfer the loads and prevent crushing with consequent loss of insulating power of the package.

ROOFING AND FAÇADE APPLICATIONS COVER

FAÇADE

SOFT INSULATION Low compression resistance (σ (10%) < 50 kPa (EN 826)

HARD INSULATION High compression resistance σ(10%) ≥ 50 kPa (EN 826)

SOFT OR HARD CONTINUOUS INSULATION

1

2

3

N

N

A

F

F

A

A

A C

B

C

A

B

±N

A

A

C

The continuous insulation does not support the load component perpendicular to the layer (N).

F

The continuous insulation supports the load component perpendicular to the layer (N);

C

Fasteners must withstand both wind actions (±N) and transfer vertical forces (F).

LEGEND: A. Tensile-stressed screw. B. Compression-stressed screw. C. Additional screw for suction pressure. NOTE: Adequate batten thickness makes it possible to optimise the number of fastenings.

For the sizing and positioning of connectors, download MyProject. Simplify your work!

TIMBER | APPLICATIONS | 119


VGZ

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

FULL THREADED SCREW WITH CYLINDRICAL HEAD 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs the grain (0° ÷ 90°). Cyclical SEISMIC-REV tests according to EN 12512.

CYLINDRICAL HEAD It allows the screw to penetrate and pass through the surface of the wood substrate. Ideal for concealed joints, timber couplings and structural reinforcements. It is the right choice to ensure strength in fire conditions.

TIMBER FRAME Also ideal for joining small timber elements such as the crossbeams and uprights of light frame structures.

BIT INCLUDED

DIAMETER [mm]

5

LENGTH [mm]

80 80

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

7

11 11 1000 1000

electrogalvanized carbon steel

FIELDS OF USE • • • • •

120 | VGZ | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods

ETA-11/0030


STRUCTURAL RESTORATION Ideal for coupling beams in structural renovations and new works. Can also be used parallel to the grain thanks to the special approval.

CLT, LVL Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.

TIMBER | VGZ | 121


Very high stiffness in side-by-side joining of CLT floors. Application with double inclination at 45°, perfect combined with the JIG VGZ template.

Reinforcement orthogonal to grain for hanging load due to joining of main-secondary beams.

VGZ

d2 d1

XXX

dK

XXX

dK

VGZ

GEOMETRY AND MECHANICAL CHARACTERISTICS

b

b

L

L

Ø9 | L > 520 mm Ø11 | L > 600 mm

GEOMETRY Nominal diameter

d1

[mm]

7

9

11

Head diameter

dK

[mm]

9,50

11,50

13,50

Thread diameter

d2

[mm]

4,60

5,90

6,60

Pre-drilling hole diameter(1)

dV,S

[mm]

4,0

5,0

6,0

Pre-drilling hole diameter(2)

dV,H

[mm]

5,0

6,0

7,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

7

9

11

Tensile strength

ftens,k

[kN]

15,4

25,4

38,0

Yield strength

fy,k

[N/mm2]

1000

1000

1000

Yield moment

My,k

[Nm]

14,2

27,2

45,9

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

11,7

15,0

29,0

Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

122 | VGZ | TIMBER


CODES AND DIMENSIONS d1

CODE

[mm]

L

b

pcs

d1

CODE

[mm]

L

b

pcs

[mm]

[mm]

[mm]

[mm]

VGZ780

80

70

25

VGZ11150

150

140

25

VGZ7100

100

90

25

VGZ11200

200

190

25

VGZ7120

120

110

25

VGZ11250

250

240

25

VGZ7140

140

130

25

VGZ11275

275

265

25

VGZ7160

160

150

25

VGZ11300

300

290

25

VGZ7180

180

170

25

VGZ11325

325

315

25

VGZ7200

200

190

25

VGZ11350

350

340

25

VGZ7220

220

210

25

VGZ11375

375

365

25

7 VGZ7240 TX 30 VGZ7260

240

230

25

VGZ11400

400

390

25

260

250

25

VGZ11425

425

415

25

VGZ7280

280

270

25

VGZ11450

450

440

25

VGZ7300

300

290

25

VGZ11475

475

465

25

500

490

25

525

515

25

550

540

25

VGZ7320

320

310

25

VGZ7340

340

330

25

11 VGZ11500 TX 50 VGZ11525

VGZ7360

360

350

25

VGZ11550

VGZ7380

380

370

25

VGZ11575

575

565

25

VGZ7400

400

390

25

VGZ11600

600

590

25

VGZ9160

160

150

25

VGZ11650

650

640

25

VGZ9180

180

170

25

VGZ11700

700

690

25

VGZ9200

200

190

25

VGZ11750

750

740

25

VGZ9220

220

210

25

VGZ11800

800

790

25

VGZ9240

240

230

25

VGZ11850

850

840

25

VGZ9260

260

250

25

VGZ11900

900

890

25

VGZ9280

280

270

25

VGZ11950

950

940

25

VGZ9300

300

290

25

VGZ111000

1000

990

25

VGZ9320 9 TX 40 VGZ9340

320

310

25

340

330

25

VGZ9360

360

350

25

VGZ9380

380

370

25

VGZ9400

400

390

25

VGZ9440

440

430

25

VGZ9480

480

470

25

VGZ9520

520

510

25

VGZ9560

560

550

25

VGZ9600

600

590

25

RELATED PRODUCTS JIG VGZ 45° TEMPLATE FOR 45° SCREWS

page 409

JIG VGZ 45° TEMPLATE Installation at 45° using the JIG VGZ steel template.

TIMBER | VGZ | 123


MINIMUM DISTANCES FOR AXIAL STRESSES | TIMBER screws inserted WITH and WITHOUT pre-drilled hole

d1

[mm]

7

9

11

d1

[mm]

9

11

a1

[mm]

5∙d

35

45

55

a1

[mm]

5∙d

45

55

a2

[mm]

5∙d

35

45

55

a2

[mm]

5∙d

45

55

a2,LIM

[mm]

2,5∙d

18

23

28

a2,LIM

[mm]

2,5∙d

23

28

a1,CG

[mm]

8∙d

56

72

88

a1,CG

[mm]

5∙d

45

55

a2,CG

[mm]

3∙d

21

27

33

a2,CG

[mm]

3∙d

27

33

aCROSS [mm]

1,5∙d

11

14

17

aCROSS [mm]

1,5∙d

14

17

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

plan

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN

front

CROSSED SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG

45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.

• For 3 THORNS tip and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.

• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained. • For main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a1,CG can be taken equal to 8∙d1 anc the minimum distance a2,CG equal to 3∙d1 .

EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

b L

124 | VGZ | TIMBER

Sg

10

b = S g,tot = L - 10 mm

represents the entire length of the threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2

represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

35

45

a3,t

[mm]

15∙d

105

135

a3,c [mm]

10∙d

70

90

a4,t

[mm]

5∙d

35

45

a4,c [mm]

5∙d

35

45

10∙d

F

α=90°

7

9

11

d1

[mm]

70

90

110

a1

[mm]

55

a2

[mm]

5∙d

35

45

55

165

a3,t

[mm]

10∙d

70

90

110

110

a3,c [mm]

10∙d

70

90

110

55

a4,t

[mm]

10∙d

70

90

110

55

a4,c [mm]

5∙d

35

45

55

5∙d

7

9

11

35

45

55

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

21

a3,t

[mm]

12∙d

84

a3,c [mm]

7∙d

49

63

a4,t

[mm]

3∙d

21

27

a4,c [mm]

3∙d

21

27

33

5∙d

7

9

11

d1

[mm]

35

45

55

a1

[mm]

4∙d

27

33

a2

[mm]

4∙d

108

132

a3,t

[mm]

7∙d

77

a3,c [mm]

7∙d

33

a4,t

[mm]

7∙d

a4,c [mm]

3∙d

α=90° 7

9

11

28

36

44

28

36

44

49

63

77

49

63

77

49

63

77

21

27

33

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α = 0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 169).

Ref,V,k

a1 a1

TIMBER | VGZ | 125


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

estrazione filetto parziale

ε=0°

steel tension

instability ε=90°

Sg Sg,tot

L

Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

Rki,90,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

80

70

90

6,19

1,86

-

-

-

-

15,40

10,30

25,40

17,25

7

9

100

90

110

7,96

2,39

35

55

3,09

0,93

120

110

130

9,72

2,92

45

65

3,98

1,19

140

130

150

11,49

3,45

55

75

4,86

1,46

160

150

170

13,26

3,98

65

85

5,75

1,72

180

170

190

15,03

4,51

75

95

6,63

1,99

200

190

210

16,79

5,04

85

105

7,51

2,25

220

210

230

18,56

5,57

95

115

8,40

2,52

240

230

250

20,33

6,10

105

125

9,28

2,78

260

250

270

22,10

6,63

115

135

10,16

3,05

280

270

290

23,87

7,16

125

145

11,05

3,31

300

290

310

25,63

7,69

135

155

11,93

3,58

320

310

330

27,40

8,22

145

165

12,82

3,84

340

330

350

29,17

8,75

155

175

13,70

4,11

360

350

370

30,94

9,28

165

185

14,58

4,38

380

370

390

32,70

9,81

175

195

15,47

4,64

400

390

410

34,47

10,34

185

205

16,35

4,91

160

150

170

17,05

5,11

65

85

7,39

2,22

180

170

190

19,32

5,80

75

95

8,52

2,56

200

190

210

21,59

6,48

85

105

9,66

2,90

220

210

230

23,87

7,16

95

115

10,80

3,24

240

230

250

26,14

7,84

105

125

11,93

3,58

260

250

270

28,41

8,52

115

135

13,07

3,92

280

270

290

30,68

9,21

125

145

14,21

4,26

300

290

310

32,96

9,89

135

155

15,34

4,60

320

310

330

35,23

10,57

145

165

16,48

4,94

340

330

350

37,50

11,25

155

175

17,61

5,28

360

350

370

39,78

11,93

165

185

18,75

5,63

380

370

390

42,05

12,61

175

195

19,89

5,97

400

390

410

44,32

13,30

185

205

21,02

6,31

440

430

450

48,87

14,66

205

225

23,30

6,99

480

470

490

53,41

16,02

225

245

25,57

7,67

520

510

530

57,96

17,39

245

265

27,84

8,35

560

550

570

62,50

18,75

265

285

30,12

9,03

600

590

610

67,05

20,11

285

305

32,39

9,72

ε = screw-to-grain angle

126 | VGZ | TIMBER


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

estrazione filetto parziale

ε=0°

steel tension

instability ε=90°

Sg Sg,tot

L

Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

Rki,90,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

150

140

160

19,45

5,83

60

80

8,33

2,50

38,00

21,93

200

190

210

26,39

7,92

85

105

11,81

3,54

250

240

260

33,34

10,00

110

130

15,28

4,58

275

265

285

36,81

11,04

123

143

17,01

5,10

300

290

310

40,28

12,08

135

155

18,75

5,63

325

315

335

43,75

13,13

148

168

20,49

6,15

350

340

360

47,22

14,17

160

180

22,22

6,67

375

365

385

50,70

15,21

173

193

23,96

7,19

400

390

410

54,17

16,25

185

205

25,70

7,71

11

425

415

435

57,64

17,29

198

218

27,43

8,23

450

440

460

61,11

18,33

210

230

29,17

8,75

475

465

485

64,59

19,38

223

243

30,90

9,27

500

490

510

68,06

20,42

235

255

32,64

9,79

525

515

535

71,53

21,46

248

268

34,38

10,31

550

540

560

75,00

22,50

260

280

36,11

10,83

575

565

585

78,48

23,54

273

293

37,85

11,35

600

590

610

81,95

24,58

285

305

39,59

11,88

650

640

660

88,89

26,67

310

330

43,06

12,92

700

690

710

95,84

28,75

335

355

46,53

13,96

750

740

760

102,78

30,84

360

380

50,00

15,00

800

790

810

109,73

32,92

385

405

53,48

16,04

850

840

860

116,67

35,00

410

430

56,95

17,08

900

890

910

123,62

37,09

435

455

60,42

18,13

950

940

960

130,56

39,17

460

480

63,89

19,17

1000

990

1010

137,51

41,25

485

505

67,37

20,21

ε = screw-to-grain angle

NOTES • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.

R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k ρk

380

385

405

425

430

440

C-GL R’V,0,k = kdens,VC24 RV,0,k C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

kdens,ki

0,97

0,99

1,00

1,00

1,01

1,02

1,02

350

3] k R’[kg/m = RV,90,k V,90,k dens,V

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

GENERAL PRINCIPLES on page 143.

TIMBER | VGZ | 127


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

SLIDING geometry

timber-to-timber

S

g

A

steel tension

45°

timber-to-timber

45°

timber-to-timber ε=90°

timber-to-timber ε=0°

A

Sg

S

g

L

SHEAR

Sg

B d1

d1

L

Sg

A

Bmin

RV,k

Rtens,45,k

A

Sg

RV,90,k

RV,0,k

[mm]

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN]

80

-

-

-

-

40

25

2,59

1,34

100

35

40

55

2,19

50

35

2,93

1,53

120

45

45

60

2,81

60

45

3,15

1,74

7

9

140

55

55

70

3,44

70

55

3,37

1,97

160

65

60

75

4,06

80

65

3,59

2,06

180

75

70

85

4,69

90

75

3,81

2,12

200

85

75

90

5,31

100

85

4,03

2,19

220

95

85

100

5,94

240

105

90

105

6,56

10,89

110

95

4,25

2,26

120

105

4,30

2,32

260

115

95

110

7,19

130

115

4,30

2,39

280

125

105

120

7,81

140

125

4,30

2,46

300

135

110

125

8,44

150

135

4,30

2,52

320

145

120

135

9,06

160

145

4,30

2,59

340

155

125

140

9,69

170

155

4,30

2,65

360

165

130

145

10,31

180

165

4,30

2,72

380

175

140

155

10,94

190

175

4,30

2,79

400

185

145

160

11,56

200

185

4,30

2,85

160

65

60

75

5,22

80

65

5,10

2,81

180

75

70

85

6,03

90

75

5,38

3,08

200

85

75

90

6,83

100

85

5,67

3,18

220

95

85

100

7,63

110

95

5,95

3,27

240

105

90

105

8,44

120

105

6,23

3,35

260

115

95

110

9,24

130

115

6,50

3,44

280

125

105

120

10,04

140

125

6,50

3,52

300

135

110

125

10,85

150

135

6,50

3,61

320

145

120

135

11,65

340

155

125

140

12,46

160

145

6,50

3,69

170

155

6,50

3,78

360

165

130

145

380

175

140

155

13,26

180

165

6,50

3,86

14,06

190

175

6,50

3,95

17,96

400

185

145

160

14,87

200

185

6,50

4,03

440

205

160

175

16,47

220

205

6,50

4,21

480

225

175

190

18,08

240

225

6,50

4,38

520

245

190

205

19,69

260

245

6,50

4,55

560

265

205

220

21,29

280

265

6,50

4,72

600

285

215

230

22,90

300

285

6,50

4,89

ε = screw-to-grain angle

128 | VGZ | TIMBER


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

SLIDING geometry

SHEAR

timber-to-timber

S

g

A

45°

timber-to-timber

45°

timber-to-timber ε=90°

timber-to-timber ε=0°

A

Sg

S

g

L

steel tension

Sg

B d1

d1

L

Sg

A

Bmin

RV,k

Rtens,45,k

A

Sg

RV,90,k

RV,0,k

[mm]

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN] 3,33

150

60

60

75

5,89

75

60

6,61

200

85

75

90

8,35

100

85

7,48

4,10

250

110

95

110

10,80

125

110

8,35

4,57

275

123

100

115

12,03

138

123

8,79

4,70

300

135

110

125

13,26

150

135

9,06

4,83

325

148

120

135

14,49

163

148

9,06

4,96

350

160

130

145

15,71

175

160

9,06

5,09

375

173

140

155

16,94

188

173

9,06

5,22

400

185

145

160

18,17

200

185

9,06

5,35 5,48

11

425

198

155

170

19,40

213

198

9,06

450

210

165

180

20,63

225

210

9,06

5,61

475

223

175

190

21,85

238

223

9,06

5,74

500

235

180

195

23,08

250

235

9,06

5,87

525

248

190

205

24,31

263

248

9,06

6,00

550

260

200

215

25,54

275

260

9,06

6,13

26,87

575

273

210

225

26,76

288

273

9,06

6,26

600

285

215

230

27,99

300

285

9,06

6,39

650

310

235

250

30,45

325

310

9,06

6,65

700

335

250

265

32,90

350

335

9,06

6,85

750

360

270

285

35,36

375

360

9,06

6,85

800

385

290

305

37,81

400

385

9,06

6,85

850

410

305

320

40,27

425

410

9,06

6,85

900

435

325

340

42,72

450

435

9,06

6,85

950

460

340

355

45,18

475

460

9,06

6,85

1000

485

360

375

47,63

500

485

9,06

6,85

ε = screw-to-grain angle

NOTES • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

R’

=k

R

dens,ax ax,kprocess a timber characteristic density ρ = 385 kg/m3 has been considered. • Forax,k the calculation k For ρk R values, the strength values in the table can be converted by the kdens coefficient. R’ different = k ki,k

dens,ki

ki,k

R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk

350

380

385

405

425

430

440

C-GL kdens,ax

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

0,92

0,98

1,00

1,04

1,08

1,09

1,11

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

GENERAL PRINCIPLES on page 143.

TIMBER | VGZ | 129


STRUCTURAL VALUES | CROSSED CONNECTORS

CHARACTERISTIC VALUES EN 1995:2014

MAIN BEAM-SECONDARY BEAM SHEAR CONNECTION main beam secondary beam

geometry

1 pair

2 pairs

3 pairs

90° m

m

S

g

90° 90°

45°

S

hNT

HHT

bNT

bNT

g

L

bNT

90°

d1 BHT

d1

L

BHT,min

HHT,min hNT,min

Sg

[mm]

[mm]

[mm]

[mm]

[mm] [mm]

7

9

m

bNT,min

RV1,k

RV2,k

bNT,min

RV1,k

RV2,k

bNT,min

RV1,k

RV2,k

[mm]

[kN]

[kN]

[mm]

[kN]

[kN]

[mm]

[kN]

[kN]

160

75

130

65

60

53

8,13

88

15,16

123

21,84

180

80

140

75

67

53

9,38

88

17,49

123

25,20

200

90

155

85

74

53

10,63

88

19,83

123

28,56

220

95

170

95

81

53

11,88

88

22,16

123

31,92

240

100

185

105

88

53

13,13

88

24,49

123

35,28

260

110

200

115

95

53

14,38

88

26,82

280

115

210

125

102

53

15,63

88

29,16

13,63

25,44

123

38,64

123

42,00

300

125

225

135

109

53

16,88

88

31,49

123

45,36

320

130

240

145

116

53

18,13

88

33,82

123

48,72

340

140

255

155

123

53

19,38

88

36,16

123

52,08

360

145

270

165

130

53

20,63

88

38,49

123

55,44

380

150

285

175

137

53

21,78

88

40,64

123

58,54

400

160

295

185

144

53

21,78

88

40,64

123

58,54

200

90

155

85

74

68

13,66

113

25,49

158

36,72

220

95

170

95

81

68

15,27

113

28,49

158

41,04

240

100

185

105

88

68

16,88

113

31,49

158

45,36

260

110

200

115

95

68

18,48

113

34,49

158

49,68

280

115

210

125

102

68

20,09

113

37,49

158

54,00

300

125

225

135

109

68

21,70

113

40,49

158

58,32

320

130

240

145

116

68

23,30

113

43,49

158

62,64

340

140

255

155

123

68

24,91

113

46,49

360

145

270

165

130

68

26,52

113

49,48

22,88

42,69

158

66,96

158

71,28

380

150

285

175

137

68

28,13

113

52,48

158

75,60

400

160

295

185

144

68

29,73

113

55,48

158

79,92

440

175

325

205

159

68

32,95

113

61,48

158

88,56

480

185

355

225

173

68

35,92

113

67,03

158

96,55

520

200

380

245

187

68

35,92

113

67,03

158

96,55

560

215

410

265

201

68

35,92

113

67,03

158

96,55

600

230

440

285

215

68

35,92

113

67,03

158

96,55

130 | VGZ | TIMBER

36,64

61,50


STRUCTURAL VALUES | CROSSED CONNECTORS

CHARACTERISTIC VALUES EN 1995:2014

MAIN BEAM-SECONDARY BEAM SHEAR CONNECTION main beam secondary beam

geometry

1 pair

2 pairs

3 pairs

90° m

m

S

g

90° 90°

45°

S

hNT

HHT

bNT

bNT

g

L

bNT

90°

d1 BHT

d1

L

BHT,min

HHT,min hNT,min

Sg

[mm]

[mm]

[mm]

[mm]

[mm] [mm]

250

105

190

110

91

83

275

115

210

125

102

83

300

125

225

135

109

83

325

135

250

150

120

83

350

140

260

160

127

83

m

bNT,min

RV1,k

RV2,k

bNT,min

RV1,k

RV2,k

bNT,min

RV1,k

RV2,k

[mm]

[kN]

[kN]

[mm]

[kN]

[kN]

[mm]

[kN]

[kN]

21,61

138

40,32

193

58,08

24,55

138

45,82

193

66,00

26,52

138

49,48

193

71,28

29,46

138

54,98

193

79,20

31,43

138

58,65

193

84,48 92,40

375

150

285

175

137

83

34,38

138

64,15

193

400

160

295

185

144

83

36,34

138

67,81

193

97,68

425

170

320

200

155

83

39,29

138

73,31

193

105,60

450

175

335

210

162

83

41,25

138

76,98

193

110,88

475

185

355

225

173

83

44,20

138

82,47

193

118,80

11

500

195

370

235

180

83

46,16

525

205

390

250

190

83

49,11

138

86,14

138

91,64

550

210

405

260

197

83

51,07

138

29,15

193

124,08

193

131,99

95,30

193

137,27

54,40

575

225

425

275

208

83

53,74

138

100,28

193

144,45

600

230

440

285

215

83

53,74

138

100,28

193

144,45

650

245

475

310

233

83

53,74

138

100,28

193

144,45

700

265

510

335

251

83

53,74

138

100,28

193

144,45

750

285

545

360

268

83

53,74

138

100,28

193

144,45

800

300

580

385

286

83

53,74

138

100,28

193

144,45

850

320

615

410

304

83

53,74

138

100,28

193

144,45

900

335

650

435

321

83

53,74

138

100,28

193

144,45

950

355

685

460

339

83

53,74

138

100,28

193

144,45

1000

370

720

485

357

83

53,74

138

100,28

193

144,45

78,35

NOTES • The compression design strength of the connectors is the lower between the withdrawal-side design strength (RV1,d) and the instability design strength (RV2,d).

RV,d = min

RV1,k kmod γM RV2,k γM1

• The assembly figure (m) is valid in the case of symmetrical installation of the connectors flush over the elements. • The connectors must be inserted at 45° with respect to the shear plane. • The strength values in the table for connections with several pairs of crossed screws are already inclusive of nef,ax.

GENERAL PRINCIPLES on page 143.

• The values given are calculated considering a distance a1,CG ≥ 5d. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficients previously indicated:

R’V1,k = kdens,ax RV1,k R’V2,k = kdens,ki RV2,k Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

TIMBER | VGZ | 131


MINIMUM DISTANCES FOR CROSSED CONNECTORS screws inserted WITH and WITHOUT pre-drilled hole

d1

[mm]

7

a2,CG

[mm]

3∙d

21

aCROSS

[mm]

1,5∙d

11

e

3,5∙d

[mm]

9

25

11

d1

[mm]

27

33

a2,CG

[mm]

14

17

aCROSS [mm]

39

e

3,5∙d

32

[mm]

9

11

3∙d

27

33

1,5∙d

14

17

32

39

d = d1 = nominal screw diameter

m N T

m

90° 90°

S

g

45°

a2,CG

HT

a2,CG

S

g

hNT

HHT

aCROSS

aCROSS bNT

bNT

e

a2,CG

aCROSS a2,CG

90° BHT

BHT

section

BHT

plan - 1 PAIR

plan - 2 OR MORE PAIRS

NOTES • For main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a1,CG can be taken equal to 8∙d1 anc the minimum distance a2,CG equal to 3∙d1 .

• For 3 THORNS tip and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN1995:2014.

EFFECTIVE NUMBER FOR AXIALLY STRESSED CONNECTOR PAIRS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a connection with n pairs of crossed screws, the characteristic effective load-bearing capacity is equal to: Ref,V,k = nef,ax RV,k

The nef value is given in the table below as a function of n (number of pairs). nPAIRS

2

3

4

5

6

7

8

9

10

nef,ax

1,87

2,70

3,60

4,50

5,40

6,30

7,20

8,10

9,00

Complete calculation reports for designing in wood? Download MyProject and simplify your work!

132 | VGZ | TIMBER


INSTALLATION SUGGESTIONS TIMBER-TO-TIMBER JOINT WITH CROSSED CONNECTORS TIGHTENING THE JOINT

For correct installation of the joint, we recommend tightening the elements before inserting the connectors.

Insert a partially threaded screw (e.g. HBS680) to bring the elements closer together.

The HBS screw eliminated the initial gap between the elements. After positioning the VGZ connectors, it can be removed.

After tightening about one third of the screw, remove the JIGVGZ45 template and continue with the installation.

Repeat the procedure to install the inserted screw from the main beam to the secondary beam.

INSERTION OF CONNECTORS

To ensure the correct positioning and inclination of the VGZ screws, we recommend using the JIGVGZ45 template.

JOINT BETWEEN CLT PANELS WITH CONNECTORS INCLINED IN BOTH DIRECTIONS (45°-45°)

To ensure the correct positioning and inclination of the VGZ screws, we recommend using the JIGVGZ45 template positioned at 45° to the panel head.

After tightening about one third of the screw, remove the JIGVGZ45 template and continue with the installation.

Repeat the procedure to install the screw in the adjoining panel and continue this alternating sequence according to the distances provided in the design.

RELATED PRODUCTS

HBS page 30

CATCH page 408

BIT page 417

JIG VGZ 45° page 409

TIMBER | VGZ | 133


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 TENSION

total thread withdrawal

partial thread withdrawal

geometry

steel tension lateral

narrow

lateral

narrow

Sg L

Sg,tot Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

7

9

80

70

90

5,73

4,34

-

-

-

-

100

90

110

7,37

5,44

35

55

2,87

2,33

120

110

130

9,01

6,52

45

65

3,69

2,92

140

130

150

10,65

7,58

55

75

4,50

3,49

160

150

170

12,29

8,62

65

85

5,32

4,06

180

170

190

13,92

9,65

75

95

6,14

4,62

200

190

210

15,56

10,67

85

105

6,96

5,17

220

210

230

17,20

11,67

95

115

7,78

5,72

240

230

250

18,84

12,67

105

125

8,60

6,25

260

250

270

20,48

13,65

115

135

9,42

6,79

280

270

290

22,11

14,63

125

145

10,24

7,32

300

290

310

23,75

15,61

135

155

11,06

7,84

320

310

330

25,39

16,57

145

165

11,88

8,36

340

330

350

27,03

17,53

155

175

12,69

8,88

360

350

370

28,67

18,48

165

185

13,51

9,39

380

370

390

30,30

19,43

175

195

14,33

9,90

400

390

410

31,94

20,37

185

205

15,15

10,41

160

150

170

15,80

10,54

65

85

6,84

4,97

180

170

190

17,90

11,80

75

95

7,90

5,65

200

190

210

20,01

13,04

85

105

8,95

6,32

220

210

230

22,11

14,27

95

115

10,00

6,99

240

230

250

24,22

15,49

105

125

11,06

7,65

260

250

270

26,33

16,69

115

135

12,11

8,30

280

270

290

28,43

17,89

125

145

13,16

8,95

300

290

310

30,54

19,08

135

155

14,22

9,59

320

310

330

32,64

20,26

145

165

15,27

10,22

340

330

350

34,75

21,43

155

175

16,32

10,86

360

350

370

36,86

22,60

165

185

17,37

11,49

380

370

390

38,96

23,76

175

195

18,43

12,11

400

390

410

41,07

24,91

185

205

19,48

12,73

440

430

450

45,28

27,20

205

225

21,59

13,96

480

470

490

49,49

29,47

225

245

23,69

15,18

520

510

530

53,70

31,71

245

265

25,80

16,39

560

550

570

57,92

33,94

265

285

27,90

17,59

600

590

610

62,13

36,16

285

305

30,01

18,78

134 | VGZ | TIMBER

15,40

25,40


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 TENSION

total thread withdrawal

partial thread withdrawal

geometry

steel tension lateral

narrow

lateral

narrow

Sg L

Sg,tot Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

11

150

140

160

18,02

11,63

60

80

7,72

5,43

200

190

210

24,45

15,31

85

105

10,94

7,42

250

240

260

30,89

18,89

110

130

14,16

9,36

275

265

285

34,11

20,66

123

143

15,77

10,31

300

290

310

37,32

22,40

135

155

17,37

11,26

325

315

335

40,54

24,13

148

168

18,98

12,19

350

340

360

43,76

25,85

160

180

20,59

13,12

375

365

385

46,98

27,56

173

193

22,20

14,04

400

390

410

50,19

29,25

185

205

23,81

14,95

425

415

435

53,41

30,93

198

218

25,42

15,85

450

440

460

56,63

32,60

210

230

27,03

16,75

475

465

485

59,85

34,27

223

243

28,64

17,65

500

490

510

63,06

35,92

235

255

30,24

18,54

525

515

535

66,28

37,56

248

268

31,85

19,43

550

540

560

69,50

39,20

260

280

33,46

20,31

575

565

585

72,72

40,83

273

293

35,07

21,18

600

590

610

75,93

42,45

285

305

36,68

22,05

650

640

660

82,37

45,68

310

330

39,90

23,79

700

690

710

88,80

48,88

335

355

43,11

25,51

750

740

760

95,24

52,05

360

380

46,33

27,22

800

790

810

101,67

55,21

385

405

49,55

28,91

850

840

860

108,11

58,34

410

430

52,77

30,59

900

890

910

114,54

61,46

435

455

55,98

32,27

950

940

960

120,98

64,56

460

480

59,20

33,93

1000

990

1010

127,41

67,64

485

505

62,42

35,59

38,00

NOTES and GENERAL PRINCIPLES on page 143.

TIMBER | VGZ | 135


STRUCTURAL VALUES | CLT SLIDING geometry

CLT - CLT 45° + 45°

CLT - CLT

45°

L

Sg

A

CLT - timber

45°

Sg

Sg

45°

Sg

A

45°

H

A d1

Sg

A min

RV,k

Rtens,45+45,k

A

RV,k

Rtens,45,k

A

Hmin

RV,k

Rtens,45,k

[mm] [mm] [mm]

d1

[mm]

[kN]

[kN]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

80

25

65

0,86

35

1,22

35

50

1,45

100

35

80

1,16

40

1,65

40

55

2,03

120

45

95

1,46

45

2,06

45

60

2,61

7

9

L

140

55

110

1,75

55

2,47

55

70

3,19

160

65

125

2,03

60

2,87

60

75

3,76

180

75

135

2,31

70

3,27

70

85

4,34

200

85

150

2,59

75

3,66

75

90

4,92

85

100

5,50

90

105

6,08

220

95

165

2,86

240

105

180

3,13

7,70

85

4,04

90

4,42

10,89

260

115

195

3,39

95

4,80

95

110

6,66

280

125

210

3,66

105

5,17

105

120

7,24

300

135

220

3,92

110

5,54

110

125

7,82

320

145

235

4,18

120

5,91

120

135

8,40

340

155

250

4,44

125

6,28

125

140

8,98

360

165

265

4,70

130

6,64

130

145

9,56

380

175

280

4,95

140

7,00

140

155

10,13

400

185

295

5,21

145

7,36

145

160

10,71

160

65

125

2,48

60

3,51

60

75

4,84

180

75

135

2,82

70

3,99

70

85

5,58

200

85

150

3,16

75

4,47

75

90

6,33

220

95

165

3,49

85

4,94

85

100

7,07

240

105

180

3,82

90

5,41

90

105

7,82

260

115

195

4,15

95

5,87

95

110

8,56

280

125

210

4,47

105

6,33

105

120

9,31

300

135

220

4,79

110

6,78

110

125

10,05

120

135

10,80

125

140

11,54

320

145

235

5,11

340

155

250

5,43

360

165

265

5,74

130

8,12

130

145

12,29

380

175

280

6,06

140

8,56

140

155

13,03

12,70

120

7,23

125

7,68

17,96

400

185

295

6,37

145

9,00

145

160

13,77

440

205

320

6,98

160

9,87

160

175

15,26

480

225

350

7,59

175

10,74

175

190

16,75

520

245

380

8,20

190

11,59

190

205

18,24

560

265

405

8,80

205

12,44

205

220

19,73

600

285

435

9,39

215

13,28

215

230

21,22

136 | VGZ | TIMBER

10,89

17,96


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 SLIDING

geometry

CLT - CLT 45° + 45°

CLT - CLT

45°

L

Sg

A

CLT - timber

45°

Sg

Sg

45°

Sg

A

45°

H

A d1

Sg

A min

RV,k

Rtens,45+45,k

A

RV,k

Rtens,45,k

A

Hmin

RV,k

Rtens,45,k

[mm] [mm] [mm]

d1

[mm]

[kN]

[kN]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

150

60

115

2,71

60

3,84

60

75

5,46

200

85

150

3,71

75

5,25

75

90

7,74

250

110

185

4,68

95

6,62

95

110

10,01

275

123

205

5,16

100

7,29

100

115

11,15

300

135

220

5,63

110

7,96

110

125

12,29

325

148

240

6,10

120

8,62

120

135

13,42

350

160

255

6,56

130

9,28

130

145

14,56

11

L

375

173

275

7,02

140

9,93

140

155

15,70

400

185

295

7,47

145

10,57

145

160

16,84

425

198

310

7,93

155

11,21

155

170

17,97

450

210

330

8,38

165

11,85

165

180

19,11

475

223

345

8,82

175

12,48

175

190

20,25

19,00

26,87

500

235

365

9,27

180

13,11

180

195

21,39

525

248

380

9,71

190

13,74

190

205

22,52

550

260

400

10,15

200

14,36

200

215

23,66

575

273

415

10,59

210

14,98

210

225

24,80

600

285

435

11,03

215

15,60

215

230

25,94

650

310

470

11,89

235

16,82

235

250

28,21

700

335

505

12,75

250

18,04

250

265

30,49

750

360

540

13,61

270

19,24

270

285

32,76

800

385

575

14,46

290

20,44

290

305

35,04

850

410

610

15,30

305

21,63

305

320

37,31

900

435

645

16,13

325

22,82

325

340

39,59

950

460

680

16,97

340

23,99

340

355

41,86

1000 485

715

17,79

360

25,16

360

375

44,14

26,87

NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process, a mass density of ρ k = 350 kg/m3 has been considered for CLT elements and a mass density of ρ k = 385 kg/m3 has been considered for timber elements. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 . • The characteristic sliding strengths of the connectors inserted in the lateral face of the CLT panel were evaluated considering an angle ε of 45° between the grains and the connector, since it was not possible to define the thickness and orientation of the individual layers in advance.

• The characteristic sliding strengths of the connectors inserted with double inclination (45°-45°) were evaluated considering an ε angle of 60° between the grains and the connector; in fact, the geometry of the joint requires that the connectors have to be inserted at an angle of 45° with respect to the face of the CLT panel and at an angle of 45° with respect to the shear plane between the two panels. The use of the JIG VGZ 45 template is recommended for professional installation of the connectors in this application. • Connectors instability must be verified separately.

GENERAL PRINCIPLES on page 143.

TIMBER | VGZ | 137


STRUCTURAL VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 TENSION

total thread withdrawal

partial thread withdrawal

geometry

steel tension wide

edge

L

wide

edge

Sg A

Sg

Sg

d1

A

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

80

70

90

7,11

4,74

-

-

-

-

7

9

100

90

110

9,15

5,44

35

55

3,56

2,37

120

110

130

11,18

6,52

45

65

4,57

3,05

140

130

150

13,21

7,58

55

75

5,59

3,73

160

150

170

15,24

8,62

65

85

6,61

4,40

180

170

190

17,28

9,65

75

95

7,62

5,08

200

190

210

19,31

10,67

85

105

8,64

5,76

220

210

230

21,34

11,67

95

115

9,65

6,44

240

230

250

23,37

12,67

105

125

10,67

7,11

260

250

270

25,41

13,65

115

135

11,69

7,79

280

270

290

27,44

14,63

125

145

12,70

8,47

300

290

310

29,47

15,61

135

155

13,72

9,15

320

310

330

31,50

16,57

145

165

14,74

9,82

340

330

350

33,54

17,53

155

175

15,75

10,50

360

350

370

35,57

18,48

165

185

16,77

11,18

380

370

390

37,60

19,43

175

195

17,78

11,86

400

390

410

39,63

20,37

185

205

18,80

12,53

160

150

170

19,60

10,54

65

85

8,49

5,66

180

170

190

22,21

11,80

75

95

9,80

6,53

200

190

210

24,83

13,04

85

105

11,11

7,40

220

210

230

27,44

14,27

95

115

12,41

8,28

240

230

250

30,05

15,49

105

125

13,72

9,15

260

250

270

32,67

16,69

115

135

15,03

10,02

280

270

290

35,28

17,89

125

145

16,33

10,89

300

290

310

37,89

19,08

135

155

17,64

11,76

320

310

330

40,51

20,26

145

165

18,95

12,63

340

330

350

43,12

21,43

155

175

20,25

13,50

360

350

370

45,73

22,60

165

185

21,56

14,37

380

370

390

48,35

23,76

175

195

22,87

15,24

400

390

410

50,96

24,91

185

205

24,17

16,12

440

430

450

56,18

27,20

205

225

26,79

17,86

480

470

490

61,41

29,47

225

245

29,40

19,60

520

510

530

66,64

31,71

245

265

32,01

21,34

560

550

570

71,86

33,94

265

285

34,63

23,08

600

590

610

77,09

36,16

285

305

37,24

24,83

138 | VGZ | TIMBER

15,40

25,40


STRUCTURAL VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 TENSION

total thread withdrawal

partial thread withdrawal

geometry

steel tension wide

edge

L

wide

edge

Sg A

Sg

Sg

d1

A

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

150

140

160

22,36

11,63

60

80

9,58

6,39

11

200

190

210

30,34

15,31

85

105

13,57

9,05

250

240

260

38,33

18,89

110

130

17,57

11,71

275

265

285

42,32

20,66

123

143

19,56

13,04

300

290

310

46,31

22,40

135

155

21,56

14,37

325

315

335

50,31

24,13

148

168

23,56

15,70

350

340

360

54,30

25,85

160

180

25,55

17,03

375

365

385

58,29

27,56

173

193

27,55

18,37

400

390

410

62,28

29,25

185

205

29,54

19,70

425

415

435

66,27

30,93

198

218

31,54

21,03

450

440

460

70,27

32,60

210

230

33,54

22,36

475

465

485

74,26

34,27

223

243

35,53

23,69

500

490

510

78,25

35,92

235

255

37,53

25,02

525

515

535

82,24

37,56

248

268

39,53

26,35

550

540

560

86,24

39,20

260

280

41,52

27,68

575

565

585

90,23

40,83

273

293

43,52

29,01

600

590

610

94,22

42,45

285

305

45,51

30,34

650

640

660

102,21

45,68

310

330

49,51

33,00

700

690

710

110,19

48,88

335

355

53,50

35,67

750

740

760

118,18

52,05

360

380

57,49

38,33

800

790

810

126,16

55,21

385

405

61,48

40,99

850

840

860

134,15

58,34

410

430

65,48

43,65

900

890

910

142,13

61,46

435

455

69,47

46,31

950

940

960

150,12

64,56

460

480

73,46

48,97

1000

990

1010

158,10

67,64

485

505

77,45

51,64

38,00

NOTES and GENERAL PRINCIPLES on page 143.

TIMBER | VGZ | 139


STRUCTURAL VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 SLIDING

geometry

SHEAR

LVL-LVL

Sg

A L

LVL-LVL wide

LVL-timber

Sg

A

45°

Sg

Sg B

Sg

A

45°

Sg

H

d1

d1

L

Sg

A

[mm] [mm] [mm] [mm]

7

9

Bmin

RV,k

Rtens,45,k

A

Hmin

RV,k

Rtens,45,k

A

RV,90,k

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[mm]

[kN]

45

2,01

50

3,29

100

35

40

55

2,01

40

120

45

45

60

2,59

45

50

2,59

60

3,55

140

55

55

70

3,16

55

60

3,16

70

3,80

160

65

60

75

3,74

60

65

3,74

80

4,05

180

75

70

85

4,31

70

75

4,31

90

4,31

200

85

75

90

4,89

75

80

4,89

100

4,56

220

95

85

100

5,46

85

90

5,46

110

4,81

90

95

6,04

120

4,81

95

100

6,61

130

4,81

240

105

90

105

6,04

260

115

95

110

6,61

10,89

10,89

280

125

105

120

7,19

105

110

7,19

140

4,81

300

135

110

125

7,76

110

115

7,76

150

4,81

320

145

120

135

8,34

120

125

8,34

160

4,81

340

155

125

140

8,91

125

130

8,91

170

4,81

360

165

130

145

9,49

130

135

9,49

180

4,81

380

175

140

155

10,06

140

145

10,06

190

4,81

400

185

145

160

10,64

145

150

10,64

200

4,81

160

65

60

75

4,80

60

65

4,80

80

5,75

180

75

70

85

5,54

70

75

5,54

90

6,08

200

85

75

90

6,28

75

80

6,28

100

6,41

220

95

85

100

7,02

85

90

7,02

110

6,73

240

105

90

105

7,76

90

95

7,76

120

7,06

260

115

95

110

8,50

95

100

8,50

130

7,26

280

125

105

120

9,24

105

110

9,24

140

7,26

300

135

110

125

9,98

110

115

9,98

150

7,26

320

145

120

135

10,72

120

125

10,72

160

7,26

17,96

340

155

125

140

11,46

125

130

11,46

360

165

130

145

12,20

130

135

12,20

17,96

170

7,26

180

7,26

380

175

140

155

12,93

140

145

12,93

190

7,26

400

185

145

160

13,67

145

150

13,67

200

7,26

440

205

160

175

15,15

160

165

15,15

220

7,26

480

225

175

190

16,63

175

180

16,63

240

7,26

520

245

190

205

18,11

190

195

18,11

260

7,26

560

265

205

220

19,59

205

210

19,59

280

7,26

600

285

215

230

21,07

215

220

21,07

300

7,26

140 | VGZ | TIMBER


STRUCTURAL VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014 SLIDING

geometry

SHEAR

LVL-LVL

Sg

A L

LVL-LVL wide

LVL-timber

Sg

A

45°

Sg

Sg B

Sg

A

45°

Sg

H

d1

d1

L

Sg

A

[mm] [mm] [mm] [mm] 150

11

60

60

Bmin

RV,k

Rtens,45,k

A

Hmin

RV,k

Rtens,45,k

A

RV,90,k

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[mm]

[kN]

75

5,42

60

65

5,42

75

7,46

200

85

75

90

7,68

75

80

7,68

100

8,45

250

110

95

110

9,94

95

100

9,94

125

9,45

275

123

100

115

11,07

100

105

11,07

138

9,95

300

135

110

125

12,20

110

115

12,20

150

10,12

325

148

120

135

13,33

120

125

13,33

163

10,12

350

160

130

145

14,45

130

135

14,45

175

10,12

375

173

140

155

15,58

140

145

15,58

188

10,12

400

185

145

160

16,71

145

150

16,71

200

10,12

425

198

155

170

17,84

155

160

17,84

213

10,12

450

210

165

180

18,97

165

170

18,97

225

10,12

475

223

175

190

20,10

175

180

20,10

238

10,12

500

235

180

195

21,23

180

185

21,23

525

248

190

205

22,36

190

195

22,36

550

260

200

215

23,49

200

205

23,49

275

10,12

575

273

210

225

24,62

210

215

24,62

288

10,12

600

285

215

230

25,75

215

220

25,75

300

10,12

650

310

235

250

28,01

235

240

28,01

325

10,12

700

335

250

265

30,26

250

255

30,26

350

10,12

750

360

270

285

32,52

270

275

32,52

375

10,12

800

385

290

305

34,78

290

295

34,78

400

10,12

850

410

305

320

37,04

305

310

37,04

425

10,12

26,87

26,87

250

10,12

263

10,12

900

435

325

340

39,30

325

330

39,30

450

10,12

950

460

340

355

41,56

340

345

41,56

475

10,12

1000 485

360

375

43,81

360

365

43,81

500

10,12

NOTES • For the calculation process, a mass density of ρk = 480 kg/m3 has been considered for the softwood LVL elements and a mass density of ρk = 385 kg/m3 has been considered for timber elements.

• The characteristic sliding strengths were evaluated by considering, for individual timber elements, a 45° angle between the connector and the grain and a 45° angle between the connector and the side face of the LVL element.

• The axial "wide"thread withdrawal resistance was evaluated considering an angle of 90° between the fibers and the connector and is valid in application with LVLs in both parallel and cross grain veneer beams.

• The characteristic shear strengths were evaluated by considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.

• The axial "edge" thread withdrawal resistance was evaluated considering an angle of 90° between the fibers and the connector and is valid in application with parallel veneer LVLs. • Minimum height LVL hLVL,min= 100 mm for VGZ connectors Ø7 and hLVL,min = 120 mm for VGZ connectors Ø9.

• Connectors instability must be verified separately.

GENERAL PRINCIPLES on page 143.

TIMBER | VGZ | 141


MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole

lateral face d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

narrow face

7 28 18 42 42 42 18

4∙d 2,5∙d 6∙d 6∙d 6∙d 2,5∙d

9 36 23 54 54 54 23

11 44 28 66 66 66 28

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

7 70 28 84 49 42 21

10∙d 4∙d 12∙d 7∙d 6∙d 3∙d

9 90 36 108 63 54 27

11 110 44 132 77 66 33

d = d1 = nominal screw diameter

a3,c

a4,t

a2 a2

α

F

a3,t

F

a4,c

a4,c α

a1

a3,c

a3,t

F a3,c a4,c a4,t

a4,c

F

tCLT

tCLT

NOTES • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

• The minimum distances referred to "narrow face" are valid for minimum screw pull-through depth tpen = 10∙d1 .

• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .

MINIMUM DISTANCES FOR SHEAR LOADS | LVL screws inserted WITHOUT pre-drilled hole

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

7 105 49 140 105 49 49

15∙d 7∙d 20∙d 15∙d 7∙d 7∙d

F

α=0°

9 135 63 180 135 63 63

11 165 77 220 165 77 77

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90°

7 49 49 105 105 84 49

7∙d 7∙d 15∙d 15∙d 12∙d 7∙d

9 63 63 135 135 108 63

11 77 77 165 165 132 77

α = load-to-grain angle d = d1 = nominal screw diameter

a2 a2

a1

a4,t F

α

α

a3,t

α

a3,c

NOTES • Minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

142 | VGZ | TIMBER

F

a4,c

F F α


MINIMUM DISTANCES FOR AXIAL STRESSES | LVL screws inserted WITHOUT pre-drilled hole

wide face d1 a1 a2 a1,CG a2,CG

[mm] [mm] [mm] [mm] [mm]

5∙d 5∙d 10∙d 4∙d

edge face

7 35 35 70 28

9 45 45 90 36

11 55 55 110 44

d1 a1 a2 a1,CG a2,CG

[mm] [mm] [mm] [mm] [mm]

7 70 35 84 21

10∙d 5∙d 12∙d 3∙d

9 90 45 108 27

11 110 55 132 33

d = d1 = nominal screw diameter

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN (wide face)

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN (edge face)

a2,CG a2 a2,CG

a1,CG

plan

a1

a1

a1,CG

a1

a1,CG

plan a1,CG

a1

a1,CG

a1

a1,CG

a2,CG

t

a1

front h

NOTES • The minimum distances for Ø7 and Ø9 screws with 3 THORNS bit are compliant with ETA11/0030 and are to be considered valid unless otherwise specified in the technical documents for the LVL panels. For Ø11 or self-drilling bit screws, the minimum distances are obtained from experimental tests carried out at Eurofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

l

front

• The minimum distances referred to edge face for screws d = 7 mm are valid for minimum thickness LVL tLVL,min = 45 mm and minimum height LVL hLVL,min = 100 mm. The minimum distances referred to edge face for screws d = 9 mm are valid for minimum thickness LVL tLVL,min = 57 mm and minimum height LVL hLVL,min = 120 mm.

STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).

Rax,d = min

Rax,k kmod γM Rki,k γM1

• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected at 45°. (Rtens,45,d), whichever is lower:

RV,d = min

RV,k kmod γM Rtens,45,k γM2

• The design shear strength of the connector is obtained from the characteristic value as follows:

RV,d =

RV,k kmod γM

• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. A minimum penetration length of 4-d1 is considered. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

TIMBER | VGZ | 143


VGZ EVO

ETA-11/0030

UKTA-0836 22/6195

AC233 | AC257 ESR-4645

FULLY THREADED SCREW WITH CYLINDRICAL HEAD C4 EVO COATING Multilayer coating with a surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure test, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use with ACQ-treated timber.

STRUCTURAL APPLICATIONS Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance. Approved for structural applications subject to stresses in any direction vs the grain (0° - 90°). Reduced minimum distances.

CYLINDRICAL HEAD It allows the screw to penetrate and pass through the surface of the wood substrate. Ideal for concealed joints, timber couplings and structural reinforcements. It is the right choice for increased fire performance.

BIT INCLUDED

DIAMETER [mm]

vgz evo

5 5

11 11

LENGTH [mm]

80 80

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

C4

EVO COATING

600

1000

carbon steel with C4 EVO coating

FIELDS OF USE • • • • •

144 | VGZ EVO | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber

ETA-11/0030


TRUSS & RAFTER JOINTS Ideal for joining small timber elements such as the crossbeams and uprights of light frame structures. Certified for application parallel to the grain and with reduced minimum distances.

TIMBER STUDS Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Ideal for fastening I-Joist beams.

TIMBER | VGZ EVO | 145


Fastening Wood Trusses outdoors.

Fastening the uprights of light frame structures with VGZ EVO Ø5 mm.

d2 d1

XXX

dK

VGZ

GEOMETRY AND MECHANICAL CHARACTERISTICS

b L

GEOMETRY Nominal diameter

d1

[mm]

5,3

5,6

7

9

11

Head diameter

dK

[mm]

8,00

8,00

9,50

11,50

13,50

Thread diameter

d2

[mm]

3,60

3,80

4,60

5,90

6,60

Pre-drilling hole diameter(1)

dV,S

[mm]

3,5

3,5

4,0

5,0

6,0

Pre-drilling hole diameter(2)

dV,H

[mm]

4,0

4,0

5,0

6,0

7,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

5,3

5,6

7

9

11

Tensile strength

ftens,k

[kN]

11,0

12,3

15,4

25,4

38,0

Yield strength

fy,k

[N/mm2]

1000

1000

1000

1000

1000

Yield moment

My,k

[Nm]

9,2

10,6

14,2

27,2

45,9

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

11,7

15,0

29,0

Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

146 | VGZ EVO | TIMBER


CODES AND DIMENSIONS L

b

[mm]

d1

CODE

[mm]

[mm]

pcs

d1

CODE

VGZEVO580 5,3 VGZEVO5100 TX 25 VGZEVO5120

80

70

50

VGZEVO11250

250

240

25

100

90

50

VGZEVO11300

300

290

25

120

110

50

VGZEVO11350

350

340

25

VGZEVO5140 5,6 VGZEVO5150 TX 25 VGZEVO5160

140

130

50

390

25

140

50

VGZEVO11400 11 TX 50 VGZEVO11450

400

150

450

440

25

160

150

50

VGZEVO11500

500

490

25

VGZEVO780

80

70

25

VGZEVO11550

550

540

25

VGZEVO7100

100

90

25

VGZEVO11600

600

590

25

[mm]

VGZEVO7120

120

110

25

VGZEVO7140

140

130

25

VGZEVO7160

160

150

25

VGZEVO7180

180

170

25

VGZEVO7200 7 TX 30 VGZEVO7220

200

190

25

220

210

25

VGZEVO7240

240

230

25

VGZEVO7260

260

250

25

VGZEVO7280

280

270

25

VGZEVO7300

300

290

25

VGZEVO7340

340

330

25

VGZEVO7380

380

370

25

VGZEVO9160

160

150

25

VGZEVO9180

180

170

25

VGZEVO9200

200

190

25

VGZEVO9220

220

210

25

VGZEVO9240

240

230

25

VGZEVO9260

260

250

25

VGZEVO9280

280

270

25

VGZEVO9300

9 TX 40 VGZEVO9320

300

290

25

320

310

25

VGZEVO9340

340

330

25

VGZEVO9360

360

350

25

VGZEVO9380

380

370

25

VGZEVO9400

400

390

25

VGZEVO9440

440

430

25

VGZEVO9480

480

470

25

VGZEVO9520

520

510

25

L

b

[mm]

[mm]

pcs

RELATED PRODUCTS JIG VGZ 45° TEMPLATE FOR 45° SCREWS

page 409

OUTDOOR STRUCTURAL PERFORMANCE Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL. Ideal for fastening timber-framed panels and lattice beams (Rafter, Truss).

TIMBER | VGZ EVO | 147


MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole d1

[mm]

5,3

5,6

7

9

11

a1

[mm]

a2

[mm]

5∙d

27

28

35

45

55

5∙d

27

28

35

45

55

a2,LIM

[mm]

2,5∙d

13

a1,CG

[mm]

8∙d

42

14

18

23

28

45

56

72

88

a2,CG

[mm]

3∙d

16

aCROSS [mm]

1,5∙d

8

17

21

27

33

8

11

14

17

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

plan

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN

front

CROSSED SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG

45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.

• For 3 THORNS tip the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.

• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained. • For main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary beam head, with a minimum secondary beam height of 18 d, the minimum distance a1,CG can be taken equal to 8∙d1 anc the minimum distance a2,CG equal to 3∙d1 .

EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

b L

148 | VGZ EVO | TIMBER

Sg

10

b = S g,tot = L - 10 mm

represents the entire length of the threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

estrazione filetto parziale

ε=0°

steel tension

instability ε=90°

Sg Sg,tot

L

Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

Rki,90,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

80 100 120 140 150 160 80 100 120 140 160 180 200 220 240 260 280 300 340 380 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 250 300 350 400 450 500 550 600

70 90 110 130 150 150 70 90 110 130 150 170 190 210 230 250 270 290 330 370 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510 240 290 340 390 440 490 540 590

90 110 130 150 170 170 90 110 130 150 170 190 210 230 250 270 290 310 350 390 170 190 210 230 250 270 290 310 330 350 370 390 410 450 490 530 260 310 360 410 460 510 560 610

4,68 6,02 7,36 9,19 10,61 10,61 6,19 7,96 9,72 11,49 13,26 15,03 16,79 18,56 20,33 22,10 23,87 25,63 29,17 32,70 17,05 19,32 21,59 23,87 26,14 28,41 30,68 32,96 35,23 37,50 39,78 42,05 44,32 48,87 53,41 57,96 33,34 40,28 47,22 54,17 61,11 68,06 75,00 81,95

1,41 1,81 2,21 2,76 2,97 3,18 1,86 2,39 2,92 3,45 3,98 4,51 5,04 5,57 6,10 6,63 7,16 7,69 8,75 9,81 5,11 5,80 6,48 7,16 7,84 8,52 9,21 9,89 10,57 11,25 11,93 12,61 13,30 14,66 16,02 17,39 10,00 12,08 14,17 16,25 18,33 20,42 22,50 24,58

25 35 45 55 65 65 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 110 135 160 185 210 235 260 285

45 55 65 75 85 85 45 55 65 75 85 95 105 115 125 135 145 155 175 195 85 95 105 115 125 135 145 155 165 175 185 195 205 225 245 265 130 155 180 205 230 255 280 305

1,67 2,34 3,01 3,89 4,60 4,60 2,21 3,09 3,98 4,86 5,75 6,63 7,51 8,40 9,28 10,16 11,05 11,93 13,70 15,47 7,39 8,52 9,66 10,80 11,93 13,07 14,21 15,34 16,48 17,61 18,75 19,89 21,02 23,30 25,57 27,84 15,28 18,75 22,22 25,70 29,17 32,64 36,11 39,59

0,50 0,70 0,90 1,17 1,27 1,38 0,66 0,93 1,19 1,46 1,72 1,99 2,25 2,52 2,78 3,05 3,31 3,58 4,11 4,64 2,22 2,56 2,90 3,24 3,58 3,92 4,26 4,60 4,94 5,28 5,63 5,97 6,31 6,99 7,67 8,35 4,58 5,63 6,67 7,71 8,75 9,79 10,83 11,88

11,00

6,20

12,30

6,93

15,40

10,30

25,40

17,25

38,00

21,93

5,3

5,6

7

9

11

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 151.

TIMBER | VGZ EVO | 149


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

SLIDING geometry

timber-to-timber

S

g

A

steel tension

45°

timber-to-timber

45°

timber-to-timber ε=90°

timber-to-timber ε=0°

A

Sg

S

g

L

SHEAR

Sg

B d1

d1

L

Sg

A

Bmin

RV,k

Rtens,45,k

A

Sg

RV,90,k

RV,0,k

[mm]

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN]

80 100 120 140 150 160 80 100 120 140 160 180 200 220 240 260 280 300 340 380 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 250 300 350 400 450 500 550 600

25 35 45 55 65 65 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 110 135 160 185 210 235 260 285

35 40 45 55 60 60 35 40 45 55 60 70 75 85 90 95 105 110 125 140 60 70 75 85 90 95 105 110 120 125 130 140 145 160 175 190 95 110 130 145 165 180 200 215

50 55 60 70 75 75 50 55 60 70 75 85 90 100 105 110 120 125 140 155 75 85 90 100 105 110 120 125 135 140 145 155 160 175 190 205 110 125 145 160 180 195 215 230

1,18 1,66 2,13 2,75 3,25 3,25 1,56 2,19 2,81 3,44 4,06 4,69 5,31 5,94 6,56 7,19 7,81 8,44 9,69 10,94 5,22 6,03 6,83 7,63 8,44 9,24 10,04 10,85 11,65 12,46 13,26 14,06 14,87 16,47 18,08 19,69 10,80 13,26 15,71 18,17 20,63 23,08 25,54 27,99

40 50 60 70 80 80 40 50 60 70 80 90 100 110 120 130 140 150 170 190 80 90 100 110 120 130 140 150 160 170 180 190 200 220 240 260 125 150 175 200 225 250 275 300

25 35 45 55 65 65 25 35 45 55 65 75 85 95 105 115 125 135 155 175 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 110 135 160 185 210 235 260 285

1,99 2,16 2,32 2,69 2,87 2,87 2,59 2,93 3,15 3,37 3,59 3,81 4,03 4,25 4,30 4,30 4,30 4,30 4,30 4,30 5,10 5,38 5,67 5,95 6,23 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 8,35 9,06 9,06 9,06 9,06 9,06 9,06 9,06

1,03 1,19 1,37 1,59 1,62 1,64 1,34 1,53 1,74 1,97 2,06 2,12 2,19 2,26 2,32 2,39 2,46 2,52 2,65 2,79 2,81 3,08 3,18 3,27 3,35 3,44 3,52 3,61 3,69 3,78 3,86 3,95 4,03 4,21 4,38 4,55 4,57 4,83 5,09 5,35 5,61 5,87 6,13 6,39

5,3

5,6

7

9

11

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 151.

150 | VGZ EVO | TIMBER

7,78

8,70

10,89

17,96

26,87


STRUCTURAL VALUES | FURTHER APPLICATIONS SHEAR CONNECTION WITH CROSSED CONNECTORS

CONNECTIONS WITH CLT AND LVL ELEMENTS

VGZ EVO Ø7-9-11 mm

VGZ EVO Ø7-9-11 mm

45°

45°

45°

90°

STRUCTURAL VALUES on page 130.

STRUCTURAL VALUES on page 134.

STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector.

• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).

Rax,d = min

Rax,k kmod γM Rki,k γM1

• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected at 45°. (Rtens,45,d), whichever is lower:

RV,d = min

RV,k kmod γM Rtens,45,k γM2

• The design shear strength of the connector is obtained from the characteristic value as follows:

RV,d =

• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.

R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk

350

C-GL kdens,ax kdens,ki kdens,v

[kg/m3 ]

380

385

405

425

430

440

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

0,92

0,98

1,00

1,04

1,08

1,09

1,11

0,97

0,99

1,00

1,00

1,01

1,02

1,02

0,90

0,98

1,00

1,02

1,05

1,05

1,07

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

RV,k kmod γM

• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. A minimum penetration length of 4-d1 is considered. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

TIMBER | VGZ EVO | 151


VGZ EVO C5

AC233 ESR-4645

ETA-11/0030

FULLY THREADED SCREW WITH CYLINDRICAL HEAD C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt Spray Test (SST) with exposure time greater than 3000 h carried out on screws previously screwed and unscrewed in Douglas fir timber.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

MAXIMUM STRENGTH It is the screw of choice if high mechanical performance is required under very adverse atmospheric corrosive conditions. The cylindrical head makes it ideal for concealed joints, timber couplings and structural reinforcements.

BIT INCLUDED

LENGTH [mm] 5

7

9

11

DIAMETER [mm] 80

140

360

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C5

C5

EVO COATING

carbon steel with C5 EVO coating with very high corrosion resistance

FIELDS OF USE • • • •

152 | VGZ EVO C5 | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods

1000


CODES AND DIMENSIONS d1

CODE

[mm] VGZEVO7140C5 7 TX 30

L

b

pcs

[mm]

[mm]

140

130

25

d1

CODE

L

b

[mm]

[mm]

200

190

25

VGZEVO9240C5

240

230

25

VGZEVO9280C5

280

270

25

[mm]

VGZEVO7180C5

180

170

25

VGZEVO7220C5

220

210

25

VGZEVO9200C5 9 TX 40

pcs

VGZEVO7260C5

260

250

25

VGZEVO9320C5

320

310

25

VGZEVO7300C5

300

290

25

VGZEVO9360C5

360

350

25

d 2 d1

XXX

dK

VGZ

GEOMETRY AND MECHANICAL CHARACTERISTICS

b L

GEOMETRY Nominal diameter Head diameter Thread diameter Pre-drilling hole diameter(1) Pre-drilling hole diameter(2)

d1 dK d2 dV,S dV,H

[mm] [mm] [mm] [mm] [mm]

7 9,50 4,60 4,0 5,0

9 11,50 5,90 5,0 6,0

7 15,4 1000 14,2

9 25,4 1000 27,2

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield strength Yield moment

d1 ftens,k fy,k My,k

[mm] [kN] [N/mm2] [Nm]

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

11,7

15,0

29,0

Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

SEASIDE BUILDINGS Ideal for fastening elements with small cross-sections close to the sea. Certified for application parallel to the grain and with reduced minimum distances.

THE HIGHEST PERFORMANCE The strength and robustness of a VGZ combined with the best anti-corrosion performance.

TIMBER | VGZ EVO C5 | 153


VGZ HARDWOOD

ETA-11/0030

UKTA-0836 22/6195

ETA-11/0030

FULLY THREADED SCREW FOR HARDWOODS HARDWOOD CERTIFICATION Special tip with diamond geometry and notched, serrated thread. ETA11/0030 certification for use with high-density wood without pre-drilling hole or with an appropriate pilot hole. Approved for structural applications subject to stresses in any direction vs the grain (0° ÷ 90°).

HYBRID SOFTWOOD-HARDWOOD The high-strength steel and the increased screw diameter allow excellent tensile and torsional performance to be achieved, thus ensuring safe screwing in high-density wood.

INCREASED DIAMETER Deep thread and high resistance steel for excellent tensile performance. Characteristics that, together with an excellent torsional moment value, guarantee screwing in the highest densities of wood.

CYLINDRICAL HEAD Ideal for concealed joints, timber couplings and structural reinforcements. Improved performance in fire conditions compared to countersunk head.

BIT INCLUDED

DIAMETER [mm]

5

LENGTH [mm]

80

6

8 140

11 440

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

1000

electrogalvanized carbon steel

FIELDS OF USE • • • • •

timber based panels solid timber and glulam CLT and LVL high density woods hybrid engineered timbers (softwood-hardwood) • beech, oak, cypress, ash, eucalyptus, bamboo

154 | VGZ HARDWOOD | TIMBER


HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drilling on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.

BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use for densities of up to 800 kg/m3.

TIMBER | VGZ HARDWOOD | 155


CODES AND DIMENSIONS d1

CODE

L

b

[mm]

[mm]

VGZH6140

140

130

25

VGZH8200

200

190

25

VGZH6180

180

170

25

VGZH8240

240

230

25

VGZH8280

280

270

25

VGZH8320

320

310

25

[mm]

6 TX30

pcs

d1

CODE

[mm]

L

b

[mm]

[mm]

pcs

VGZH6220

220

210

25

VGZH6260

260

250

25

VGZH6280

280

270

25

VGZH8360

360

350

25

VGZH6320

320

310

25

VGZH8400

400

390

25

VGZH6420

420

410

25

VGZH8440

440

430

25

8 TX 40

NOTES: upon request, EVO version is available.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X

d2 d1

H

X

V

G

X

Z

dK

b L

GEOMETRY Nominal diameter

d1

[mm]

6

8

Head diameter

dK

[mm]

9,50

11,50

Thread diameter

d2

[mm]

4,50

5,90

Pre-drilling hole diameter(1)

dV,S

[mm]

4,0

5,0

Pre-drilling hole diameter(2)

dV,H

[mm]

4,0

6,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

6

8

Tensile strength

ftens,k

[kN]

18,0

38,0

Yield strength

fy,k

[N/mm2]

1000

1000

Yield moment

My,k

[Nm]

15,8

33,4

softwood (softwood)

oak, beech (hardwood)

ash (hardwood)

beech LVL (Beech LVL)

11,7

22,0

30,0

42,0

Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

530

530

730

Calculation density

ρk

[kg/m3]

≤ 440

≤ 590

≤ 590

590 ÷ 750

For applications with different materials please see ETA-11/0030.

156 | VGZ HARDWOOD | TIMBER


MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole d1

[mm]

a1

[mm]

6

8

5∙d

30

40

a2 a2,LIM

[mm]

5∙d

30

40

[mm]

2,5∙d

15

20

a1,CG

[mm]

10∙d

60

80

a2,CG

[mm]

4∙d

24

32

aCROSS [mm]

1,5∙d

9

12

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

plan

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN

front

CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG

45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.

• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained.

EFFECTIVE THREAD USED IN CALCULATION 10

Sg

Tol.

b L

Sg

10

b = S g,tot = L - 10 mm

represents the entire length of the threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2

represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

TIMBER | VGZ HARDWOOD | 157


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER ρk > 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

35

45

a3,t

[mm]

15∙d

105

135

a3,c [mm]

10∙d

70

90

a4,t

[mm]

5∙d

35

45

a4,c [mm]

5∙d

35

45

12∙d

F

α=90°

7

9

11

d1

[mm]

84

108

132

a1

[mm]

55

a2

[mm]

5∙d

35

45

55

165

a3,t

[mm]

10∙d

70

90

110

110

a3,c [mm]

10∙d

70

90

110

55

a4,t

[mm]

10∙d

70

90

110

55

a4,c [mm]

5∙d

35

45

55

5∙d

7

9

11

35

45

55

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

21

a3,t

[mm]

12∙d

84

a3,c [mm]

7∙d

49

63

a4,t

[mm]

3∙d

21

27

a4,c [mm]

3∙d

21

27

33

5∙d

7

9

11

d1

[mm]

35

45

55

a1

[mm]

4∙d

27

33

a2

[mm]

4∙d

108

132

a3,t

[mm]

7∙d

77

a3,c [mm]

7∙d

33

a4,t

[mm]

7∙d

a4,c [mm]

3∙d

α=90° 7

9

11

28

36

44

28

36

44

49

63

77

49

63

77

49

63

77

21

27

33

α = load-to-grain angle d = d1 = nominal screw diameter

stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances are in accordance with the EN 1995:2014 standard, according to ETA-11/0030, considering a timber characteristic density of 420 < ρk ≤ 500 kg/m3.

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 169).

158 | VGZ HARDWOOD | TIMBER

Ref,V,k

a1 a1


STRUCTURAL VALUES | TIMBER(SOFTWOOD)

CHARACTERISTIC VALUES EN 1995:2014 TENSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

ε=0°

estrazione filetto parziale

steel tension

Sg L

Sg,tot Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

140 180 220 260 280 320 420 200 240 280 320 360 400 440

130 170 210 250 270 310 410 190 230 270 310 350 390 430

150 190 230 270 290 330 430 210 250 290 330 370 410 450

9,85 12,88 15,91 18,94 20,46 23,49 31,06 19,19 23,23 27,27 31,31 35,36 39,40 43,44

2,95 3,86 4,77 5,68 6,14 7,05 9,32 5,76 6,97 8,18 9,39 10,61 11,82 13,03

55 75 95 115 125 145 195 85 105 125 145 165 185 205

75 95 115 135 145 165 215 105 125 145 165 185 205 225

4,17 5,68 7,20 8,71 9,47 10,99 14,77 8,59 10,61 12,63 14,65 16,67 18,69 20,71

1,25 1,70 2,16 2,61 2,84 3,30 4,43 2,58 3,18 3,79 4,39 5,00 5,61 6,21

6

8

18,00

32,00

ε = screw-to-grain angle SLIDING geometry

timber-to-timber

S

g

A

steel tension

45°

timber-to-timber

45°

timber-to-timber ε=90°

timber-to-timber ε=0°

RV,0,k

A

Sg

S

g

L

SHEAR

Sg

B d1

d1

L

Sg

A

Bmin

[mm]

[mm]

[mm]

[mm]

140 180 220 260 280 320 420 200 240 280 320 360 400 440

55 75 95 115 125 145 195 85 105 125 145 165 185 205

55 70 85 95 105 120 155 75 90 105 120 130 145 160

6

8

RV,k

Rtens,45,k

Sg

A

RV,90,k

[mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN]

70 85 100 110 120 135 170 90 105 120 135 145 160 175

2,95 4,02 5,09 6,16 6,70 7,77 10,45 6,07 7,50 8,93 10,36 11,79 13,21 14,64

55 75 95 115 125 145 195 85 105 125 145 165 185 205

70 90 110 130 140 160 210 100 120 140 160 180 200 220

3,19 3,57 3,95 4,30 4,30 4,30 4,30 5,60 6,11 6,61 6,92 6,92 6,92 6,92

1,80 2,05 2,17 2,28 2,34 2,45 2,73 3,17 3,41 3,56 3,71 3,86 4,02 4,17

12,73

22,63

ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 163.

TIMBER | VGZ HARDWOOD | 159


STRUCTURAL VALUES | HARDWOOD

CHARACTERISTIC VALUES EN 1995:2014 TENSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

ε=0°

estrazione filetto parziale

steel tension

Sg Sg,tot

L

Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

140

130

150

17,68

5,30

55

75

7,48

2,24

6

8

180

170

190

23,11

6,93

75

95

10,20

3,06

220

210

230

28,55

8,57

95

115

12,92

3,88

260

250

270

33,99

10,20

115

135

15,64

4,69

280

270

290

36,71

11,01

125

145

17,00

5,10

320

310

330

42,15

12,65

145

165

19,72

5,91

200

190

210

34,45

10,33

85

105

15,41

4,62

240

230

250

41,70

12,51

105

125

19,04

5,71

280

270

290

48,95

14,68

125

145

22,66

6,80

320

310

330

56,20

16,86

145

165

26,29

7,89

360

350

370

63,45

19,04

165

185

29,91

8,97

18,00

32,00

ε = screw-to-grain angle SLIDING geometry

hardwood-hardwood

S

g

A

steel tension

45°

45°

hardwood-hardwood ε=90°

hardwood-hardwood ε=0°

RV,0,k

A

Sg

S

g

L

SHEAR

Sg

B d1

d1

L

Sg

A

Bmin

[mm]

[mm]

[mm]

[mm]

140

55

55

180

75

6

8

RV,k

Rtens,45,k

Sg

A

RV,90,k

[mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN]

70

5,29

55

70

4,44

2,50

70

85

7,21

75

90

5,12

2,71

220

95

85

100

9,13

260

115

95

110

11,06

95

110

5,14

2,91

115

130

5,14

3,12

280

125

105

120

320

145

120

135

12,02

125

140

5,14

3,22

13,94

145

160

5,14

3,42

12,73

200

85

75

90

10,90

85

100

7,99

4,28

240

105

90

105

13,46

105

120

8,27

4,55

280

125

105

120

16,02

125

140

8,27

4,82

320

145

120

135

18,59

145

160

8,27

5,10

360

165

130

145

21,15

165

180

8,27

5,37

ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 163.

160 | VGZ HARDWOOD | TIMBER

22,63


STRUCTURAL VALUES | BEECH LVL

CHARACTERISTIC VALUES EN 1995:2014 TENSION total thread withdrawal

geometry

steel tension wide

edge

Sg,tot

L

A

A

d1

d1 [mm]

6

8

L [mm] 140 180 220 260 280 320 420 200 240 280 320 360 400 440

S g,tot [mm] 130 170 210 250 270 310 410 190 230 270 310 350 390 430

without pre-drilled hole Rax,90,k [kN] 32,76 42,84 52,92 63,00 68,04 78,12 63,84 77,28 90,72 104,16 117,60 -

A min [mm] 150 190 230 270 290 330 430 210 250 290 330 370 410 450

with pre-drilled hole Rax,90,k [kN] 22,62 29,58 36,54 43,50 46,98 53,94 71,34 44,08 53,36 62,64 71,92 81,20 90,48 99,76

without pre-drilled hole Rax,0,k [kN] 21,84 28,56 35,28 42,00 45,36 52,08 42,56 51,52 60,48 69,44 78,40 -

with pre-drilled hole Rax,0,k [kN] 15,08 19,72 24,36 29,00 31,32 35,96 47,56 29,39 35,57 41,76 47,95 54,13 60,32 66,51

Rtens,k [kN]

18,00

32,00

TENSION partial thread withdrawal geometry

steel tension wide

edge

estrazione filetto parziale

Sg L Sg

A

A

d1

d1 [mm]

6

8

L [mm] 140 180 220 260 280 320 420 200 240 280 320 360 400 440

Sg [mm] 55 75 95 115 125 145 195 85 105 125 145 165 185 205

A min [mm] 75 95 115 135 145 165 215 105 125 145 165 185 205 225

without pre-drilled hole Rax,90,k [kN] 13,86 18,90 23,94 28,98 31,50 36,54 28,56 35,28 42,00 48,72 55,44 -

with pre-drilled hole Rax,90,k [kN] 9,57 13,05 16,53 20,01 21,75 25,23 33,93 19,72 24,36 29,00 33,64 38,28 42,92 47,56

without pre-drilled hole Rax,0,k [kN] 9,24 12,60 15,96 19,32 21,00 24,36 19,04 23,52 28,00 32,48 36,96 -

with pre-drilled hole Rax,0,k [kN] 6,38 8,70 11,02 13,34 14,50 16,82 22,62 13,15 16,24 19,33 22,43 25,52 28,61 31,71

Rtens,k [kN]

18,00

32,00

NOTES and GENERAL PRINCIPLES on page 163.

TIMBER | VGZ HARDWOOD | 161


STRUCTURAL VALUES | BEECH LVL

CHARACTERISTIC VALUES EN 1995:2014

SLIDING geometry

SHEAR

beech LVL-beech LVL

S

g

A

45°

beech LVL-beech LVL

Sg

45°

S

g

L

steel tension

Sg

B d1

d1 [mm]

6

8

L Sg A Bmin [mm] [mm] [mm] [mm] 140 55 55 70 180 75 70 85 220 95 85 100 260 115 95 110 280 125 105 120 320 145 120 135 420 195 155 170 200 85 75 90 240 105 90 105 280 125 105 120 320 145 120 135 360 165 130 145 400 185 145 160 440 205 160 175

without pre-drilled hole RV,k [kN] 7,84 10,69 13,54 16,39 17,82 20,67 16,16 19,96 23,76 27,56 31,36 -

with pre-drilled hole RV,k [kN] 5,41 7,38 9,35 11,32 12,30 14,27 19,19 11,16 13,78 16,40 19,03 21,65 24,28 26,90

Rtens,45,k [kN]

Sg A [mm] [mm] 55 70 75 90 95 110 115 130 125 140 145 160 195 210 85 100 105 120 125 140 145 160 165 180 185 200 205 220

12,73

22,63

without pre-drilled hole RV,90,k [kN] 6,77 6,77 6,77 6,77 6,77 6,77 11,13 11,13 11,13 11,13 11,13 -

with pre-drilled hole RV,90,k [kN] 5,78 6,65 6,77 6,77 6,77 6,77 6,77 10,50 11,13 11,13 11,13 11,13 11,13 11,13

STRUCTURAL VALUES | HYBRID CONNECTIONS SLIDING geometry

timber-beech LVL

timber-hardwood

Sg

A L

Sg

A

45°

steel tension

45°

45°

Sg

Sg

B

B

d1

d1

L

S g,A

A

S g,B

Bmin

RV,k

S g,A

A

S g,B

Bmin

RV,k

Rtens,45,k

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

140 180 220 260 280 320 420 200 240 280 320 360 400 440

70 110 130 170 170 205 305 120 150 180 210 235 265 305

65 90 105 135 135 160 230 100 120 140 160 180 200 230

40 40 60 60 80 85 85 50 60 70 80 95 105 105

45 45 60 60 75 75 75 50 60 65 75 85 90 90

3,75 5,83 6,96 8,74 9,11 10,98 12,38 8,57 10,71 12,86 15,00 16,79 18,93 20,39

65 95 125 150 160 185 270 110 135 160 185 210 250 265

60 80 100 120 125 145 205 90 110 125 145 160 190 200

45 55 65 80 90 105 120 60 75 90 105 120 120 145

50 55 65 75 80 90 100 60 70 80 90 100 100 120

3,21 4,23 5,00 6,15 6,70 7,77 9,23 6,15 7,69 8,93 10,36 11,43 12,31 14,29

6

8

NOTES and GENERAL PRINCIPLES on page 163.

162 | VGZ HARDWOOD | TIMBER

12,73

22,63


STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | HARDWOOD

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector.

• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected at 45°. (Rtens,45,d), whichever is lower:

RV,d = min

RV,k kmod γM Rtens,45,k γM2

• The design shear strength of the connector is obtained from the characteristic value as follows:

RV,d =

RV,k kmod γM

• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.

• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic strength are calculated for screws inserted without pre-drilling hole. • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements. • Screws longer than the maximum value in the table do not comply with the installation requirements and are therefore not reported.

NOTES | BEECH LVL • The characteristic sliding strengths were evaluated by considering, for individual timber elements, a 45° angle between the connector and the grain and a 45° angle between the connector and the side face of the LVL element. • The characteristic shear strengths were evaluated by considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain. • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • The characteristic strength are calculated for screws inserted without and with pre-drilling hole. • Screws longer than the maximum value in the table do not comply with the installation requirements and are therefore not reported.

• A suitable pilot hole may be required for the insertion of some connectors. For further details please see ETA-11/0030.

NOTES | HYBRID

• The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,TOT or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate.

• The characteristic sliding strengths were evaluated by considering, for individual timber elements, a 45° angle between the connector and the grain and a 45° angle between the connector and the side face of the LVL element.

• The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane, unless otherwise specified.

• The characteristic strength are calculated for screws inserted without pre-drilling hole.

• Connectors instability must be verified separately.

• The geometry of the connection is designed to ensure balanced strengths between the two timber elements.

NOTES | TIMBER • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 127).

TIMBER | VGZ HARDWOOD | 163


VGS

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

ETA-11/0030

FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

CERTIFICATION FOR TIMBER AND CONCRETE Structural connector approved for timber applications according to ETA-11/0030 and for timber-concrete applications according to ETA-22/0806.

TENSILE STRENGTH Deep thread and high strength steel for excellent tensile or sliding performance. Approved for structural applications subject to stresses in any direction vs the grain (0° ÷ 90°). Can be used on steel plates in combination with the VGU and HUS washers.

COUNTERSUNK OR HEXAGONAL HEAD Countersunk head up to L = 600 mm, ideal for use on plates or for concealed reinforcements. Hexagonal head L > 600 mm to facilitate gripping with screwdriver.

BIT INCLUDED

LENGTH [mm]

80 80

2000 2000

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

T5

X

S

X

G

T4

G

T3

X

T2

V

X

T1

V

S X

V

S

G

X

X

V

G

X

X

S

X

X

TORQUE LIMITER

X

N

electrogalvanized carbon steel

X

Zn

ELECTRO PLATED

G

V

MATERIAL

Mins,rec Mins,rec

FIELDS OF USE • • • • •

164 | VGS | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods

X

V

X S

Mins,rec

X

METAL-to-TIMBER recommended use:

X

WOOD CORROSIVITY

C5

S

15 15

X

9 9

G

DIAMETER [mm]


TC FUSION The ETA-22/0806 approval of the TC FUSION system allows the VGS screws to be used together with the reinforcements in the concrete so that the panel floor slabs and the bracing core can be bonded together with a small integration of the casting.

TIMBER | VGS | 165


GEOMETRY AND MECHANICAL CHARACTERISTICS L ≤ 520 mm

45°

dK

d2 d1 90° SW

45°

b L

XXX

tS

45°

90°

VGS

b L

b L

45°

Nominal diameter

b L

dK

90°

VGS

VGS

XXX

SW

dK

d2 d 1

XXX

d2 d 1

90°

t1

t1

VGS

XXX

VGS

t1

XXX

dK

dK

VGS

L > 600 mm tS XXX

XXX

90°

t 1 tS

90° 90°

45°

VGS Ø15 VGS

VGS VGS

VGS

VGS

VGS

XXX

SW

b L

dKdK

90°

VGS

XXX

VGS

2

b L

b L

XXX

dK90° d d1

90°

L > 600 mm

XXX

dK

45°

t1 t1

t1 XXX XXX

90°

XXX

dK

VGS

XXX

VGS

t1

tS

t1 XXX

XXX

90°

tS

SW 45°

t1

250 mm < L ≤ 600 mm

L ≤ 250 mm t1

dK

90° d2 d1 SW

45°

b L

VGS Ø13 t1

dK

90° 90°

VGS

SW

b L

dKdK

90°

VGS VGS

VGS

VGS

VGS

XXX

VGS

2

VGS

XXX

dK90° d d1

t 1 tS XXX

dK

b L

L > 600 mm

t1 t1 XXX XXX

90°

VGS

XXX

dK

SW 45°

dK

250 mm < L ≤ 600 mm

t1

t1 XXX

VGS

tS

t1 XXX

XXX

90°

tS

45° b L

L ≤ 250 mm t1

d

90°

45°

b L

VGS Ø11 t1

dK

d1 90° d2 90°

VGS

45°

b L

90°

VGS VGS

VGS

VGS

VGS

d1

2

t1 dK

XXX

90°

t1 t1 dKdK

XXX

45°

dKd

XXX XXX

90° 90°

L > 520 mm

t1 XXX

dK

XXX

VGS

t1

XXX

dK

XXX

dK

t1

XXX

t1

VGS

VGS Ø9 t1

90°

SW

b L

d1

[mm]

45°

b L

9

11

11

13

13

15

Length

L

[mm]

-

≤ 600 mm

> 600 mm

≤ 600 mm

> 600 mm

-

Countersunk head diameter

dK

[mm]

16,00

19,30

-

22,00

-

-

Countersunk head thickness

t1

[mm]

6,50

8,20

-

9,40

-

-

Wrench size

SW

-

-

-

SW 17

-

SW 19

SW22 8,80

Hexagonal head thickness

ts

[mm]

-

-

6,40

-

7,50

Thread diameter

d2

[mm]

5,90

6,60

6,60

8,00

8,00

9,10

Pre-drilling hole diameter(1)

dV,S

[mm]

5,0

6,0

6,0

8,0

8,0

9,00

Pre-drilling hole diameter(2)

dV,H

[mm]

6,0

7,0

7,0

9,0

9,0

10,00

ftens,k [kN]

25,4

38,0

38,0

53,0

53,0

65,0

My,k

[Nm]

27,2

45,9

45,9

70,9

70,9

95,0

fy,k

[N/mm2]

1000

1000

1000

1000

1000

1000

Characteristic tensile strength Characteristic yield moment Characteristic yield strength

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

The mechanical parameters for VGS Ø15 are obtained analytically and validated by experimental tests.

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

11,7

15,0

29,0

Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

TC FUSION SYSTEM FOR TIMBER-CONCRETE APPLICATION Nominal diameter

d1

[mm]

9

11

13

15

Tangential strength of adhesion in concrete C25/30

fb,k

[N/mm2]

12,5

12,5

12,5

-

For applications with different materials please see ETA-22/0806

166 | VGS | TIMBER


CODES AND DIMENSIONS b

[mm]

[mm]

[mm]

100

90

25

VGS1380

80

VGS9120

120

110

25

VGS13100

100

pcs

70 tS

25

VGS9140

140

130

25

VGS13150

150

XXX

140

VGS9160

160

150

25

VGS13200

SW 200

190

25

250

240

25

VGS

XXX

180

170

25

VGS9200

200

190

25

280

25

220

210

25

VGS13300 13 TX 50 VGS13350

300

VGS9220

350

330

25

VGS9240

240

230

25

VGS13400

400

380

25

VGS9260

260

250

VGS13450

450

430

VGS9280 9 VGS9300 TX40 VGS9320

280

270

300

290

25

320

310

25

VGS9340

340

330

25

VGS13650

VGS9360

360

350

25

VGS13700

VGS

VGS

45°

25

VGS

dK

t1

VGS13500

500

480

VGS13550

550 b

530

25

VGS13600

L

580

25

650

630

25

700

680

25

600

VGS9380

380

370

25

VGS13750

750

730

25

400

390

25

VGS13800

800

780

25

VGS9440

440

430

25

VGS13850

850

830

25

tS

VGS13900 13 90° VGS13950 SW 19 t TX 50 45° VGS131000

900

880

25

950

930

25

1000b

980

25 SW

VGS131100

L

1100

1080

25

VGS131200

b 1200 L

1180

25

560

SW 550

25

b

VGS1180

80 L

VGS11100 VGS11125

90°

VGS

45°

100

90

25

VGS131300

1300

1280

25

125

115

25

VGS131400

1400

1380

25

140

25

dK

175

165

200

190

25

SW

t1

t1

25

dK

90°

VGS

tS

150

VGS

25

VGS

90° 45°

45°

tS VGS

t1 dK

d2 d1

VGS131500

1500

1480

25

VGS15600

600

580

25

VGS15700

b 700 L

680

25

225

215

25

VGS15800

800

780

25

VGS11250

250

240

25

VGS15900

900

880

25

VGS11275

275

265

1000

980

25

VGS11300

300

290

25

VGS11325

11 TX 50 VGS11350

325

315

25

15 VGS151000 90° SW 21 VGS151200 TX 50 45° VGS151400

350

340

25

VGS11375

375

365

25

VGS11400

400

390

25

VGS11425

425

415

25

VGS11450

450

440

VGS11475

475

465

25

VGS11500

500

490

25

VGS11525

525

515

25

VGS11550

550

540

25

VGS11575

575

565

25

VGS11600

600

590

25

VGS11650

650

630

25

TORQUE LIMITER TORQUE LIMITER

780

25

850

830

25

880

25

VGS

XXX

b

900L

VGS11950

950

930

25

VGS111000

1000

980

25

VGS

VGS

VGS

25

VGS151600

1600

1580

25

VGS151800

1800

1780

25

VGS152000

2000

1980

25

SW

d2 d1

RELATED PRODUCTS 45° VGU page 190

tS VGS

SW

d2 d 1

t1

t1 dK

90°

dK

VGS

800

t1

25

1380

t1 dK

d2 d1

45° WASHER FOR VGS

VGS

VGS

25

11 VGS11800 90° SW 17 TX 50 VGS11850 45° VGS11900

1180

b

tS VGS

b L

XXX

XXX

25

680

90°

1200 1400L

XXX

680

750

XXX

700

VGS11750

dK

90°

XXX

VGS11700

t1 XXX

25

dK

90°

t1

XXX

dK

dK

XXX

SW

t1

t1

25

XXX

tS

90°

d2 d 1

VGS11225

VGS

90°

d2 d1

70

XXX

VGS11200

1

dK

d2 d 1 90°

XXX

VGS11175

25

XXX

VGS11150

590

VGS

XXX

600

XXX

VGS9600

dK

t1

dK

90°

VGS

VGS9560

dK

VGS

25

25

VGS

page 408 d2 d1

90° 45°

90°

XXX

510

dK

XXX

470

520

XXX

480

XXX

VGS9480 VGS9520

t1

t1

t1

90°

d2 d1 25

VGS9400

XXX

VGS

90°

90°

90° 45°

XXX

t1 dK

90°

XXX

25

XXX

XXX

90°

t1

25 dK

dK

XXX

VGS9180

t1

t1

25

dK

XXX

VGS

25

90

VGS

[mm]

L

VGS

CODE

[mm]

45°

dK

d1

VGS9100

t1

t1

pcs

VGS13250

t1

dK

b

VGS

[mm]

L

VGS

CODE

XXX

d1

WASP b L

HOOK FOR TIMBER ELEMENTS TRANSPORT

page 413

TIMBER | VGS | 167


MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole

d1

[mm]

a1

[mm]

a2

[mm]

9

11

d1

[mm]

5∙d

45

55

a1

[mm]

5∙d

45

55

a2

[mm]

13

d1

[mm]

5∙d

65

a1

[mm]

5∙d

65

a2

[mm]

9

11

13

15

5∙d

45

55

65

75

5∙d

45

55

65

75

a2,LIM

[mm] 2,5∙d

23

28

a2,LIM

[mm] 2,5∙d

33

a2,LIM

[mm] 2,5∙d

23

28

33

38

a1,CG

[mm]

8∙d

72

88

a1,CG

[mm]

8∙d

104

a1,CG

[mm]

5∙d

45

55

65

150

a2,CG

[mm]

3∙d

27

33

a2,CG

[mm]

3∙d

39

a2,CG

[mm]

3∙d

27

33

39

60

aCROSS [mm] 1,5∙d

14

17

aCROSS [mm] 1,5∙d

20

aCROSS [mm] 1,5∙d

14

17

20

23

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

plan

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN

front

CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG 45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain.

• For 3 THORNS tip, RBSN and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.

• The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1∙a2 = 25∙d1 2 is maintained.

EFFECTIVE THREAD USED IN CALCULATION tK

Sg

Tol.

Sg

10

b = S g,tot = L - tK

represents the entire length of the threaded part

S g = (L - tK - 10 mm - Tol.)/2

represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

b L

168 | VGS | TIMBER

tK = 10 mm (countersunk head) tK = 20 mm (hexagonal head)


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

10∙d 5∙d 15∙d 10∙d 5∙d 5∙d

9 90 45 135 90 45 45

11 110 55 165 110 55 55

F

13 130 65 195 130 65 65

15 150 75 225 150 75 75

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 9 45 45 90 90 90 45

5∙d 5∙d 10∙d 10∙d 10∙d 5∙d

11 55 55 110 110 110 55

13 65 65 130 130 130 65

15 75 75 150 150 150 75

13 52 52 91 91 91 39

15 60 60 105 105 105 45

screws inserted WITH pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

5∙d 3∙d 12∙d 7∙d 3∙d 3∙d

9 45 27 108 63 27 27

11 55 33 132 77 33 33

F

13 65 39 156 91 39 39

15 75 45 180 105 45 45

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

4∙d 4∙d 7∙d 7∙d 7∙d 3∙d

α=90° 9 36 36 63 63 63 27

11 44 44 77 77 77 33

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTES • Minimum distances are in accordance with EN 1995:2014 as per ETA11/0030 considering a timber characteristic density of ρk ≤ 420 kg/m3. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00

( * ) For intermediate a values a linear interpolation is possible. 1

TIMBER | VGS | 169


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

estrazione filetto parziale

ε=0°

steel tension

instability ε=90°

Sg Sg,tot

L

Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

Rki,90,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 80 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 650 700 750 800 850 900 950 1000

90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 430 470 510 550 590 70 90 115 140 165 190 215 240 265 290 315 340 365 390 415 440 465 490 515 540 565 590 630 680 680 780 830 880 930 980

110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 450 490 530 570 610 90 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485 510 535 560 585 610 660 710 760 810 860 910 960 1010

10,23 12,50 14,77 17,05 19,32 21,59 23,87 26,14 28,41 30,68 32,96 35,23 37,50 39,78 42,05 44,32 48,87 53,41 57,96 62,50 67,05 9,72 12,50 15,97 19,45 22,92 26,39 29,86 33,34 36,81 40,28 43,75 47,22 50,70 54,17 57,64 61,11 64,59 68,06 71,53 75,00 78,48 81,95 87,51 94,45 94,45 108,34 115,28 122,23 129,17 136,12

3,07 3,75 4,43 5,11 5,80 6,48 7,16 7,84 8,52 9,21 9,89 10,57 11,25 11,93 12,61 13,30 14,66 16,02 17,39 18,75 20,11 2,92 3,75 4,79 5,83 6,88 7,92 8,96 10,00 11,04 12,08 13,13 14,17 15,21 16,25 17,29 18,33 19,38 20,42 21,46 22,50 23,54 24,58 26,25 28,33 28,33 32,50 34,59 36,67 38,75 40,84

35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 265 285 25 35 48 60 73 85 98 110 123 135 148 160 173 185 198 210 223 235 248 260 273 285 305 330 330 380 405 430 455 480

55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 225 245 265 285 305 45 55 68 80 93 105 118 130 143 155 168 180 193 205 218 230 243 255 268 280 293 305 325 350 350 400 425 450 475 500

3,98 5,11 6,25 7,39 8,52 9,66 10,80 11,93 13,07 14,21 15,34 16,48 17,61 18,75 19,89 21,02 23,30 25,57 27,84 30,12 32,39 3,47 4,86 6,60 8,33 10,07 11,81 13,54 15,28 17,01 18,75 20,49 22,22 23,96 25,70 27,43 29,17 30,90 32,64 34,38 36,11 37,85 39,59 42,36 45,84 45,84 52,78 56,25 59,73 63,20 66,67

1,19 1,53 1,88 2,22 2,56 2,90 3,24 3,58 3,92 4,26 4,60 4,94 5,28 5,63 5,97 6,31 6,99 7,67 8,35 9,03 9,72 1,04 1,46 1,98 2,50 3,02 3,54 4,06 4,58 5,10 5,63 6,15 6,67 7,19 7,71 8,23 8,75 9,27 9,79 10,31 10,83 11,35 11,88 12,71 13,75 13,75 15,83 16,88 17,92 18,96 20,00

25,40

17,25

38,00

21,93

9

11

170 | VGS | TIMBER


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

estrazione filetto parziale

ε=0°

steel tension

instability ε=90°

Sg Sg,tot

L

Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

Rki,90,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

80 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500 600 700 800 900 1000 1200 1400 1600 1800 2000

70 90 140 190 240 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1080 1180 1280 1380 1480 580 680 780 880 980 1180 1380 1580 1780 1980

90 110 160 210 260 310 360 410 460 510 560 610 660 710 760 810 860 910 960 1010 1110 1210 1310 1410 1510 610 710 810 910 1010 1210 1410 1610 1810 2010

11,49 14,77 22,98 31,19 39,40 45,96 54,17 62,38 70,58 78,79 87,00 95,21 103,42 111,62 119,83 128,04 136,25 144,45 152,66 160,87 177,28 193,70 210,11 226,53 242,94 109,85 128,80 147,74 166,68 185,62 223,50 261,38 299,26 337,14 375,02

3,45 4,43 6,89 9,36 11,82 13,79 16,25 18,71 21,18 23,64 26,10 28,56 31,02 33,49 35,95 38,41 40,87 43,34 45,80 48,26 53,18 58,11 63,03 67,96 72,88 32,96 38,64 44,32 50,00 55,69 67,05 78,41 89,78 101,14 112,51

25 35 60 85 110 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 530 580 630 680 730 280 330 380 430 480 580 680 780 880 980

45 55 80 105 130 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 550 600 650 700 750 300 350 400 450 500 600 700 800 900 1000

4,10 5,75 9,85 13,95 18,06 21,34 25,44 29,55 33,65 37,75 41,86 45,96 50,07 54,17 58,27 62,38 66,48 70,58 74,69 78,79 87,00 95,21 103,42 111,62 119,83 53,03 62,50 71,97 81,44 90,91 109,85 128,80 147,74 166,68 185,62

1,23 1,72 2,95 4,19 5,42 6,40 7,63 8,86 10,10 11,33 12,56 13,79 15,02 16,25 17,48 18,71 19,94 21,18 22,41 23,64 26,10 28,56 31,02 33,49 35,95 15,91 18,75 21,59 24,43 27,27 32,96 38,64 44,32 50,00 55,69

53,00

32,69

65,00

42,86

13

15

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 176.

TIMBER | VGS | 171


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SLIDING

timber-to-timber

S

g

A

timber-to-timber timber-to-timber ε=90° ε=0°

steel tension

45° A

45°

Sg

S

g

S

g

L

45°

steel-to-timber

SPLATE

geometry

SHEAR

A

Sg

B d1

d1 [mm]

9

11

Bmin

RV,k

SPLATE

A min

RV,k

Rtens,45,k

Sg

A

RV,90,k

RV,0,k

[mm] [mm] [mm] [mm]

L

Sg

[kN]

[mm] [mm] [mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN]

100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 80 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 650 700 750 800 850 900 950 1000

2,81 3,62 4,42 5,22 6,03 6,83 7,63 8,44 9,24 10,04 10,85 11,65 12,46 13,26 14,06 14,87 16,47 18,08 19,69 21,29 22,90 2,46 3,44 4,67 5,89 7,12 8,35 9,58 10,80 12,03 13,26 14,49 15,71 16,94 18,17 19,40 20,63 21,85 23,08 24,31 25,54 26,76 27,99 29,96 32,41 32,41 37,32 39,78 42,23 44,69 47,14

85 105 125 145 165 185 205 225 245 265 285 305 325 345 365 385 425 465 505 545 585 60 80 105 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 505 530 555 580 -

6,83 8,44 10,04 11,65 13,26 14,87 16,47 18,08 19,69 21,29 22,90 24,51 26,12 27,72 29,33 30,94 34,15 37,37 40,58 43,79 47,01 5,89 7,86 10,31 12,77 15,22 17,68 20,13 22,59 25,04 27,50 29,96 32,41 34,87 37,32 39,78 42,23 44,69 47,14 49,60 52,05 54,51 56,96 -

35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 265 285 25 35 48 60 73 85 98 110 123 135 148 160 173 185 198 210 223 235 248 260 273 285 305 330 330 380 405 430 455 480

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 40 50 63 75 88 100 113 125 138 150 163 175 188 200 213 225 238 250 263 275 288 300 320 345 345 395 420 445 470 495

4,04 4,53 4,81 5,10 5,38 5,67 5,95 6,23 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 6,50 3,67 4,72 6,03 6,61 7,05 7,48 7,92 8,35 8,79 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06 9,06

2,07 2,30 2,55 2,81 3,08 3,18 3,27 3,35 3,44 3,52 3,61 3,69 3,78 3,86 3,95 4,03 4,21 4,38 4,55 4,72 4,89 2,16 2,69 2,99 3,33 3,71 4,10 4,44 4,57 4,70 4,83 4,96 5,09 5,22 5,35 5,48 5,61 5,74 5,87 6,00 6,13 6,26 6,39 6,60 6,85 6,85 6,85 6,85 6,85 6,85 6,85

35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 205 225 245 265 285 25 35 48 60 73 85 98 110 123 135 148 160 173 185 198 210 223 235 248 260 273 285 305 330 330 380 405 430 455 480

A

40 55 45 60 55 70 60 75 70 85 75 90 85 100 90 105 95 110 105 120 110 125 120 135 125 140 130 145 140 155 145 160 160 175 175 190 190 205 205 220 215 230 35 50 40 55 50 65 60 75 65 80 75 90 85 100 95 110 100 115 110 125 120 135 130 145 140 155 145 160 155 170 165 180 175 190 180 195 190 205 200 215 210 225 215 230 230 245 250 265 250 265 285 300 300 315 320 335 335 350 355 370

172 | VGS | TIMBER

15

18

Sg

80 95 110 125 135 150 165 180 195 205 220 235 250 265 280 290 320 350 375 405 435 60 75 95 110 130 145 165 185 200 220 235 255 270 290 305 325 340 360 375 395 410 430 -

17,96

26,87


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SLIDING

timber-to-timber

S

45°

timber-to-timber timber-to-timber ε=90° ε=0°

steel tension

45° A

45°

Sg

S

g

S

g

L

g

A

steel-to-timber

SPLATE

geometry

SHEAR

A

Sg

B d1

d1 [mm]

13

15

Bmin

RV,k

SPLATE

A min

RV,k

Rtens,45,k

Sg

A

RV,90,k

RV,0,k

[mm] [mm] [mm] [mm]

L

Sg

[kN]

[mm] [mm] [mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN]

80 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500 600 700 800 900 1000 1200 1400 1600 1800 2000

2,90 4,06 6,96 9,87 12,77 15,09 17,99 20,89 23,79 26,70 29,60 32,50 35,40 38,30 41,21 44,11 47,01 49,91 52,81 55,71 61,52 67,32 73,13 78,93 84,73 37,50 44,20 50,89 57,59 64,29 77,68 91,07 104,47 117,86 131,25

60 80 130 180 230 280 330 380 430 480 530 580 -

6,96 9,29 15,09 20,89 26,70 32,50 38,30 44,11 49,91 55,71 61,52 67,32 -

25 35 60 85 110 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 530 580 630 680 730 280 330 380 430 480 580 680 780 880 980

40 50 75 100 125 145 170 195 220 245 270 295 320 345 370 395 420 445 470 495 545 595 645 695 745 295 345 395 445 495 595 695 795 895 995

4,18 5,37 8,37 9,46 10,49 11,31 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 11,94 14,53 14,53 14,53 14,53 14,53 14,53 14,53 14,53 14,53 14,53

2,44 3,10 4,06 4,88 5,77 6,11 6,42 6,73 7,04 7,35 7,65 7,96 8,27 8,58 8,88 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,03 9,47 10,18 10,89 10,99 10,99 10,99 10,99 10,99 10,99 10,99

25 35 60 85 110 130 155 180 205 230 255 280 305 330 355 380 405 430 455 480 530 580 630 680 730 280 330 380 430 480 580 680 780 880 980

A 35 40 60 75 95 110 125 145 160 180 195 215 230 250 265 285 300 320 335 355 390 425 460 495 530 215 250 285 320 355 425 495 565 640 710

50 55 75 90 110 125 140 160 175 195 210 230 245 265 280 300 315 335 350 370 405 440 475 510 545 230 265 300 335 370 440 510 580 655 725

20

-

Sg

60 75 110 145 185 220 255 290 325 360 395 430 -

37,48

45,96

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 176.

TIMBER | VGS | 173


STRUCTURAL VALUES | FURTHER APPLICATIONS SHEAR CONNECTION WITH CROSSED CONNECTORS

SLIDING CONNECTION WITH VGU WASHER

VGS Ø9 - 11 mm

VGS Ø9 - 11 - 13 mm

45°

45°

90°

STRUCTURAL VALUES on page 130.

STRUCTURAL VALUES on page 192.

CONNECTIONS WITH CLT ELEMENTS

CONNECTIONS WITH LVL ELEMENTS

VGS Ø9 - 11 mm

VGS Ø9 - 11 mm

45°

45°

STRUCTURAL VALUES on page 134.

STRUCTURAL VALUES on page 138.

EFFECTIVE NUMBER FOR AXIAL STRESSES The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. X

X

X

S G X

X

S

X

X

X

V

S

G

G

X

V

For a connection with inclined screws, the characteristic effective sliding load-bearing capacity for a row of n screws is equal to:

V

X

X

X

S

V

G

X

X

X

S G X

X

S

V

G

Ref,V,k = nef,ax RV,k

V

X

The nef value is given in the table below as a function of n (number of screws in a row). n nef,ax

2

3

4

5

6

7

8

9

10

1,87

2,70

3,60

4,50

5,40

6,30

7,20

8,10

9,00

Complete calculation reports for designing in wood? Download MyProject and simplify your work!

174 | VGS | TIMBER


STRUCTURAL VALUES | TC FUSION

CHARACTERISTIC VALUES EN 1995:2014

TENSILE CONNECTION CLT - CONCRETE geometry

TENSILE CONNECTION CLT - CONCRETE

CLT

concrete

lb,d

geometry

lb,d

CLT

concrete

lb,d

L

lb,d

L Sg

Sg

Sg

d1

Sg d1

Rax,0,k

lb,d

Rax,C,k

d1

L

Sg

[mm]

[kN]

[mm]

[kN]

[mm]

[mm]

85 105 125 145 165 185 205 225 245 265 285 325 365 405 445 485 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485 535 585 635 685 735 785 835 885

6,32 7,65 8,95 10,22 11,49 12,73 13,96 15,18 16,39 17,59 18,78 21,14 23,47 25,40 25,40 25,40 9,36 11,26 13,12 14,95 16,75 18,54 20,31 22,05 23,79 25,51 27,22 28,91 30,59 32,27 33,93 35,59 38,00 38,00 38,00 38,00 38,00 38,00 38,00 38,00

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

13

300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1100 1200 1300 1400 1500

L

Sg

[mm]

[mm] 200 220 240 260 280 300 320 340 360 380 400 440 480 520 560 600 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 650 700 750 800 850 900 950 1000

11

Sg

d1

d1

d1

9

Sg

35,34

Rax,0,k

lb,d

Rax,C,k

[mm]

[kN]

[mm]

[kN]

165 215 265 315 365 415 465 515 565 615 665 715 765 815 865 965 1065 1165 1265 1365

15,41 19,56 23,61 27,58 31,50 35,35 39,16 42,93 46,67 50,37 53,00 53,00 53,00 53,00 53,00 53,00 53,00 53,00 53,00 53,00

120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120

61,26

43,20

NOTES and GENERAL PRINCIPLES on page 176.

TC FUSION TIMBER-TO-CONCRETE JOINT SYSTEM The innovation of VGS, VGZ and RTR all-thread connectors for timber-concrete applications. Find it out on page 270.

TIMBER | VGS | 175


STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | TIMBER

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector.

• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• The plate thickness (SPLATE) are understood to be the minimum values to allow the countersunk head of the screw to be accommodated. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).

Rax,d = min

• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector.

Rax,k kmod γM Rki,k γM1

• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.

R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k

• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:

RV,d = min

R’V,0,k = kdens,V RV,0,k

RV,k kmod γM Rtens,45,k γM2

ρk

350

C-GL kdens,ax kdens,ki kdens,v

[kg/m3 ]

• The design shear strength of the connector is obtained from the characteristic value as follows:

R k RV,d = V,k mod γM • The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane.

• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

385

405

425

430

440

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

0,92

0,98

1,00

1,04

1,08

1,09

1,11

0,97

0,99

1,00

1,00

1,01

1,02

1,02

0,90

0,98

1,00

1,02

1,05

1,05

1,07

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

NOTES | TC FUSION • Characteristic values according to ETA-22/0806. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 . • Connectors with shorter lengths than those in the table do not comply with the minimum penetration depth requirements and are not reported. • A concrete grade of C25/30 was considered in the calculation. For applications with different materials please see ETA-22/0806. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the concrete-side design strength (Rax,C,d).

• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The values in the table are evaluated considering mechanical strength parameters of the Ø15 VGS screws obtained analytically and validated by experimental tests.

380

Rax,d = min

Rax,0,k kmod γM Rax,C,k γM,concrete

• The concrete element must have adequate reinforcement bars. • The connectors must be arranged at a maximum distance of 300 mm.

RELATED PRODUCTS

JIG VGU page 409

176 | VGS | TIMBER

LEWIS page 414

CATCH page 408

TORQUE LIMITER page 408

B 13 B page 405


INSTALLATION SUGGESTIONS LONG SCREWS

VGS + VGU

Thanks to CATCH, even longer screws can be screwed on quickly and safely without the risk of the bit slipping. Can be combined with TORQUE LIMITER.

The JIG VGU template makes it easy to prepare a 45° angle pre-drill, thus facilitating subsequent tightening of the VGS screws inside the washer. A pre-drill length of at least 20 mm is recommended.

To ensure control of the applied torque, the correct TORQUE LIMITER model must be used depending on the chosen connector.

VGS +WASPL

Insert the screw so that the head protrudes 15 mm and engage the WASPL hook.

After lifting, the WASPL hook releases quickly and easily ready for use again.

IMPORTANCE OF THE PILOT HOLE

pilot hole

insertion with pilot hole

insertion without pilot hole

Deviation of the screw from the direction of screwing often occurs during installation. This phenomenon is linked to the very conformation of the wood material, which is inhomogeneous and non-uniform, e.g. due to the localised presence of knots or physical properties dependent on grain direction. The operator's skill also plays an important role. The use of pilot holes facilitates the insertion of screws, particularly long ones, allowing a very precise insertion direction.

TIMBER | VGS | 177


INSTALLATION INSTRUCTIONS

X

X

G

S X

V

X

V

S

G

X

X

V

G

S

X

X

X

P

X

X

X

X

X

V

X X

G V

G

V

S

G

X S

1x

G

S

α V

S

X

X

X

X

In the case of installation of screws used in timber-to-timber (softwood) structural connections, a pulse screw gun/screwdriver can also be used.

Respect the insertion angle with the help of a pilot hole and/or installation template.

In general, it is recommended to install the connector in a single operation, without stopping and restarting which could create additional stress in the screw.

Do not hammer the screw tips into the timber. The screw cannot be reused.

STEEL-TO-TIMBER APPLICATION

S

X

S G

X

G

S X

X

S

X

G

G

V

X

11

40

13

50

V

G

30

S

11

S

V

G

X

X

S

V

X

G

S X

Ø11

X

mm

V

L < 400 mm X

X

X

V

S X

X

X

510

X

G

X

X

Ø11

N

L ≥ 400 mm

Ø13

X

V

G

X

X

X

G

X

V

V

G V

G

X

V

X

X

S

X

S

V

G

G

V

X

X

G X

X

X

S

S

X

S

G

G

X

X

X

V

S

X

X

V

X

V

S

X

X

X S

X

S

S

X X

After installation, the fasteners can be inspected using a torque wrench.

X

S

α

X

X

X

X

Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.

X

The use of pulse screw guns/impact wrenches is not permitted.

G

V

G

X

X

X

S G

V

X

X

X

V

S

V

G

V

G

S

G

X

S

X

X

X X

X

The installation of multiple screws must be performed to guarantee that loads are distributed evenly to all fasteners.

Shrinkage or swelling of timber elements due to changes in moisture content must be avoided.

SHAPED PLATE

Avoid dimensional changes in the metal, e.g. due to large temperature fluctuations.

WASHERS

V

G

S

Avoid bending.

X

V

X

G

V

X

X

S

G

X

V

S

S

Cylindrical hole.

X

178 | VGS | TIMBER

X

X

Countersunk hole.

X

G

X

S

X

V

X

X

G

X

Inclined countersunk hole.

Cylindrical hole with countersunk washer HUS.

X

V

V

X

Mins

X

V

X S

X

Ø9

G

Mins,rec

V

G

20

S

V

9

X

X

[Nm]

X

[mm]

X

X

Mins,rec

X

Mins

d1

X

VGS

X

G

2 3 45 1 6 12 7 11 8 10 9

Slotted hole with VGU washer.

X


APPLICATION EXAMPLES: REINFORCEMENT

TAPERED BEAMS apex tension reinforcement perpendicular to grain

HANGING LOAD tension reinforcement perpendicular to grain

front

section

NOTCH tension reinforcement perpendicular to grain

front

section

SUPPORT compression reinforcement perpendicular to grain

plan

plan

section

section

TIMBER | VGS | 179


VGS EVO

ETA-11/0030

UKTA-0836 22/6195

AC233 | AC257 ESR-4645

ETA-11/0030

FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD C4 EVO COATING Surface treatment of epoxy resin and aluminium flakes. No rust after 1440 hours of salt spray exposure test, as per ISO 9227. Can be used in service class 3 outdoor applications and under class C4 atmospheric corrosion conditions.

STRUCTURAL APPLICATIONS Approved for structural applications subject to stresses in any direction vs the grain (0° - 90°). Safety certified by numerous tests carried out for any direction of insertion. Cyclical SEISMIC-REV tests according to EN 12512. Countersunk head up to L = 600 mm, ideal for use on plates or for concealed reinforcements.

AUTOCLAVE-TREATED TIMBER The C4 EVO coating has been certified according to US acceptance criterion AC257 for outdoor use with ACQ-treated timber.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements.

BIT INCLUDED

15

LENGTH [mm]

80

800

2000

100

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

T5

X

S

X

G

T4

G

T3

X

T2

V

X

T1

V V

S

G

X

X

V

G

X

X

S

180 | VGS EVO | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber

X

X

FIELDS OF USE • • • • •

S X

TORQUE LIMITER

X

N

carbon steel with C4 EVO coating

X

C4

EVO COATING

G

V

MATERIAL

Mins,rec Mins,rec

X

V

X S

Mins,rec

X

METAL-to-TIMBER recommended use:

X

WOOD CORROSIVITY

C5

S

13

X

9 9

G

DIAMETER [mm]


OUTDOOR STRUCTURAL PERFORMANCE Ideal for fastening timber framed panels and trusses (Rafter, Truss). Values also tested, certified and calculated for high density woods. Ideal for fastening timber-framed panels and lattice beams (Rafter, Truss).

CLT & LVL Values also tested, certified and calculated for CLT and high density woods such as Microllam® LVL.

TIMBER | VGS EVO | 181


CODES AND DIMENSIONS

240

230

25

dK

XXX

25

310

tS

VGSEVO9360

360

350

25

190

250

240

dK

25

VGS

200

dK

25

dK

90°

dK

90°

290

25

350

340

25

45°

XXX

400

390

VGSEVO11500

500

490

25

VGSEVO11600

600

590

25

VGS

25

XXX

dK

t1

45°

t1 dK

d2 d190°

25

580

90°

90° 45°

25 tS

700

680

25

800

780

25 SW

b L

t1

VGS

t1 dK

d2 d1

90°

d2 d 1

RELATED PRODUCTS b L

t1 dK

90°

XXX

VGSEVO11400

dK

480

600

L

13 VGSEVO13700 90° SW 19 TX 50 VGSEVO13800 45°

90°

25

300

b VGSEVO13600

t1

t1 VGS

XXX

140

S

25

t1

XXX

VGSEVO11250 11 VGSEVO11300 TX 50 VGSEVO11350

SW

150

380

45°

XXX

VGSEVO11200

VGS

90°

t1

25 XXX

VGSEVO11150

dK

90°

25

VGS

90 SW

25

XXX

270

320 100 t

280

XXX

280

VGSEVO9320 VGSEVO11100

VGSEVO13300 SW 300 t 13 400 TX 50 VGSEVO13400 VGSEVO13500 500 1

VGS

9 VGSEVO9240 TX 40 VGSEVO9280

t1

dK

90°

VGS

25

25

dK

VGS

190

t1

t1

VGS

200

190

VGS

VGS

VGSEVO9200

200

VGSEVO13200

VGS

25 VGS

25

150

[mm]

[mm]

pcs

XXX

110

160

b

[mm]tS

XXX

120

VGSEVO9160

L

XXX

VGSEVO9120

CODE

XXX

[mm]

XXX

[mm]

d1

VGS

pcs

VGS

[mm]

b

VGS

L

XXX

CODE

XXX

d1

d2 d1

90° 45°

VGU EVO b page 190 L

TORQUE LIMITER page 408

GEOMETRY AND MECHANICAL CHARACTERISTICS VGS Ø11

VGS Ø11

120 mm ≤ L ≤ 360 mm

L ≤ 250 mm

250 mm < L ≤ 600 mm

90°

dKdK

45°

b L

VGS

VGS

dK

90° 90°

SW

45°

dK

d2 d1 90° 45°

d1

[mm]

9

11

13

13

Length

L

-

-

≤ 600 mm

> 600 mm

Countersunk head diameter

dK

[mm] [mm]

16,00

19,30

22,00

-

Countersunk head thickness

t1

[mm]

6,50

8,20

9,40

-

Wrench size

SW

-

-

-

-

SW 19

Hexagonal head thickness

ts

[mm]

-

-

-

7,50

Thread diameter

d2

[mm]

5,90

6,60

8,00

8,00

Pre-drilling hole diameter(1)

dV,S

[mm]

5,0

6,0

8,0

8,0

dV,H

[mm]

6,0

7,0

9,0

9,0

ftens,k

[kN]

25,4

38,0

53,0

53,0

My,k

[Nm]

27,2

45,9

70,9

70,9

fy,k

[N/mm2]

1000

1000

1000

1000

Characteristic tensile strength Characteristic yield moment Characteristic yield strength

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

11,7

15,0

29,0

Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

182 | VGS EVO | TIMBER

b L

90° b L

b L

Nominal diameter

Pre-drilling hole diameter(2)

VGS

VGS

VGS

VGS

XXX

VGS

2

VGS

XXX

dK90° d d1

45°

t 1 tS XXX

dK

SW

b L

L > 600 mm

t1 t1

t1 XXX XXX

90°

XXX

SW 45°

dK

VGS

XXX

90°

VGS

VGS Ø13

250 mm < L ≤ 600 mm

t1

tS

t1 XXX

XXX

dK

tS XXX

t1

t1

VGS Ø13

L ≤ 250 mm

d

90°

45°b L

VGS Ø13

VGS VGS

VGS Ø13

dK

90°90°

45°

VGS

VGS

VGS

XXX

SW

b L

dKdK

90° 90°

XXX

45°

dd KK

90°

t1

XXX XXX

d1

2

t1 t1

t1 t1 XXX XXX

dKd

90°

XXX

XXX

dK

VGS

t1

VGS

tS

t1

XXX

t1

VGS Ø9

VGS VGS

VGS Ø9-Ø11


MINIMUM DISTANCES FOR AXIAL STRESSES screws inserted WITH and WITHOUT pre-drilled hole

d1

[mm]

9

11

d1

[mm]

a1

[mm]

a2

[mm]

13

d1

[mm]

5∙d

45

55

a1

[mm]

5∙d

45

55

a2

[mm]

a2,LIM

[mm] 2,5∙d

23

28

a2,LIM

a1,CG

[mm]

8∙d

72

88

a1,CG

a2,CG

[mm]

3∙d

27

33

a2,CG

aCROSS [mm] 1,5∙d

14

17

13

5∙d

65

a1

[mm]

5∙d

65

5∙d

65

a2

[mm]

5∙d

65

[mm] 2,5∙d

33

a2,LIM

[mm] 2,5∙d

33

[mm]

8∙d

104

a1,CG

[mm]

5∙d

65

[mm]

3∙d

39

a2,CG

[mm]

3∙d

39

aCROSS [mm] 1,5∙d

20

aCROSS [mm] 1,5∙d

20

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG a2,CG

a2,CG a2 a2,CG

a2

a2,CG

a2,CG a1,CG

1

a1

a

a2,CG a1,CG

a1,CG

a2,CG a1,CG

plan

front

plan

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE GRAIN

front

CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG 45°

a2 a2,CG

a2,CG a1,CG

aCROSS a2,CG

a1 a1,CG

plan

a1

front

plan

front

NOTES • Minimum distances according to ETA-11/0030. • The minimum distances are independent of the insertion angle of the connector and the angle of the force with respect to the grain. • The axial distance a2 can be reduced down to a2,LIM if for each connector a “joint surface” a1 a2 = 25 d1 2 is maintained.

• For 3 THORNS tip, RBSN and self-drilling tip screws, the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014. • For minimum distances for shear load screws see VGS on page 169.

EFFECTIVE THREAD USED IN CALCULATION tK

Sg

Tol.

Sg

10

b = S g,tot = L - tK

represents the entire length of the threaded part

S g = (L - tK - 10 mm - Tol.)/2

represents the partial length of the threaded part net of a laying tolerance (Tol.) of 10 mm

b L

tK = 10 mm (countersunk head) tK = 20 mm (hexagonal head)

TIMBER | VGS EVO | 183


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 TENSION / COMPRESSION

total thread withdrawal

partial thread withdrawal

geometry ε=90°

ε=0°

ε=90°

estrazione filetto parziale

ε=0°

steel tension

instability ε=90°

Sg Sg,tot

L

Sg

A

A

d1

d1

L

S g,tot

A min

Rax,90,k

Rax,0,k

Sg

A min

Rax,90,k

Rax,0,k

Rtens,k

Rki,90,k

[mm]

[mm]

[mm]

[mm]

[kN]

[kN]

[mm]

[mm]

[kN]

[kN]

[kN]

[kN]

120 160 200 240 280 320 360 100 150 200 250 300 350 400 500 600 200 300 400 500 600 700 800

110 150 190 230 270 310 350 90 140 190 240 290 340 390 490 590 190 280 380 480 580 680 780

130 170 210 250 290 330 370 110 160 210 260 310 360 410 510 610 210 310 410 510 610 710 810

12,50 17,05 21,59 26,14 30,68 35,23 39,78 12,50 19,45 26,39 33,34 40,28 47,22 54,17 68,06 81,95 31,19 45,96 62,38 78,79 95,21 111,62 128,04

3,75 5,11 6,48 7,84 9,21 10,57 11,93 3,75 5,83 7,92 10,00 12,08 14,17 16,25 20,42 24,58 9,36 13,79 18,71 23,64 28,56 33,49 38,41

45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285 85 130 180 230 280 330 380

65 85 105 125 145 165 185 55 80 105 130 155 180 205 255 305 105 150 200 250 300 350 400

5,11 7,39 9,66 11,93 14,21 16,48 18,75 4,86 8,33 11,81 15,28 18,75 22,22 25,70 32,64 39,59 13,95 21,34 29,55 37,75 45,96 54,17 62,38

1,53 2,22 2,90 3,58 4,26 4,94 5,63 1,46 2,50 3,54 4,58 5,63 6,67 7,71 9,79 11,88 4,19 6,40 8,86 11,33 13,79 16,25 18,71

25,40

17,25

38,00

21,93

53,00

32,69

9

11

13

NOTES • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The plate thickness (SPLATE) are understood to be the minimum values to allow the head of the screw to be accommodated. • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.

R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk

350

380

385

405

425

430

440

C-GL kdens,ax

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

0,92

0,98

1,00

1,04

1,08

1,09

1,11

kdens,ki

0,97

0,99

1,00

1,00

1,01

1,02

1,02

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

184 | VGS EVO | TIMBER


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SLIDING

timber-to-timber

S

45°

timber-to-timber timber-to-timber ε=90° ε=0°

steel tension

45° A

45°

Sg

S

g

S

g

L

g

A

steel-to-timber

SPLATE

geometry

SHEAR

A

Sg

B d1

d1

L

[mm]

9

11

13

Bmin

RV,k

SPLATE

A min

RV,k

Rtens,45,k

Sg

A

RV,90,k

RV,0,k

[mm] [mm] [mm] [mm]

Sg

[kN]

[mm] [mm] [mm]

[kN]

[kN]

[mm]

[mm]

[mm]

[kN]

120 160 200 240 280 320 360 100 150 200 250 300 350 400 500 600 200 300 400 500 600 700 800

3,62 5,22 6,83 8,44 10,04 11,65 13,26 3,44 5,89 8,35 10,80 13,26 15,71 18,17 23,08 27,99 9,87 15,09 20,89 26,70 32,50 38,30 44,11

105 145 185 225 265 305 345 80 130 180 230 280 330 380 480 580 180 280 380 480 580 -

8,44 11,65 14,87 18,08 21,29 24,51 27,72 7,86 12,77 17,68 22,59 27,50 32,41 37,32 47,14 56,96 20,89 32,50 44,11 55,71 67,32 -

45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285 85 130 180 230 280 330 380

60 80 100 120 140 160 180 50 75 100 125 150 175 200 250 300 100 145 195 245 295 345 395

4,53 5,10 5,67 6,23 6,50 6,50 6,50 4,72 6,61 7,48 8,35 9,06 9,06 9,06 9,06 9,06 9,46 11,31 11,94 11,94 11,94 11,94 11,94

2,30 2,81 3,18 3,35 3,52 3,69 3,86 2,69 3,33 4,10 4,57 4,83 5,09 5,35 5,87 6,39 4,88 6,11 6,73 7,35 7,96 8,58 9,03

45 65 85 105 125 145 165 35 60 85 110 135 160 185 235 285 85 130 180 230 280 330 380

A 45 60 75 90 105 120 130 40 60 75 95 110 130 145 180 215 75 110 145 180 215 250 285

60 75 90 105 120 135 145 55 75 90 110 125 145 160 195 230 90 125 160 195 230 265 300

15

18

20

Sg

95 125 150 180 205 235 265 75 110 145 185 220 255 290 360 430 145 220 290 360 430 -

17,96

26,87

37,48

GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).

Rax,d = min

Rax,k kmod γM Rki,k γM1

• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:

RV,d = min

RV,k kmod γM Rtens,45,k γM2

• The design shear strength of the connector is obtained from the characteristic value as follows:

RV,d =

RV,k kmod γM

• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal strengths were evaluated considering a penetration length of Sg,tot or Sg, as shown in the table. For intermediate values of Sg it is possible to linearly interpolate. • The shear srength and sliding values were evaluated considering the centre of gravity of the connector placed in correspondence with the shear plane. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com). • For minimum distances and structural values for cross connectors in shear connection main beam - secondary beam see VGZ on page 130. • For minimum distances and structural values on CLT and LVL see VGZ on page 134.

TIMBER | VGS EVO | 185


VGS EVO C5

AC233 ESR-4645

ETA-11/0030

FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt Spray Test (SST) with exposure time greater than 3000 h carried out on screws previously screwed and unscrewed in Douglas fir timber.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements.

MAXIMUM STRENGTH It is the screw of choice if high mechanical performance is required under very adverse environmental and wood corrosive conditions. The cylindrical head makes it ideal for concealed joints, timber couplings and structural reinforcements.

BIT INCLUDED

LENGTH [mm] 9 9

vgs evo C5

15

DIAMETER [mm] 80

200

2000

360

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C5

C5

EVO COATING

carbon steel with C5 EVO coating with very high corrosion resistance

FIELDS OF USE • • • •

186 | VGS EVO C5 | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods


CODES AND DIMENSIONS d1

CODE

[mm]

RELATED PRODUCTS

L

b

pcs

[mm]

[mm]

VGSEVO9200C5

200

190

25

VGSEVO9240C5

9 VGSEVO9280C5 TX 40 VGSEVO9320C5

240

230

25

280

270

25

320

310

25

VGSEVO9360C5

360

350

25

VGU EVO page 190

TORQUE LIMITER page 408

GEOMETRY AND MECHANICAL CHARACTERISTICS

d2 d1

XXX

dK

90°

VGS

t1

b L

45°

GEOMETRY Nominal diameter

d1

[mm]

9

Countersunk head diameter Countersunk head thickness

dK

[mm]

16,00

t1

[mm]

6,50

Thread diameter

d2

[mm]

5,90

Pre-drilling hole diameter(1)

dV,S

[mm]

5,0

Pre-drilling hole diameter(2)

dV,H

[mm]

6,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

9

Tensile strength

ftens,k

[kN]

25,4

Yield moment

My,k

[Nm]

27,2

fy,k

[N/mm2]

1000

Yield strength

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

11,7

15,0

29,0

Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

HYBRID STEEL-TIMBER STRUCTURES VGS EVO C5 is the ideal solution for steel structures where high-strength ad hoc connections are required, particularly in adverse climatic contexts such as the marine environment.

SWELLING OF TIMBER The application of VGS EVO C5 in combination with polymeric interlayers such as XYLOFON WASHER gives the joint a certain adaptability to mitigate stresses resulting from shrinkage/ swelling of the wood.

TIMBER | VGS EVO C5 | 187


VGS A4

AC233 ESR-4645

ETA-11/0030

FULL THREAD CONNECTOR WITH COUNTERSUNK HEAD A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.

T5 TIMBER CORROSIVITY Suitable for use in applications on agressive woods with an acidity (pH) level below 4 such as oak, Douglas fir and chestnut, and in wood moisture conditions above 20%.

BIT INCLUDED

LENGTH [mm] 9 9

11

15

DIAMETER [mm] 80

100

600

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T2

X

G

X

S

X

T1 V

X

G

S X

G

G

X

S

X

X

MATERIAL

V

S

G

V

X

V

S

G

X

X

A4

X

V

G

X

X

S

X

X

TORQUE LIMITER

X

N

T5

V

V

METAL-to-TIMBER recommended use:

T4

S

X

T3

X

X

X

Mins,rec

Mins,rec Mins,rec

AISI 316

A4 | AISI316 austenitic stainless steel (CRC III)

FIELDS OF USE • • • •

188 | VGS A4 | TIMBER

timber based panels solid timber and glulam CLT and LVL ACQ, CCA treated timber

2000


L

b

[mm]

[mm]

VGS9120A4

120

110

25

VGS9160A4

160

150

25

VGS9200A4

200

190 230

280

270

VGS9320A4

320

310

45° VGS9360A4

360 b

350

25

VGS11100A4

100

90

25

VGS11150A4

150

140

25

VGS11200A4

200

190

VGS11250A4

250

240

25

300

290

25

350

340

25

500 b

490

25

600

590

25

L

25

VGS VGS

VGS VGS

VGS11500A4 VGS11600A4

dK

VGS

VGS VGS

390

2

b L

page 409

t1 dK

90°

1

TEMPLATE FOR 45° SCREWS

t1

d2 d1

90° 45°

b L

TORQUE LIMITER

TORQUE LIMITER t1

t1 dK

d2 d 1 90°

XXX

400

JIG VGZd 45° d

90° 45°

25

45°

b L t1

dK

d2 d 1 90°

XXX

VGS11400A4

25

XXX

90°

XXX

dK

dK

d2 d1

t1

XXX

1

25 dK

page 68

90° 45°

XXX

L

dK

90°

25

XXX

90°

t1 XXX

240

11 VGS11300A4 TX 50 t VGS11350A4

t1

25

9 VGS9240A4 TX 40 t VGS9280A4 1

dK

dK

t1

XXX

t1

HUS A4 TURNED WASHER

VGS

[mm]

pcs

VGS

CODE

RELATED PRODUCTS

VGS

d1

XXX

page 408 d d

90°

2

45°

1

b L

GEOMETRY

45°

b L

V

d1

Head diameter Head thickness

d1 90° d2 90°

t1 dK

45°

b

VGS Ø11 L

L ≤ 250 mm

Nominal diameter

dK

VGS

dK

90°

VGS

VGS

VGS

VGS

d2 ddK 1

90°

t1 XXX

45°

dK

XXX

90°

t1 XXX

dK

240 mm < L ≤ 360 mm

t1 XXX

90°

VGS Ø9

L ≤ 240 mm t1

t1 XXX

XXX

SW

dK

t1 XXX

VGS

GS A4

tS

t1

VGS Ø9

VGS

VGS Ø9-Ø11

XXX

°

CODES AND DIMENSIONS

90° b L

VGS Ø11

45°

250 mm < L ≤ 600 mm

[mm]

9

11

dK

[mm]

16,00

19,30

t1

[mm]

6,50

8,20

Thread diameter

d2

[mm]

5,90

6,60

Pre-drilling hole diameter(1)

dV,S

[mm]

5,0

6,0

(1) Pre-drilling valid for softwood.

For the mechanical parameters please see ETA-11/0030.

HYBRID STEEL-TIMBER STRUCTURES Ideal for steel structures where high-strength customised connections are required, particularly in adverse climatic contexts such as the marine environment and acidic woods.

SWELLING OF TIMBER Application in combination with polymeric interlayers such as XYLOFON WASHER gives the joint a certain adaptability to mitigate stresses resulting from shrinkage/swelling of the wood.

TIMBER | VGS A4 | 189


VGU

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

ETA-11/0030

45° WASHER FOR VGS SAFETY The VGU washer makes possible to install VGS screws at a 45° angle on steel plates. Washer marked CE as per ETA-11/0030.

PRACTICALITY The ergonomic shape ensures a firm, precise grip during installation. Three versions of washer, compatible with VGS in diameter 9, 11 and 13 mm, are available for plates of variable thickness. The use of the VGU allows the use of inclined screws on plate without resorting to countersunk holes on the plate, which is generally a time-consuming and costly operation.

VGU

C4 EVO COATING VGU EVO is coated with a surface treatment resistant to high atmospheric corrosivity. Compatible with VGS EVO diameter 9, 11 and 13 mm.

VGU EVO

S X

G G

X

S

X

V

G

X

S

X

X

V

X

G

V

S

SC4 T2 C3

V

G

X

X

SC3 T1 C2

S

SC2 C1

T3 C4

T4 C5

T4

Scan the QR Code and watch T5the video on our YouTube channel

X

TORQUE LIMITER

X

SC1

electrogalvanized carbon steel

S

Zn

ELECTRO PLATED

X

MATERIAL

X

N

15

X

13

X

9 9

G

V

DIAMETER [mm]

Mins,rec Mins,rec

T5

VIDEO

C4

EVO COATING

carbon steel with C4 EVO coating

SC1 C1

SC2 C2

SC3 T1 C3

SC4 T2 C4

T3 C5

FIELDS OF USE • • • • • • •

190 | VGU | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods steel construction metal plates and profiles

X

V

X

Mins,rec

X

METAL-to-TIMBER recommended use:


CODES AND DIMENSIONS VGU WASHER

VGU EVO WASHER

CODE

screw

dV,S

pcs

CODE

[mm]

[mm]

VGU945

VGS Ø9

VGU1145 VGU1345

screw

dV,S

[mm]

[mm]

5

25

VGUEVO945

VGSEVO Ø9

5

25

VGS Ø11

6

25

VGUEVO1145 VGSEVO Ø11

6

25

VGS Ø13

8

25

VGUEVO1345 VGSEVO Ø13

8

25

dV,S = pre-drilling hole diameter (softwood)

dV,S = pre-drilling hole diameter (softwood)

JIG VGU TEMPLATE

HSS WOOD DRILL BIT

CODE

washer

dh

dV

pcs

[mm]

[mm] [mm]

JIGVGU945

VGU945

5,5

5

1

F1599105

JIGVGU1145

VGU1145

6,5

6

1

JIGVGU1345

VGU1345

8,5

8

1

dh

CODE

pcs

dV

TL

SL

pcs

[mm]

[mm]

[mm]

5

150

100

1

F1599106

6

150

100

1

F1599108

8

150

100

1

LE LT

For more information see page 409.

GEOMETRY LF

D2 D1

H

BF

h SPLATE

Washer

VGU945 VGUEVO945

VGU1145 VGUEVO1145

VGU1345 VGUEVO1345

9,0

11,0

13,0

d1

[mm]

VGS screw pre-drilling hole diameter(1)

dV,S

[mm]

5,0

6,0

8,0

Internal diameter

D1

[mm]

9,70

11,80

14,00 27,40

VGS screw diameter

External diameter

D2

[mm]

19,00

23,00

Base heigth

h

[mm]

3,00

3,60

4,30

Global heigth

H

[mm]

23,00

28,00

33,00

Slotted-hole length

LF

[mm]

33,0 ÷ 34,0

41,0 ÷ 42,0

49,0 ÷ 50,0

Slotted-hole width

BF

[mm]

14,0 ÷ 15,0

17,0 ÷ 18,0

20,0 ÷ 21,0

Steel plate thickness(2)

SPLATE

[mm]

3,0 ÷ 12,0

4,0 ÷ 15,0

5,0 ÷ 15,0

(1) Pre-drilling valid for softwood. (2) For thicker plates than those indicated in the table it is necessary to carry out a countersink in the lower part of the steel plate.

Recommended Ø5 mm guide hole (of minimum length 50 mm) for VGS screws of length L > 300 mm.

HELPS WITH INSTALLATION The JIG VGU template makes it easy to prepare a 45° angle pre-drill, thus facilitating subsequent tightening of the VGS screws inside the washer. A pre-drill length of at least 20 mm is recommended.

TIMBER | VGU | 191


STRUCTURAL VALUES | STEEL-TO-TIMBER JOINT SLIDING geometry

timber

d1

steel

SPLATE

45°

L

45°

S

g

Amin

d1

VGS/VGS EVO VGU VGU EVO

d1

L

A min

RV,k

Sg

A min

RV,k

Sg

A min

RV,k

Rtens,45,k

[mm]

[mm]

[mm] [mm]

Sg

[kN]

[mm] [mm]

[kN]

[mm] [mm]

[kN]

[kN]

100

75

6,03

70

5,63

65

65

SPLATE

VGU945 9 VGUEVO945

3 mm

11 VGUEVO1145

192 | VGU | TIMBER

8 mm 70

12 mm

5,22

120

95

85

7,63

90

85

7,23

85

80

6,83

140

115

100

9,24

110

100

8,84

105

95

8,44 10,04

160

135

115

10,85

130

110

10,45

125

110

180

155

130

12,46

150

125

12,05

145

125

11,65

200

175

145

14,06

170

140

13,66

165

135

13,26

220

195

160

15,67

190

155

15,27

185

150

14,87

240

215

170

17,28

210

170

16,88

205

165

16,47

260

235

185

18,88

230

185

18,48

225

180

18,08

280

255

200

20,49

250

195

20,09

245

195

19,69

300

275

215

22,10

270

210

21,70

265

205

21,29

320

295

230

23,71

290

225

23,30

285

220

22,90

340

315

245

25,31

310

240

24,91

305

235

24,51

360

335

255

26,92

330

255

26,52

325

250

26,12

380

355

270

28,53

350

265

28,13

345

265

27,72

400

375

285

30,13

370

280

29,73

365

280

29,33 32,54

440

415

315

33,35

410

310

32,95

405

305

480

455

340

36,56

450

340

36,16

445

335

35,76

520

495

370

39,78

490

365

39,38

485

365

38,97

560

535

400

42,99

530

395

42,59

525

390

42,19

600

575

425

46,21

570

425

45,80

565

420

45,40

80

50

55

4,91

-

-

-

-

-

5,40

4 mm

SPLATE

VGU1145

75

10 mm

15 mm

17,96

-

100

70

70

6,88

60

60

5,89

55

60

125

95

85

9,33

85

80

8,35

80

75

7,86

150

120

105

11,79

110

100

10,80

105

95

10,31

175

145

125

14,24

135

115

13,26

130

110

12,77

200

170

140

16,70

160

135

15,71

155

130

15,22

225

195

160

19,15

185

150

18,17

180

145

17,68

250

220

175

21,61

210

170

20,63

205

165

20,13

275

245

195

24,06

235

185

23,08

230

185

22,59

300

270

210

26,52

260

205

25,54

255

200

25,04

325

295

230

28,97

285

220

27,99

280

220

27,50

350

320

245

31,43

310

240

30,45

305

235

29,96

375

345

265

33,88

335

255

32,90

330

255

32,41

400

370

280

36,34

360

275

35,36

355

270

34,87

425

395

300

38,79

385

290

37,81

380

290

37,32

450

420

315

41,25

410

310

40,27

405

305

39,78

475

445

335

43,71

435

330

42,72

430

325

42,23

500

470

350

46,16

460

345

45,18

455

340

44,69

525

495

370

48,62

485

365

47,63

480

360

47,14

550

520

390

51,07

510

380

50,09

505

375

49,60

575

545

405

53,53

535

400

52,55

530

395

52,05

600

570

425

55,98

560

415

55,00

555

410

54,51

26,87


STRUCTURAL VALUES | STEEL-TO-TIMBER JOINT SLIDING geometry

timber

d1

steel

SPLATE

45°

L

45°

S

g

Amin

d1

VGS/VGS EVO VGU VGU EVO

d1

L

A min

RV,k

Sg

A min

RV,k

Sg

A min

RV,k

Rtens,45,k

[mm]

[mm]

[mm] [mm]

Sg

[kN]

[mm] [mm]

[kN]

[mm] [mm]

[kN]

[kN]

100

65

65

7,54

55

SPLATE

VGU1345 13 VGUEVO1345

5 mm

10 mm

15 mm

60

6,38

-

-

-

11,61

150

115

100

13,35

105

95

12,19

100

90

200

165

135

19,15

155

130

17,99

150

125

17,41

250

215

170

24,96

205

165

23,79

200

160

23,21

300

265

205

30,76

255

200

29,60

250

195

29,02

350

315

245

36,56

305

235

35,40

300

230

34,82

400

365

280

42,37

355

270

41,21

350

265

40,63 46,43

450

415

315

48,17

405

305

47,01

400

305

500

465

350

53,97

455

340

52,81

450

340

52,23

550

515

385

59,78

505

375

58,62

500

375

58,04

600

565

420

65,58

555

410

64,42

550

410

63,84

37,48

GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.

• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:

R’ax,k = kdens,ax Rax,k

RV,d = min

RV,k kmod γM Rtens,45,k γM2

• The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

R’ki,k = kdens,ki Rki,k ρk R’[kg/m = k3dens,ax R350 ] V,k V,k R’V,90,k = kdens,V C24 RV,90,k C-GL

380

385

405

425

430

440

C30

GL24h

GL26h

GL28h

GL30h

GL32h

R’kV,0,k = kdens,V 0,92 RV,0,k dens,ax

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation. • For a connection with inclined screws in a metal plate application, the characteristic effective sliding load-bearing capacity for a row of n screws is equal to:

• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.

Ref,V,k = nef,ax RV,k

• Sizing and verification of the timber elements and metal plates must be done separately.

The nef value is given in the table below as a function of n (number of screws in a row).

• The screws must be positioned in accordance with the minimum distances.

n

2

3

4

5

6

7

8

9

10

• For the correct realization of the joint, the fastener head should be fully embedded into the VGU washer.

nef,ax

1,87

2,70

3,60

4,50

5,40

6,30

7,20

8,10

9,00

• The characteristic sliding strengths were evaluated by considering a minimum penetration length of Sg, as shown in the table, considering a minimum penetration length of 4-d1 . For intermediate values of Sg or SPLATE it is possible to linearly interpolate.

• For available VGS and VGS EVO screw sizes, see pages 164 and 180.

• The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The VGU washer is over-resistant compared to the strength of the VGS/ VGSEVO screw. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered.

TIMBER | VGU | 193


INSTALLATION INSTRUCTIONS

S

X

V

G

X

G

V

V

S X

G

G

G

V

X

G

V

V

G

V

X

m 510 m

S

X

X

S

G

X

X

After installation, the fasteners can be inspected using a torque wrench.

X

X

X

V

G

X

S

V

50

S

13

X

X

X

X S

X

X X

V

V X

G V

X

X

G

V

V

G

G

G X

S

X

S

V

G X

V

G

G

X X

X

S

S

X

S

X

V

X

X G

X

S

X

X

V

S

X

X

40

X

S

X

S

S

X X

11

Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.

α

X

X

X

30

X

Ø13

X

11

X

X

Ø11 L ≥ 400 mm

The use of pulse screw guns/impact wrenches is not permitted.

S

Ø11 L < 400 mm

N

X

X

S

X

X

V

X

Mins

V

G

X

X

X

S

V

G G

X

S

X

X

V

S

V

G

The installation of multiple screws must be performed to guarantee that loads are distributed evenly to all fasteners.

Shrinkage or swelling of timber elements due to changes in moisture content must be avoided.

Avoid dimensional changes in the metal, e.g. due to large temperature fluctuations.

L

V

G

INSTALLATION WITHOUT PRE-DRILL

S

Avoid bending.

X

X

X

X

X

X

45°

LF Place the steel plate on the wood and set the VGU washers in the slots provided.

X

S

X

X

S X

S X

G

V

S

X

X

S

X

510

X

X

mm

G

G

V

G

S

V

G

X

X

S X

V

G

X

X

S

G

X

V

X

V

X

X

X

V

G

V

X

Mins

Position the screw and respect the 45° angle of insertion.

Mins

2 3 45 1 6 12 7 11 8 10 9

X

V

S

G

X

X X

V

G

X

X

S X

X

X

N Screw in, ensuring correct tightening.

194 | VGU | TIMBER

X S

X S

X

Ø9

X

G

G

V

S

V

20

X

X

9

Mins,rec

X

[Nm]

X

X

Mins,rec

X

Mins

d1 [mm]

X

VGS

X

G

2 3 45 1 6 12 7 11 8 10 9

Perform the operation for all washers. The assembly must be performed so as to guarantee that the stress is evenly distributed among all the installed VGU washers.


L

INSTALLATION WITH THE AID OF A PRE-DRILL TEMPLATE

LF

V

G

Use the VGU JIG template of the correct diameter by positioning it in the VGU washer

S

Place the steel plate on the wood and set the VGU washers in the slots provided.

X

X

X

45°

Using the pre-drill template, prepare a pre-drill/guide hole (at least 50 mm length) using an appropriate tip

X

X

S

X

Mins

2 3 45 1 6 12 7 11 8 10 9

S X

S X

G

V

S

X

X

S

X

510

X

X

mm

G

G

V

G

S

V

G

X

X

S X

V

G

X

X

S

G

X

V

X

V

X

X

X

V

G

V

X

Mins

Position the screw and respect the 45° angle of insertion.

X

V

S

G

X

X X

V

G

X

X

S X

X

X

N Screw in, ensuring correct tightening.

Perform the operation for all washers. The assembly must be performed so as to guarantee that the stress is evenly distributed among all the installed VGU washers.

Theory, practice and experimental campaigns: our experience is in your hands. Download the SMARTBOOK TIMBER SCREWS.

TIMBER | VGU | 195


RTR

ETA-11/0030

UKTA-0836 22/6195

STRUCTURAL REINFORCEMENT SYSTEM CERTIFICATION FOR TIMBER AND CONCRETE Structural connector approved for timber applications according to ETA11/0030 and for timber-concrete applications according to ETA-22/0806.

RAPID DRY SYSTEM Available in diameters 16 and 20 mm, it is used to reinforce and connect large elements. The timber thread allows application without the need for resins or adhesives.

STRUCTURAL REINFORCEMENT The high-performance tensile steel (fy,k = 640 N/mm2) and the large dimensions available make RTR ideal for structural reinforcement applications.

LARGE SPANS The system, developed for applications on large span elements, allows fast and secure reinforcement and connections on any beam size due to the considerable length of the bars. Ideal for factory installations.

BIT INCLUDED

DIAMETER [mm]

16 16

20 20 2200

LENGTH [mm] SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • •

196 | RTR | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT, LVL

ETA-11/0030


CODES AND DIMENSIONS d1

RELATED PRODUCTS

CODE

[mm]

L

D 38 RLE

pcs

[mm]

4-SPEED DRILL DRIVER

16

RTR162200

2200

10

20

RTR202200

2200

5

page 407

GEOMETRY AND MECHANICAL CHARACTERISTICS d2 d1

L Nominal diameter

d1

[mm]

16

20

Thread diameter

d2

[mm]

12,00

15,00

Pre-drilling hole diameter(1)

dV,S

[mm]

13,0

16,0

ftens,k

[kN]

100,0

145,0

My,k

[Nm]

200,0

350,0

fy,k

[N/mm2]

640

640

Characteristic tensile strength Characteristic yield moment Characteristic yield strength (1) Pre-drilling valid for softwood.

CHARACTERISTIC MECHANICAL PARAMETERS softwood (softwood) Withdrawal resistance parameter

fax,k

[N/mm2]

Associated density

ρa

[kg/m3]

350

Calculation density

ρk

[kg/m3]

≤ 440

9,0

For applications with different materials please see ETA-11/0030.

TC FUSION SYSTEM FOR TIMBER-CONCRETE APPLICATION Nominal diameter

d1

[mm]

16

20

Tangential strength of adhesion in concrete C25/30

fb,k

[N/mm2]

9,0

-

For applications with different materials please see ETA-22/0806

TC FUSION The ETA-22/0806 approval of the TC FUSION system allows the RTR threaded rods to be used together with the reinforcements in the concrete so that the panel floor slabs and the bracing core can be bonded together with a small integration of the casting.

TIMBER | RTR | 197


MINIMUM DISTANCES FOR AXIAL STRESSES rods inserted WITH pre-drilled hole d1

[mm]

16

20

a1

[mm]

5∙d

80

100

a2

[mm]

5∙d

80

100

a1,CG

[mm]

10∙d

160

200

a2,CG

[mm]

4∙d

64

80

d = d1 = nominal rod diameter

a2,CG a2 a2,CG a1,CG

a1

a1,CG

a1

MINIMUM DISTANCES FOR SHEAR LOADS rods inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

a3,t

[mm]

12∙d

a3,c [mm]

7∙d

a4,t

[mm]

3∙d

a4,c [mm]

3∙d

5∙d

F

α=90°

16

20

d1

[mm]

80

100

a1

[mm]

4∙d

16

20

64

80

48

60

a2

[mm]

4∙d

64

80

192

240

a3,t

[mm]

7∙d

112

140

112

140

a3,c [mm]

7∙d

112

140

48

60

a4,t

[mm]

7∙d

112

140

48

60

a4,c [mm]

3∙d

48

60

α = load-to-grain angle d = d1 = nominal rod diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • Minimum distances according to ETA-11/0030. • The minimum distances for shear-stressed bars are in accordance with EN 1995:2014.

198 | RTR | TIMBER

• The minimum distances for axially stressed connectors are independent of the insertion angle of the connector and the angle of the force with respect to the grain.


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

TENSION / COMPRESSION thread withdrawal ε=90°

geometry

steel tension

SLIDING instability ε=90°

timber-to-timber

S

g

A

steel tension

45°

S

g

45°

Sg

B

Amin

d1

d1 [mm]

Sg [mm] 200 300 400 500 600 700 800 900 1000 1200 200 300 400 500 600 700 800 1000 1200 1400

16

20

A min [mm] 210 310 410 510 610 710 810 910 1010 1210 210 310 410 510 610 710 810 1010 1210 1410

Rax,90,k [kN] 31,08 46,62 62,16 77,70 93,25 108,79 124,33 139,87 155,41 186,49 38,85 58,28 77,70 97,13 116,56 135,98 155,41 194,26 233,11 271,97

Rtens,k [kN]

Rki,90,k [kN]

100

55,16

145

87,46

Sg [mm] 100 150 200 250 300 350 400 450 500 600 100 150 200 250 300 350 400 500 600 700

A [mm] 80 115 150 185 220 255 290 325 360 430 80 115 150 185 220 255 290 360 430 500

Bmin [mm] 90 125 160 195 230 265 300 335 370 440 90 125 160 195 230 265 300 370 440 510

RV,k [kN] 10,99 16,48 21,98 27,47 32,97 38,46 43,96 49,45 54,95 65,93 13,74 20,60 27,47 34,34 41,21 48,08 54,95 68,68 82,42 96,15

Rtens,45,k [kN]

70,71

102,53

ε = screw-to-grain angle

SHEAR timber-to-timber ε=90°

geometry

NOTES | TIMBER A

Sg L Sg d1

d1

L

Sg

A

[mm]

[mm]

[mm]

[mm]

[mm]

100 200 300 400 500 600 ≥ 800 100 200 300 400 500 600 800 ≥ 1000

50 100 150 200 250 300 ≥ 400 50 100 150 200 250 300 400 ≥ 500

50 100 150 200 250 300 ≥ 400 50 100 150 200 250 300 400 ≥ 500

10,73 18,87 20,81 22,75 24,69 26,64 29,96 12,89 25,78 28,91 31,34 33,77 36,19 41,05 43,25

16

20

RV,90,k

• The characteristic thread withdrawal strenghts were evaluated by considering an angle ε of 90° (Rax,90,k) between the grains of the timber element and the connector. • The characteristic sliding strengths were evaluated by considering an angle ε of 45° between the grains of the timber element and the connector. • The characteristic timber-to-timber shear strengths were evaluated considering an angle ε of 90° (RV,90,k) between the grains of the second element and the connector. • For the calculation process a timber characteristic density ρ k = 385 kg/m3 has been considered. For different ρk values, the strength values in the table (withdrawal, compression, sliding and shear) can be converted via the kdens coefficient.

R’ax,k = kdens,ax Rax,k R’ki,k = kdens,ki Rki,k R’V,k = kdens,ax RV,k R’V,90,k = kdens,V RV,90,k R’V,0,k = kdens,V RV,0,k ρk

350

380

385

405

425

430

440

C-GL kdens,ax

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

0,92

0,98

1,00

1,04

1,08

1,09

1,11

kdens,ki

0,97

0,99

1,00

1,00

1,01

1,02

1,02

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

GENERAL PRINCIPLES on page 200.

TIMBER | RTR | 199


STRUCTURAL VALUES | TC FUSION

CHARACTERISTIC VALUES EN 1995:2014

TENSILE CONNECTION CLT - CONCRETE geometry

CLT

concrete

lb,d

lb,d

L

Sg

Sg

NOTES | TC FUSION • Characteristic values according to ETA-22/0806. • The axial thread withdrawal resistance in the narrow face is valid for minimum CLT thickness tCLT,min = 10∙d1 and minimum screw pull-through depth tpen = 10∙d1 . Connectors with shorter lengths than those in the table do not comply with the minimum penetration depth requirements and are not reported.

d1

d1

L min

Sg

Rax,0,k

lb,d

Rax,C,k

[mm]

[mm]

[mm]

[kN]

[mm]

[kN]

16

400 500 600 700 800 900 1000 1100 1200 1300 1400

240 340 440 540 640 740 840 940 1040 1140 1240

25,50 34,89 44,00 52,90 61,64 70,25 78,74 87,12 95,42 100,00 100,00

150 150 150 150 150 150 150 150 150 150 150

• A concrete grade of C25/30 was considered in the calculation. For applications with different materials please see ETA-22/0806. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the concrete-side design strength (Rax,C,d).

67,86

Rax,d = min

Rax,0,k kmod γM Rax,C,k γM,concrete

• The concrete element must have adequate reinforcement bars. • The connectors must be arranged at a maximum distance of 300 mm.

TC FUSION TIMBER-TO-CONCRETE JOINT SYSTEM The innovation of VGS, VGZ and RTR all-thread connectors for timber-concrete applications. Find it out on page 270.

STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• The compression design strength of the connector is the lower between the timber-side design strength (Rax,d) and the instability design strength (Rki,d).

Rax,d = min

Rax,k kmod γM Rki,k γM1

• The design sliding strength of the joint is either the timber-side design strength (RV,d) and the design strength on the steel side projected (Rtens,45,d), whichever is lower:

RV,d = min

RV,k kmod γM Rtens,45,k γM2

200 | RTR | TIMBER

• The design shear strength of the connector is obtained from the characteristic value as follows:

RV,d =

RV,k kmod γM

• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the rods, reference was made to ETA-11/0030. • Dimensioning and verification of the timber elements must be carried out separately. • The rods must be positioned in accordance with the minimum distances. • The characteristic thread withdrawal resistances were evaluated considering a penetration length of Sg as shown in the table. For intermediate values of Sg it is possible to linearly interpolate.


INSTALLATION SUGGESTIONS

1

For a better finish, it is recommended to drill a hole through BORMAX to accommodate the timber end cap.

2

3

Pre-drill the hole inside the timber element, ensuring that it is straight. The use of COLUMN ensures better accuracy.

Cut the RTR threaded rod to the desired length, ensuring that it is less than the depth of the pre-drilling.

4

5

Assemble the sleeve (ATCS007 or ATCS008) onto the adapter with safety clutch (DUVSKU). Alternatively, a simple adapter (ATCS2010) can be used.

Insert the sleeve into the threaded rod and the adapter into the screwdriver. We recommend the use of the handle (DUD38SH) for more control and stability when screwing.

6

7

8

Screw up to the length defined in the design. We recommend limiting the insertion moment value to 200 Nm (RTR 16) and 300 Nm (RTR 20).

Unscrew the sleeve from the bar.

If provided, insert a TAP cap to conceal the threaded rod and ensure better aesthetic finish and fire strength.

RELATED PRODUCTS

VGS page 164

LEWIS page 414

D 38 RLE page 407

COLUMN page 411

TIMBER | RTR | 201


DGZ

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

DOUBLE THREADED SCREW FOR INSULATION CONTINUOUS INSULATION Allows continuous, uninterrupted fastening of roof insulation package. Limits thermal bridges in compliance with energy saving regulations. The cylindrical head is ideal for hidden insertion in the batten. Screw also certified in versions with flange head (DGT) and countersunk head (DGS).

CERTIFICATION Connector for hard and soft insulation, for roofing and façade applications, CE certified according to ETA-11/0030. Available in two diameters (7 and 9 mm) to optimize the number of fasteners.

MYPROJECT Free MyProject software for customized fastening calculation, accompanied by a calculation report.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

BIT INCLUDED

DIAMETER [mm]

6

LENGTH [mm]

80

7

9 9 220

520 520

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • • •

202 | DGZ | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT, LVL engineered timbers

ETA-11/0030


THERMAL BRIDGES Thanks to the double thread, the roof insulation package can be fixed to the supporting structure without any interruptions, thus limiting thermal bridges. Certification specific for fastening on both hard and soft insulation.

VENTILATED FAÇADES Also tested, certified and calculated on façade joists and with engineered woods such as Microllam® LVL.

TIMBER | DGZ | 203


CODES AND DIMENSIONS d1

CODE

L

[mm]

pcs

d1

[mm]

CODE

L

[mm]

pcs

[mm]

DGZ7220

220

50

DGZ9240

240

50

DGZ7260 7 DGZ7300 TX 30 DGZ7340

260

50

DGZ9280

280

50

300

50

DGZ9320

320

50

340

50

DGZ9360

50

DGZ7380

380

50

9 TX 40 DGZ9400

360 400

50

DGZ9440

440

50

DGZ9480

480

50

DGZ9520

520

50

NOTES: upon request, EVO version is available.

d2 d1

XXX

dK

DGZ

GEOMETRY AND MECHANICAL CHARACTERISTICS

dS

60

100 L

GEOMETRY Nominal diameter

d1

[mm]

7

9

Head diameter

dK

[mm]

9,50

11,50

Thread diameter

d2

[mm]

4,60

5,90

Shank diameter

dS

[mm]

5,00

6,50

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

7

9

Tensile strength

ftens,k

[kN]

15,4

25,4

Yield moment

My,k

[Nm]

14,2

27,2

Refer to ETA-11/0030 for the instability resistance values of screws as a function of their effective length. softwood (softwood)

LVL softwood (LVL softwood)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

Associated density

ρa

[kg/m3]

350

500

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

For applications with different materials please see ETA-11/0030.

Complete calculation reports for designing in wood? Download MyProject and simplify your work!

204 | DGZ | TIMBER


SCREW SELECTION MINIMUM SCREW LENGTH DGZ Ø7 batten height(*)

insulation + wooden planking thickness t

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

[mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

s = 30 mm

s = 40 mm

s = 50 mm

s = 60 mm

s = 80 mm

60

220

220

220

220

220

220

220

220

260

220

80

220

220

220

220

220

220

260

220

260

220

100

220

220

260

220

260

220

260

220

300

260

120

260

220

260

220

260

260

300

260

300

260

140

260

260

300

260

300

260

300

260

340

300

160

300

260

300

260

340

300

340

300

340

300

180

340

300

340

300

340

300

340

300

380

340

200

340

300

340

300

380

340

380

340

-

340

220

380

340

380

340

380

340

380

340

-

380

240

380

340

380

340

-

380

-

380

-

380

260

-

380

-

380

-

380

-

380

-

-

280

-

380

-

380

-

-

-

-

-

-

(*) Minimum batten thicknesses: DGZ Ø7 mm: base/height = 50/30 mm.

MINIMUM SCREW LENGTH DGZ Ø9 batten height(*) s = 50 mm

insulation + wooden planking thickness t

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

A DGZ at 60°

B DGZ at 90°

[mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

Lmin [mm]

s = 30 mm

s = 40 mm

s = 60 mm

s = 80 mm

60

-

-

240

240

240

240

240

240

240

240

80

-

-

240

240

240

240

240

240

280

240

100

-

-

240

240

240

240

280

240

280

240

120

-

-

280

240

280

240

280

240

320

280

140

-

-

280

240

320

280

320

280

320

280

160

-

-

320

280

320

280

320

280

360

320

180

-

-

320

280

360

320

360

320

400

320

200

-

-

360

320

360

320

400

320

400

360

220

-

-

400

320

400

360

400

360

440

360

240

-

-

400

360

400

360

440

360

440

400 400

260

-

-

440

360

440

400

440

400

480

280

-

-

440

400

480

400

480

400

480

440

300

-

-

480

400

480

400

480

440

520

440

320

-

-

520

440

520

440

520

480

520

480

340

-

-

520

480

520

480

-

-

-

-

(*) Minimum batten thicknesses: DGZ Ø9 mm: base/height = 60/40 mm.

s

t

A

60° A

90°

s

s t

60° 90°

A B

A

60°

t

A

90°

A

A

A A B

B

RIGID ROOF INSULATION σ(10%) ≥ 50 kPa (EN826)

SOFT ROOF INSULATION σ(10%) < 50 kPa (EN826)

90° B A 60°

B

FACADE INSULATION

NOTE: Check that the screw length is compatible with the size of the structural timber element and that the tip does not protrude from the beam bottom.

TIMBER | DGZ | 205


MINIMUM DISTANCES FOR AXIAL STRESSES (1) screws inserted WITH and WITHOUT pre-drilled hole d1 a1 a2 a1,CG a2,CG

[mm] [mm] [mm] [mm] [mm]

7 35 35 56 21

5∙d 5∙d 8∙d 3∙d

9 45 45 72 27

d = d1 = nominal screw diameter

a2,CG 1

a

a2 a2,CG a1,CG

a1,CG

NOTES: (1) T he minimum distances for axially loaded connectors are independent of

the insertion angle of the connector and the angle of the force with respect to the grain, in accordance with ETA-11/0030.

• For 3 THORNS tip the minimum distances in the table are derived from experimental tests; alternatively, adopt a1,CG = 10∙d and a2,CG = 4∙d in accordance with EN 1995:2014.

RESEARCH & DEVELOPMENT INSULATION AND INFLUENCE OF THERMAL BRIDGES CONTINUOUS INSULATION

INTERRUPTED INSULATION U

[W/m2K] 5,0 °C 7,5 °C

5,0 °C 7,5 °C

10,0 °C 12,5 °C 15,0 °C

10,0 °C 12,5 °C 15,0 °C

17,5 °C

17,5 °C

1

2

ΔU 10÷15%

1

2

The use of continuous insulation helps to limit the presence of thermal bridges. If the fastening of the package requires rigid elements within the insulation, there is a drop in thermal performance due to the presence of a thermal bridge distributed along the entire axis of the interposed secondary joists. Moreover, in the case of interrupted insulation, local discontinuities between the elements present may be more frequent during installation, further aggravating the thermal bridge. FASTENING OF CONTINUOUS INSULATION WITH DGZ A

A

5,0 °C 7,5 °C 10,0 °C 12,5 °C 15,0 °C

A

17,5 °C

A Section A-A

The use of the DGZ screw allows the installation of continuous insulation, without interruptions and discontinuities. In this case, the thermal bridge is localised and concentrated only at the connectors and therefore has an irrelevant contribution to the thermal performance of the package, which is therefore maintained. Excessive anchoring or incorrect arrangements should be avoided in order not to compromise the thermal performance of the package. Calculation performed by EURAC Research as part of MEZeroE project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 953157. For more info www.mezeroe.eu

206 | DGZ | TIMBER


CALCULATION EXAMPLE: FASTENING OF CONTINUOUS INSULATION WITH DGZ The number and placement of the fastenings depends on the geometry of the surfaces, the type of insulation and the loads acting on them.

PROJECT DATA Roof loads Permanent load

gk

0,45 kN/m2

Snow load

s

1,70 kN/m2

Positive wind pressure

we

0,30 kN/m2

Negative wind pressure

we

-0,30 kN/m2

Ridge piece height

z

8,00 m

Building length

L

11,50 m

Building width

B

8,00 m

Layer slope

α

30% = 16,7°

Ridge piece position

L1

5,00 m

Building dimensions

Roof geometry

INSULATION PACKAGE FIGURES Joists GL24h

bt x ht

120 x 160 mm

Wooden planking

S1

20.00 mm

Tile support battens

eb

0,33 m

Insulation layer

S2

160.00 mm

bL x hL

60 x 40 mm

C24 battens

Spacing

i

0,70 m

Wood grain (soft)

σ(10%)

0,03 N/mm2

Commercial length

LL

4,00 m

CONNECTOR SELECTION - OPTION 1 - DGZ Ø7

CONNECTOR SELECTION - OPTION 2 - DGZ Ø9

Screw under tension

7 x 300 mm

60° angle: 126 pcs

Screw under tension

Compressed screw

7 x 300 mm

60° angle: 126 pcs

Perpendicular screw

7 x 260 mm

90° angle: 72 pcs

Connector placement diagram.

9 x 320 mm

60° angle: 108 pcs

Compressed screw

9 x 320 mm

60° angle: 108 pcs

Perpendicular screw

9 x 280 mm

90° angle: 36 pcs

Roof batten calculation.

TIMBER | DGZ | 207


DRS TIMBER-TO-TIMBER SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.

VENTILATED FACADES The differentiated double thread is ideal for regulating the position of the battens on the facade and to create proper verticality. Ideal for levelling panelling, battens, ceilings and paving.

DIAMETER [mm] 6 6

9

LENGTH [mm] 80 80

145

520

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE Thanks to the possibility to create a distance between pieces of wood, it is possible to create versatile fastenings quickly and safely, without the need for any interposed element.

208 | DRS | TIMBER


CODES AND DIMENSIONS d1

CODE

L

b

[mm]

[mm]

DRS680

80

40

[mm]

6 TX 30

pcs 100

DRS6100

100

60

100

DRS6120

120

60

100

DRS6145

145

60

100

GEOMETRY d3

dS d2 d1

dK b

b1 L Nominal diameter

d1

[mm]

6

Head diameter

dK

[mm]

12,00

Thread diameter

d2

[mm]

3,80

Shank diameter

dS

[mm]

4,35

Underhead thread diameter

d3

[mm]

6,80

Length head + rings

b1

[mm]

24,0

INSTALLATION Select the screw length so that the thread is completely inserted in the timber support.

01

02

03

04

Position the DRS screw.

Attach the batten, screwing in the screw so that the head is flush with the timber.

Loosen the screw based on the desired distance.

Adjust the other screws in a similar manner to level the structure.

TIMBER | DRS | 209


DRT TIMBER-BRICKWORK SPACER SCREW DOUBLE THREAD, DIFFERENTIATED Underhead thread with specially designed geometry to create and regulate a space between the fastenable thicknesses.

FASTENING TO BRICKWORK Underhead thread with a greater diameter to allow fastening to brickwork through the addition of a plastic dowel.

DIAMETER [mm] 6 6

9

LENGTH [mm] 80 80

120

520

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE The differentiated double thread is ideal for adjusting the position of timber elements on brickwork supports (using the plastic screw anchor) and to create the proper verticality. Ideal for levelling panels on walls, paving and ceilings.

210 | DRT | TIMBER


CODES AND DIMENSIONS d1

CODE

[mm] 6 TX 30

NDK GL NYLON SCREW ANCHOR

L

b

pcs

CODE

d0

L

[mm]

[mm]

8

40

pcs

[mm]

[mm]

DRT680

80

50

100

NDKG840

DRT6100

100

70

100

DRT6120

120

70

100

For fastening on concrete or brickwork, use of the NDK GL nylon screw anchor is recommended.

100

GEOMETRY d3

dS d2 d1

dK b

b1 L Nominal diameter Head diameter Thread diameter Shank diameter Underhead thread diameter Length head + rings Diameter of concrete/brickwork opening

d1 dK d2 dS d3 b1 dV

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

6 12,00 3,90 4,35 9,50 20,0 8,0

INSTALLATION Select the screw length so that the thread is completely inserted in the concrete/brickwork support.

01

02

03

04

Drill the elements with a dV= 8,0 mm diameter.

Place the NDK GL nylon screw anchor inside the support.

Position the DRT screw.

Attach the batten, screwing in the screw so that the head is flush with the timber.

05

06

Loosen the screw based on the desired distance.

Adjust the other screws in a similar manner to level the structure.

TIMBER | DRT | 211


HBS PLATE

AC233 ESR-4645

ETA-11/0030

PAN HEAD SCREW FOR PLATES NEW GEOMETRY The inner core diameter of the Ø8, Ø10 and Ø12 mm screws has been increased to ensure higher performance in thick plate applications. In steel-timber connections, the new geometry achieves a strength increase of more than 15%.

PLATE FASTENING The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance. The edgeless geometry of the head reduces stress concentration points and gives the screw strength.

3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

BIT INCLUDED

DIAMETER [mm]

3

LENGTH [mm]

25

8

12 12

60

200 200

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

METAL-to-TIMBER recommended use:

N

electrogalvanized carbon steel

TORQUE LIMITER

Mins,rec Mins,rec

FIELDS OF USE • • • • •

212 | HBS PLATE | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods


MULTISTOREY Ideal for steel-to-timber joints with large customized plates, designed for multi-story timber buildings.

TITAN Values also tested, certified and calculated for fastening standard Rothoblaas plates.

TIMBER | HBS PLATE | 213


CODES AND DIMENSIONS d1

CODE

L

b

AP

[mm]

[mm]

[mm]

HBSPL860

60

52

1÷10

100

HBSPL12100

100

75

1÷15

25

HBSPL880

80

55

1÷15

100

HBSPL12120

120

90

1÷20

25

HBSPL8100

100

75

1÷15

100

HBSPL12140

140

110

1÷20

25

HBSPL8120

120

95

1÷15

100

HBSPL12160

160

120

1÷30

25

HBSPL8140

140

110

1÷20

100

HBSPL12180

180

140

1÷30

25

HBSPL8160

160

130

1÷20

100

HBSPL12200

200

160

1÷30

25

HBSPL1080

80

60

1÷10

50

HBSPL10100

100

75

1÷15

50

HBSPL10120

120

95

1÷15

50

HBSPL10140

140

110

1÷20

50

HBSPL10160

160

130

1÷20

50

HBSPL10180

180

150

1÷20

50

[mm]

8 TX 40

10 TX 40

pcs

d1

CODE

[mm]

12 TX 50

L

b

AP

[mm]

[mm]

[mm]

pcs

RELATED PRODUCTS TORQUE LIMITER TORQUE LIMITER

page 408

GEOMETRY AND MECHANICAL CHARACTERISTICS AP

XXX

dK

S HB P

tK d2 d1

dV,steel dUK

t1

dS

b L

GEOMETRY Nominal diameter

d1

[mm]

8

10

12

Head diameter

dK

[mm]

13,50

16,50

18,50

Thread diameter

d2

[mm]

5,90

6,60

7,30

Shank diameter

dS

[mm]

6,30

7,20

8,55

Head thickness

t1

[mm]

13,50

16,50

19,50

Washer thickness

tK

[mm]

4,50

5,00

5,50

Underhead diameter

dUK

[mm]

10,00

12,00

13,00

Hole diameter on steel plate

dV,steel [mm]

11,0

13,0

14,0

Pre-drilling hole diameter(1)

dV,S

[mm]

5,0

6,0

7,0

Pre-drilling hole diameter(2)

dV,H

[mm]

6,0

7,0

8,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

8

10

12

Tensile strength

ftens,k

[kN]

32,0

40,0

48,0

Yield moment

My,k

[Nm]

33,4

45,0

55,0

The mechanical parameters are obtained analytically and validated by experimental tests (HBS PLATE Ø10 and Ø12) .

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

214 | HBS PLATE | TIMBER


MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

F

α=90°

d1

[mm]

8

10

12

d1

[mm]

a1

[mm] 10∙d∙0,7

56

70

84

a1

[mm]

5∙d∙0,7

8

10

12

28

35

42

a2

[mm]

5∙d∙0,7

28

35

42

a2

[mm]

5∙d∙0,7

28

35

42

a3,t

[mm]

15∙d

120

150

180

a3,t

[mm]

10∙d

80

100

120

a3,c

[mm]

10∙d

80

100

120

a3,c

[mm]

10∙d

80

100

120

a4,t

[mm]

5∙d

40

50

60

a4,t

[mm]

10∙d

80

100

120

a4,c

[mm]

5∙d

40

50

60

a4,c

[mm]

5∙d

40

50

60

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

5∙d∙0,7

a2

[mm]

3∙d∙0,7

17

21

a3,t

[mm]

12∙d

96

120

a3,c

[mm]

7∙d

56

70

a4,t

[mm]

3∙d

24

30

a4,c

[mm]

3∙d

24

30

F

8

10

12

d1

[mm]

28

35

42

a1

[mm]

4∙d∙0,7

25

a2

[mm]

144

a3,t

[mm]

84

a3,c

36

a4,t

36

a4,c

α=90° 8

10

12

22

28

34

4∙d∙0,7

22

28

34

7∙d

56

70

84

[mm]

7∙d

56

70

84

[mm]

7∙d

56

70

84

[mm]

3∙d

24

30

36

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTE on page 221.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00

( * ) For intermediate a values a linear interpolation is possible. 1

TIMBER | HBS PLATE | 215


STRUCTURAL VALUES | STEEL-TO-TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

steel-to-timber thin plate ε=90°

geometry

steel-to-timber intermediate plate ε=90°

steel-to-timber thick plate ε=90° SPLATE

SPLATE

SPLATE

A L b d1

d1

L

b

RV,90,k

RV,90,k

RV,90,k

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

SPLATE

8

2 mm

3 mm

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

60

52

3,14

3,09

3,03

3,64

4,13

5,12

5,12

5,12

80

55

4,22

4,17

4,11

4,72

5,22

6,21

6,21

6,21

100

75

5,31

5,25

5,20

5,68

6,04

6,78

6,78

6,78

120

95

5,86

5,86

5,86

6,22

6,57

7,29

7,29

7,29

140

110

6,24

6,24

6,24

6,59

6,95

7,67

7,67

7,67

160

130

6,74

6,74

6,74

7,10

7,46

8,17

8,17

8,17

3 mm

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

16 mm

60

4,87

4,81

4,75

5,42

6,50

7,58

7,58

7,58

100

75

6,14

6,08

6,01

6,61

7,56

8,50

8,50

8,50

120

95

7,34

7,34

7,28

7,70

8,42

9,14

9,14

9,14

140

110

7,81

7,81

7,81

8,17

8,89

9,61

9,61

9,61

160

130

8,44

8,44

8,44

8,80

9,52

10,24

10,24

10,24

180

150

8,68

8,68

8,68

9,12

10,00

10,87

10,87

10,87

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

16 mm

20 mm

SPLATE 80

10

SPLATE

12

100

75

6,90

6,83

6,76

7,96

9,02

10,07

10,07

10,07

120

90

8,34

8,27

8,20

9,11

9,87

10,64

10,64

10,64

140

110

9,28

9,28

9,28

9,99

10,69

11,40

11,40

11,40

160

120

9,66

9,66

9,66

10,37

11,07

11,78

11,78

11,78

180

140

10,23

10,23

10,23

11,00

11,77

12,54

12,54

12,54

200

160

10,23

10,23

10,23

11,25

12,27

13,29

13,29

13,29

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 221.

216 | HBS PLATE | TIMBER


STRUCTURAL VALUES | STEEL-TO-TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

steel-to-timber thin plate ε=0°

geometry

steel-to-timber intermediate plate ε=0°

steel-to-timber thick plate ε=0° SPLATE

SPLATE

SPLATE

A L b d1

d1

L

b

RV,0,k

RV,0,k

RV,0,k

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

SPLATE

8

2 mm

3 mm

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

60

52

1,26

1,23

1,21

1,54

1,82

2,38

2,38

2,38

80

55

1,69

1,67

1,65

1,94

2,19

2,70

2,70

2,70

100

75

2,12

2,10

2,08

2,39

2,65

3,18

3,18

3,18

120

95

2,56

2,53

2,51

2,84

3,13

3,70

3,70

3,70

140

110

2,99

2,97

2,95

3,22

3,46

3,93

3,93

3,93

160

130

3,17

3,17

3,17

3,40

3,62

4,08

4,08

4,08

3 mm

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

16 mm

60

1,95

1,92

1,90

2,22

2,77

3,32

3,32

3,32

100

75

2,46

2,43

2,41

2,73

3,28

3,83

3,83

3,83

120

95

2,96

2,94

2,91

3,26

3,84

4,43

4,43

4,43

140

110

3,47

3,44

3,42

3,76

4,34

4,92

4,92

4,92

160

130

3,97

3,95

3,92

4,20

4,66

5,11

5,11

5,11

180

150

4,17

4,17

4,17

4,39

4,85

5,30

5,30

5,30

4 mm

5 mm

6 mm

8 mm

10 mm

12 mm

16 mm

20 mm

SPLATE 80

10

SPLATE

12

100

75

2,76

2,73

2,70

3,31

3,86

4,40

4,40

4,40

120

90

3,34

3,31

3,28

3,90

4,47

5,03

5,03

5,03

140

110

3,91

3,88

3,85

4,53

5,14

5,76

5,76

5,76

160

120

4,49

4,46

4,43

4,97

5,45

5,94

5,94

5,94

180

140

4,83

4,83

4,83

5,27

5,72

6,16

6,16

6,16

200

160

5,05

5,05

5,05

5,50

5,95

6,39

6,39

6,39

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 221.

TIMBER | HBS PLATE | 217


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

TENSION panel-to-timber

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

steel tension

RV,0,k

SPAN

Rax,90,k

Rax,0,k

Rhead,k

Rtens,k

[mm]

[kN]

timber-to-timber timber-to-timber ε=90° ε=0°

geometry

SPAN

A L b d1

d1

L

b

A

RV,90,k

[mm] [mm] [mm] [mm]

8

10

12

[kN]

[kN]

60

52

8

1,62

1,35

RV,k [kN]

[kN]

[kN]

[kN]

2,40

4,85

1,45

2,07

80

55

25

2,83

1,70

2,94

5,56

1,67

2,07

100

75

25

2,83

2,13

2,94

7,58

2,27

2,07

120

95

25

2,83

2,33

2,94

9,60

2,88

2,07

140

110

30

2,93

2,42

2,94

11,11

3,33

2,07

160

130

30

2,93

2,42

2,94

13,13

3,94

2,07

80

60

20

3,16

2,07

3,76

7,58

2,27

3,09

100

75

25

3,65

2,59

3,76

9,47

2,84

3,09

3,76

12,00

3,60

3,09

3,76

13,89

4,17

3,09

22

120

95

25

3,65

3,01

140

110

30

3,75

3,11

160

130

30

3,75

3,11

3,76

16,42

4,92

3,09

180

150

30

3,75

3,11

3,76

18,94

5,68

3,09

25

100

75

25

4,34

2,99

4,39

11,36

3,41

3,88

120

90

30

4,45

3,54

4,39

13,64

4,09

3,88

4,39

16,67

5,00

3,88

4,39

18,18

5,45

3,88

140

110

30

4,45

3,70

160

120

40

4,77

4,00

180

140

40

4,77

4,00

4,39

21,21

6,36

3,88

200

160

40

4,77

4,00

4,39

24,24

7,27

3,88

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 221.

218 | HBS PLATE | TIMBER

25

32,00

40,00

48,00


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

TENSION

steel-to-CLT lateral face

geometry

thread withdrawal lateral face

steel tension

SPLATE A L b d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm]

[mm]

[kN]

[kN]

[kN]

-

-

SPLATE

8

2 mm

3 mm

4 mm

5 mm

6 mm

8 mm 10 mm 12 mm

60

52

2,85

2,81

2,76

3,33

3,80

4,75

4,49

80

55

3,84

3,79

3,74

4,31

4,78

5,72

5,72

5,72

5,15

75

4,82

4,77

4,72

5,22

5,62

6,42

6,42

6,42

7,02

120

95

5,52

5,52

5,52

5,86

6,20

6,89

6,89

6,89

8,89

140

110

5,87

5,87

5,87

6,21

6,55

7,24

7,24

7,24

10,30

160

130

6,34

6,34

6,34

6,68

7,02

7,70

7,70

7,70

12,17

3 mm

4 mm

5 mm

6 mm

8 mm 10 mm 12 mm 16 mm

60

4,43

4,37

4,32

4,94

5,97

7,00

7,00

7,00

100

75

5,58

5,52

5,47

6,07

7,06

8,05

8,05

8,05

8,78

120

95

6,73

6,67

6,62

7,11

7,87

8,63

8,63

8,63

11,12

140

110

7,36

7,36

7,36

7,70

8,38

9,07

9,07

9,07

12,87

160

130

7,94

7,94

7,94

8,28

8,97

9,65

9,65

9,65

15,21

180

150

8,28

8,28

8,28

8,67

9,45

10,24

10,24

10,24

17,55

80

SPLATE

12

4,75

100

SPLATE

10

4,75

32,00

-

-

7,02

4 mm

5 mm

6 mm

8 mm 10 mm 12 mm 16 mm 20 mm

100

75

6,28

6,21

6,14

7,36

8,44

9,53

9,53

9,53

10,53

120

90

7,58

7,52

7,45

8,41

9,23

10,05

10,05

10,05

12,64

40,00

-

140

110

8,74

8,74

8,74

9,41

10,08

10,76

10,76

10,76

15,44

160

120

9,09

9,09

9,09

9,76

10,43

11,11

11,11

11,11

16,85

180

140

9,75

9,75

9,75

10,44

11,12

11,81

11,81

11,81

19,66

200

160

9,75

9,75

9,75

10,67

11,59

12,51

12,51

12,51

22,46

-

48,00

MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole

lateral face d1

[mm]

8

10

12

a1

[mm]

a2

[mm]

4∙d

32

40

48

2,5∙d

20

25

30

a3,t

[mm]

6∙d

48

60

72

a3,c

[mm]

6∙d

48

60

72

a4,t a4,c

[mm]

6∙d

48

60

72

[mm]

2,5∙d

20

25

30

a2 a2

a1

a4,t F

α

α

a3,t

F

a4,c

a3,c

d = d1 = nominal screw diameter

NOTES and GENERAL PRINCIPLES on page 221.

TIMBER | HBS PLATE | 219


INSTALLATION HBSPL

d1

Mins,rec

[mm]

[Nm]

Ø8

8

18

Ø10

10

25

Ø12

12

40

2 3 45 1 6 12 7 11 8 10 9

2 3 45 1 6 12 7 11 8 10 9

Mins

Mins

5-10 mm

Mins

The use of pulse screw guns/impact wrenches is not permitted.

Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.

Mins S

B

X

X

H

X

X

Avoid bending.

S

B

STOP

X

H

Respect the insertion angle. For very precise inclinations, the use of guide holes or pre-drilling is recommended.

X

90°

Ensure full contact between the entire surface of the screw head and the metal element

After installation, the fasteners can be inspected using a torque wrench.

STOP P

1x

Stop installation if damage to the fastener or timber is noticed.

Stop installation if damage to the fastener or metal plates is noticed.

Do not hammer the screw tips into the timber.

Install screws in one continuous stroke.

Avoid accidental stress during installation.

Protect the connection and avoid moisture changes and shrinkage and swelling of the timber.

Use not permitted for dynamic loads.

Avoid dimensional changes to the metal.

220 | HBS PLATE | TIMBER


STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | TIMBER

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic shear-strength value has been evaluated for plates with thickness = SPLATE , and considering the thin (SPLATE ≤ 0,5 d1), intermediate (0,5 d1 < SPLATE < d1) or thick (SPLATE ≥ d1) plate case scenario. • In the case of combined shear and tensile stress, the following verification must be satisfied:

Fv,d Rv,d

2

+

Fax,d Rax,d

2

≥ 1

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process a mass density ρk = 350 kg/m3 has been considered for CLT elements. • The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer.

• In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions. • The values in the table are evaluated considering mechanical strength parameters of the Ø10 and Ø12 HBS PLATE screws obtained analytically and validated by experimental tests. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

MINIMUM DISTANCES NOTES | TIMBER

NOTES | CLT

• The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

• In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 . • Minimum distances for narrow face application can be found on page 39.

• The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.

Theory, practice and experimental campaigns: our experience is in your hands. Download the SMARTBOOK TIMBER SCREWS.

TIMBER | HBS PLATE | 221


HBS PLATE EVO

AC233 | AC257 ESR-4645

ETA-11/0030

PAN HEAD SCREW C4 EVO COATING HBS PLATE EVO version designed for steel-timber joints outdoors. Atmospheric corrosion resistance class (C4) tested by the Research Institutes of Sweden - RISE. Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).

NEW GEOMETRY The inner core diameter of the Ø8, Ø10 and Ø12 mm screws has been increased to ensure higher performance in thick plate applications. In steel-timber connections, the new geometry achieves a strength increase of more than 15%.

PLATE FASTENING The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance. The edgeless geometry of the head reduces stress concentration points and gives the screw strength. BIT INCLUDED

DIAMETER [mm] HBS PLATE EVO 3,5

12 12

5

LENGTH [mm] 25

50

200 200

SERVICE CLASS SC1

HBS P EVO 5,0 | 6,0 mm

HBS PLATE EVO 8,0 | 10,0 | 12,0 mm

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C4

EVO COATING

carbon steel with C4 EVO coating

FIELDS OF USE • • • • •

222 | HBS PLATE EVO | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber


CODES AND DIMENSIONS HBS P EVO d1

HBS PLATE EVO CODE

L

b

AT

AP

[mm]

[mm] [mm] [mm] [mm]

HBSPEVO550 HBSPEVO560 5 TX 25 HBSPEVO570 HBSPEVO580

50 60 70 80 80 90

HBSPEVO680 6 TX 30 HBSPEVO690

pcs

30 35 40 50

20 25 30 30

1÷10 1÷10 1÷10 1÷10

200 200 100 100

50 55

30 35

1÷10 1÷10

100 100

d1

RAPTOR TRANSPORT PLATE FOR TIMBER ELEMENTS

page 413 METAL-to-TIMBER recommended use:

N

TORQUE LIMITER

Mins,rec

CODE

L

b

AP

[mm]

[mm] [mm] [mm] [mm]

HBSPLEVO840 HBSPLEVO860 HBSPLEVO880 8 HBSPLEVO8100 TX 40 HBSPLEVO8120 HBSPLEVO8140 HBSPLEVO8160

40 60 80 100 120 140 160

HBSPLEVO1060 HBSPLEVO1080 HBSPLEVO10100 10 HBSPLEVO10120 TX 40 HBSPLEVO10140 HBSPLEVO10160 HBSPLEVO10180

60 80 100 120 140 160 180

32 52 55 75 95 110 130 52 60 75 95 110 130 150 90 110 120 140 160

HBSPLEVO12120 120 HBSPLEVO12140 140 12 HBSPLEVO12160 160 TX 50 HBSPLEVO12180 180 HBSPLEVO12200 200

Mins,rec

AT

pcs

8 8 25 25 25 30 30

1÷10 1÷15 1÷15 1÷15 1÷15 1÷20 1÷20

100 100 100 100 100 100 100

8 20 25 25 30 30 30

1÷15 1÷15 1÷15 1÷15 1÷20 1÷20 1÷20

50 50 50 50 50 50 50

30 30 40 40 40

1÷15 1÷20 1÷20 1÷30 1÷30

25 25 25 25 25

GEOMETRY AND MECHANICAL CHARACTERISTICS HBS PLATE EVO - 8,0 | 10,0 | 12,0 mm

HBS P EVO - 5,0 | 6,0 mm

AP

AT

dUK

dS

S HB P

S HB P

t1

dK

XXX

d2 d1

XXX

dK

dV,steel

tK

tK

d2 d1 t1

b

dUK

dS

b L

L

Nominal diameter Head diameter Thread diameter Shank diameter Head thickness Washer thickness Underhead diameter Hole diameter on steel plate Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment

d1 dK d2 dS t1 tK dUK dV,steel dV,S dV,H ftens,k My,k

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [Nm]

5 9,65 3,40 3,65 5,50 1,00 6,00 7,0 3,0 4,0 7,9 5,4

6 12,00 3,95 4,30 6,50 1,50 8,00 9,0 4,0 5,0 11,3 9,5

8 13,50 5,90 6,30 13,50 4,50 10,00 11,0 5,0 6,0 32,0 33,4

10 16,50 6,60 7,20 16,50 5,00 12,00 13,0 6,0 7,0 40,0 45,0

12 18,50 7,30 8,55 19,50 5,50 13,00 14,0 7,0 8,0 48,0 55,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

The mechanical parameters are obtained analytically and validated by experimental tests (HBS PLATE EVO Ø10 and Ø12).

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

TIMBER | HBS PLATE EVO | 223


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

F

5

6

8

10

12

d1

[mm]

10∙d

50

60

80

100

5∙d

25

30

40

50

120

a1

[mm]

60

a2

[mm]

α=90°

5

6

8

10

12

5∙d

25

30

40

50

60

5∙d

25

30

40

50

60

a3,t

[mm]

15∙d

75

90

120

150

180

a3,t

[mm]

10∙d

50

60

80

100

120

a3,c

[mm]

10∙d

50

60

80

100

120

a3,c

[mm]

10∙d

50

60

80

100

120

a4,t

[mm]

5∙d

25

30

40

50

60

a4,t

[mm]

10∙d

50

60

80

100

120

a4,c

[mm]

5∙d

25

30

40

50

60

a4,c

[mm]

5∙d

25

30

40

50

60

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

F

d1

[mm]

a1

[mm]

a2

[mm]

7∙d

35

42

56

70

a3,t

[mm]

20∙d

100

120

160

200

a3,c

[mm]

15∙d

75

90

120

150

a4,t

[mm]

7∙d

35

42

56

70

a4,c

[mm]

7∙d

35

42

56

70

15∙d

5

6

8

10

12

d1

[mm]

75

90

120

150

180

a1

[mm]

84

a2

240

a3,t

180 84 84

α=90°

5

6

8

10

12

7∙d

35

42

56

70

84

[mm]

7∙d

35

42

56

70

84

[mm]

15∙d

75

90

120

150

180

a3,c

[mm]

15∙d

75

90

120

150

180

a4,t

[mm]

12∙d

60

72

96

120

144

a4,c

[mm]

7∙d

35

42

56

70

84

screws inserted WITH pre-drilled hole

α=0°

F

F

d1

[mm]

a1

[mm]

a2

[mm]

3∙d

15

18

24

a3,t

[mm]

12∙d

60

72

96

a3,c

[mm]

7∙d

35

42

56

70

a4,t

[mm]

3∙d

15

18

24

30

a4,c

[mm]

3∙d

15

18

24

30

5∙d

α=90°

5

6

8

10

12

d1

[mm]

5

6

8

10

12

25

30

40

50

60

a1

[mm]

4∙d

20

24

32

40

48

30

36

a2

[mm]

4∙d

20

24

32

40

48

120

144

a3,t

[mm]

7∙d

35

42

56

70

84

84

a3,c

[mm]

7∙d

35

42

56

70

84

36

a4,t

[mm]

7∙d

35

42

56

70

84

36

a4,c

[mm]

3∙d

15

18

24

30

36

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

224 | HBS PLATE EVO | TIMBER

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5. • The spacing a1 in the table for screws with 3 THORNS tip inserted without pre-drilling hole in timber elements with density ρk ≤ 420 kg/m3 and loadto-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014.


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR steel-to-timber thin plate

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

Rax,90,k

Rax,0,k

Rhead,k

SPAN

A

steel-to-timber thick plate

SPLATE

panel-to-timber

SPLATE

timber-to-timber ε=90°

geometry

TENSION

L b d1

d1

L

b

A

[mm] [mm] [mm] [mm] 50 60 70 80 80 90

5

6

30 35 40 50 50 55

20 25 30 30 30 35

RV,k

SPAN

RV,k

SPLATE

[kN]

[mm]

[kN]

[mm]

1,20 1,33 1,44 1,44 1,88 2,03

1,10 1,10 1,10 1,10 1,55 1,55

12

15

2,5

3

RV,k

SPLATE

[kN]

[mm]

1,65 1,73 1,81 1,97 2,61 2,71

5

6

RV,k [kN]

[kN]

[kN]

[kN]

2,14 2,22 2,30 2,46 3,31 3,40

1,89 2,21 2,53 3,16 3,79 4,17

0,57 0,66 0,76 0,95 1,14 1,25

1,06 1,06 1,06 1,06 1,63 1,63

SHEAR steel-to-timber thin plate

A

steel-to-timber thick plate

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

SPLATE

timber-to-timber ε=0°

SPLATE

timber-to-timber ε=90°

geometry

TENSION

L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

8

10

12

40 60 80 100 120 140 160 60 80 100 120 140 160 180 120 140 160 180 200

32 52 55 75 95 110 130 52 60 75 95 110 130 150 90 110 120 140 160

8 8 25 25 25 30 30 8 20 25 25 30 30 30 30 30 40 40 40

RV,k

RV,k

SPLATE

RV,k

SPLATE

RV,k

Rax,90,k

Rax,0,k

Rhead,k

[kN]

[kN]

[mm]

[kN]

[mm]

[kN]

[kN]

[kN]

[kN]

1,62 1,62 2,83 2,83 2,83 2,93 2,93 2,37 3,16 3,65 3,65 3,75 3,75 3,75 4,45 4,45 4,77 4,77 4,77

0,85 1,35 1,70 2,13 2,33 2,42 2,42 1,56 2,07 2,59 3,01 3,11 3,11 3,11 3,54 3,70 4,00 4,00 4,00

3,83 5,00 6,07 6,78 7,29 7,67 8,17 5,91 7,37 8,50 9,14 9,61 10,24 10,87 10,64 11,40 11,78 12,54 13,29

2,83 4,85 5,56 7,58 9,60 11,11 13,13 5,68 7,58 9,47 12,00 13,89 16,42 18,94 13,64 16,67 18,18 21,21 24,24

0,85 1,45 1,67 2,27 2,88 3,33 3,94 1,70 2,27 2,84 3,60 4,17 4,92 5,68 4,09 5,00 5,45 6,36 7,27

2,07 2,07 2,07 2,07 2,07 2,07 2,07 3,09 3,09 3,09 3,09 3,09 3,09 3,09 3,88 3,88 3,88 3,88 3,88

4

5

6

1,95 3,03 4,11 5,20 5,86 6,24 6,74 3,48 4,75 6,01 7,28 7,81 8,44 8,68 8,20 9,28 9,66 10,23 10,23

8

10

12

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 226.

TIMBER | HBS PLATE EVO | 225


INSTALLATION 2 3 45 1 6 12 7 11 8 10 9

Mins

2 3 45 1 6 12 7 11 8 10 9

Mins

5-10 mm

Mins

The use of pulse screw guns/impact wrenches is not permitted.

HBSP HBSPL

d1

Mins,rec

[mm]

[Nm]

Ø8

8

18

Ø10

10

25

Ø12

12

40

Ensure correct tightening. We recommend the use of torque-controlled screwdrivers, e.g. with TORQUE LIMITER. Alternatively, tighten with a torque wrench.

Mins S

B

X

X

H

X

S

B

X

H

X

Respect the insertion angle. For very precise inclinations, the use of guide holes or pre-drilling is recommended.

X

90°

Ensure full contact between the entire surface of the screw head and the metal element.

After installation, the fasteners can be inspected using a torque wrench.

Avoid dimensional changes to the metal and shrinkage and swelling of timber.

STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

• The values in the table are evaluated considering mechanical strength parameters of the HBS PLATE EVO Ø10 and Ø12 screws obtained analytically and validated by experimental tests.

Rk kmod γM

• The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements, panels and metal plates must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The head pull-through characteristic strength was calculated using timber elements. In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • In the case of combined shear and tensile stress, the following verification must be satisfied:

Fv,d Rv,d

2

+

Fax,d Rax,d

• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.

2

≥ 1

226 | HBS PLATE EVO | TIMBER

• For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

NOTES • The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • The characteristic panel-timber and steel-timber shear strengths were evaluated by considering an ε angle of 90° between the grains of the timber element and the connector. • The characteristic plate shear strengths are evaluated considering the case of thin plate (SPLATE = 0.5 d1) and thick plate (SPLATE = d1). • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens (see page 215). • For further calculation configurations and for applications on different materials, see page 212.


HBS PLATE A4

AC233 ESR-4645

ETA-11/0030

PAN HEAD SCREW FOR PLATES A4 | AISI316 HBS PLATE version in A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.

STEEL-TIMBER CONNECTIONS The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance. The edgeless geometry of the head reduces stress concentration points and gives the screw strength.

T5 TIMBER CORROSIVITY Suitable for use in applications on agressive woods with an acidity (pH) level below 4 such as oak, Douglas fir and chestnut, and in wood moisture conditions above 20%.

BIT INCLUDED

CODES AND DIMENSIONS

GEOMETRY AP

d1

CODE

b

AP

pcs

[mm]

[mm]

60

52

1÷10

100

HBSPL880A4

80

55

1÷15

100

HBSPL8100A4 8 TX 40 HBSPL8120A4

100

75

1÷15

100

DIAMETER [mm]

120

95

1÷15

100

3,5

HBSPL8140A4

140

110

1÷20

100

LENGTH [mm]

HBSPL8160A4

160

130

1÷20

100

HBSPL1080A4

80

60

1÷10

50

HBSPL10100A4

100

75

1÷15

50

SERVICE CLASS

HBSPL10120A4 10 TX 40 HBSPL10140A4

120

95

1÷15

50

SC1

140

110

1÷20

50

HBSPL10160A4

160

130

1÷20

50

HBSPL10180A4

180

150

1÷20

50

S HB P

[mm] HBSPL860A4

HBSPL12100A4

100

75

1÷15

25

HBSPL12120A4

120

90

1÷20

25

HBSPL12140A4 12 TX 50 HBSPL12160A4

140

110

1÷20

25

160

120

1÷30

25

HBSPL12180A4

180

140

1÷30

25

HBSPL12200A4

200

160

1÷30

25

d1

XXX

[mm]

L

b L

8

25

60

SC2

SC3

12 12

200 200

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A4

AISI 316

A4 | AISI316 austenitic stainless steel (CRC III)

TIMBER | HBS PLATE A4 | 227


LBS

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

ETA-11/0030

ROUND HEAD SCREW FOR PLATES SCREW FOR PERFORATED PLATES Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.

STATICS These can be calculated according to Eurocode 5 under thick steel-timber plate connections, even with thin metal elements. Excellent shear strength values.

NEW-GENERATION WOODS Tested and certified for use on a wide variety of engineered timbers such as CLT, GL, LVL, OSB and Beech LVL. The LBS5 version up to a length of 40 mm is approved completely without pre-drilling hole on Beech LVL.

DUCTILITY Excellent ductility behaviour as evidenced by SEISMIC-REV cyclic tests according to EN 12512.

BIT INCLUDED

DIAMETER [mm] 3,5

5

12

7

LENGTH [mm] 25 25

100

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • • •

228 | LBS | TIMBER

timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods

200


LBS HARDWOOD EVO

CODES AND DIMENSIONS d1

CODE

[mm]

5 TX 20

7 TX 30

L

b

ROUND HEAD SCREW FOR PLATES ON HARDWOODS

pcs

[mm]

[mm]

LBS525

25

21

500

LBS540

40

36

500

LBS550

50

46

200

LBS560

60

56

200

LBS570

70

66

200

DIAMETER [mm]

3

LBS760

60

55

100

LENGTH [mm]

25

LBS780

80

75

100

LBS7100

100

95

100

5

7

12

60

200 200

Also available in the LBS HARDWOOD EVO version, L from 80 to 200 mm, diameter Ø5 and Ø7 mm, see page 244.

GEOMETRY AND MECHANICAL CHARACTERISTICS dUK d2 d1

dV,steel

dK

b L

t1

GEOMETRY Nominal diameter

d1

[mm]

5

7

Head diameter

dK

[mm]

7,80

11,00

Thread diameter

d2

[mm]

3,00

4,40

Underhead diameter

dUK

[mm]

4,90

7,00

Head thickness

t1

[mm]

2,40

3,50

Hole diameter on steel plate

dV,steel

[mm]

5,0÷5,5

7,5÷8,0

Pre-drilling hole diameter(1)

dV,S

[mm]

3,0

4,0

Pre-drilling hole diameter(2)

dV,H

[mm]

3,5

5,0

Nominal diameter

d1

[mm]

5

7

Tensile strength

ftens,k

[kN]

7,9

15,4

Yield moment

My,k

[Nm]

5,4

14,2

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

LVL beech (3) (beech LVL)

[N/mm2]

11,7

15,0

29,0

42,0

fhead,k [N/mm2]

10,5

20,0

-

-

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS

Characteristic withdrawal-resistance parameter Characteristic head-pull-through parameter

fax,k

Associated density

ρa

[kg/m3]

350

500

730

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

590 ÷ 750

(3)Valid for d = 5 mm and l ≤ 34 mm 1 ef For applications with different materials please see ETA-11/0030.

TIMBER | LBS | 229


MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

F

5 42 18 75 50 25 25

12∙d∙0,7 5∙d∙0,7 15∙d 10∙d 5∙d 5∙d

7 59 25 105 70 35 35

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 18 18 50 50 50 25

5∙d∙0,7 5∙d∙0,7 10∙d 10∙d 10∙d 5∙d

7 25 25 70 70 70 35

screws inserted WITH pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

F

5 18 11 60 35 15 15

5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d

7 25 15 84 49 21 21

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 14 14 35 35 35 15

4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 7∙d 3∙d

7 20 20 49 49 49 21

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

230 | LBS | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014

geometry

SHEAR

TENSION

steel-to-timber ε=90°

thread withdrawal ε=90°

SPLATE L

b

d1

d1

L

b

RV,90,k

[mm]

[mm] SPLATE

[mm]

[kN]

5

1,5 mm

2,5 mm

[kN]

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

25

21

1,59

1,58

1,56

-

-

-

-

1,33

40

36

2,24

2,24

2,24

2,24

2,23

2,18

2,13

2,27

50

46

2,39

2,39

2,39

2,39

2,39

2,38

2,36

2,90

60

56

2,55

2,55

2,55

2,55

2,55

2,54

2,52

3,54

70

66

2,71

2,71

2,71

2,71

2,71

2,69

2,68

4,17

3,0 mm

4,0 mm

5,0 mm

6,0 mm

8,0 mm

10,0 mm

12,0 mm

-

SPLATE 7

2,0 mm

Rax,90,k

60

55

2,81

2,98

3,37

3,80

4,18

4,05

3,92

4,86

80

75

3,80

3,88

4,13

4,40

4,63

4,59

4,55

6,63

100

95

4,25

4,38

4,63

4,87

5,08

5,03

4,99

8,40

ε = screw-to-grain angle

geometry

SHEAR

TENSION

steel-to-timber ε=0°

thread withdrawal ε=0°

SPLATE L

b

d1

d1

L

b

RV,0,k

Rax,0,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

25

21

0,77

0,77

0,77

0,76

0,76

0,75

0,74

0,40

40

36

0,98

0,98

0,97

0,96

0,95

0,94

0,92

0,68

50

46

1,15

1,15

1,14

1,13

1,12

1,10

1,09

0,87

60

56

1,32

1,32

1,32

1,32

1,30

1,28

1,27

1,06

70

66

1,37

1,37

1,37

1,37

1,37

1,36

1,36

1,25

3,0 mm

4,0 mm

5,0 mm

6,0 mm

8,0 mm

10,0 mm

12,0 mm

-

5

SPLATE 7

60

55

1,12

1,21

1,41

1,60

1,77

1,73

1,69

1,46

80

75

1,52

1,61

1,83

2,04

2,22

2,17

2,13

1,99

100

95

1,91

1,99

2,17

2,35

2,53

2,52

2,51

2,52

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 233.

TIMBER | LBS | 231


STRUCTURAL VALUES | CLT

CHARACTERISTIC VALUES EN 1995:2014

geometry

L

SHEAR

TENSION

steel-to-CLT lateral face

thread withdrawal lateral face

SPLATE

b

d1

d1

L

b

RV,90,k

[mm]

[mm] SPLATE

[mm]

25 40 50 60 70

4,0 mm 1,42 2,05 2,26 2,41 2,56

5,0 mm 1,38 2,01 2,25 2,39 2,54

6,0 mm 1,35 1,96 2,23 2,38 2,53

[kN] 1,23 2,11 2,69 3,28 3,86

8,0 mm 3,86 4,38 4,79

10,0 mm 3,74 4,33 4,74

12,0 mm 3,62 4,29 4,70

4,50 6,14 7,78

5

21 36 46 56 66

1,5 mm 1,48 2,12 2,26 2,41 2,56

2,0 mm 1,47 2,12 2,26 2,41 2,56

2,5 mm 1,45 2,10 2,26 2,41 2,56

[kN] 3,0 mm 1,44 2,09 2,26 2,41 2,56

55 75 95

3,0 mm 2,55 3,45 4,00

4,0 mm 2,77 3,59 4,12

5,0 mm 3,13 3,82 4,36

6,0 mm 3,53 4,10 4,58

SPLATE 60 80 100

7

Rax,90,k

NOTES and GENERAL PRINCIPLES on page 233.

MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT screws inserted WITHOUT pre-drilled hole

lateral face d1

[mm]

5

7

a1

[mm]

4∙d

20

28

a2

[mm]

2,5∙d

13

18

a3,t

[mm]

6∙d

30

42

a3,c

[mm]

6∙d

30

42

a4,t

[mm]

6∙d

30

42

a4,c

[mm]

2,5∙d

13

18

d = d1 = nominal screw diameter

a1 a3,t

α F

F α

α a3,c

F

F α tCLT

a2

a4,t

a4,c

NOTES • The minimum distances are compliant with ETA-11/0030 and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

232 | LBS | TIMBER

• Minimum distances are valid for minimum CLT thickness tCLT,min =10∙d1 .


STRUCTURAL VALUES | LVL

CHARACTERISTIC VALUES EN 1995:2014

geometry

SHEAR

TENSION

steel-LVL

thread withdrawal flat SPLATE

L

b

d1

d1

L

b

RV,90,k

[mm]

[mm] SPLATE

[mm]

[kN]

25 40 50 60 70

5

7

[kN]

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

21 36 46 56 66

1,59 2,24 2,39 2,55 2,71

1,58 2,24 2,39 2,55 2,71

1,56 2,24 2,39 2,55 2,71

2,24 2,39 2,55 2,71

2,23 2,39 2,55 2,71

2,18 2,38 2,54 2,69

2,13 2,36 2,52 2,68

1,33 2,27 2,90 3,54 4,17

55 75 95

3,0 mm 2,81 3,80 4,25

4,0 mm 2,98 3,88 4,38

5,0 mm 3,37 4,13 4,63

6,0 mm 3,80 4,40 4,87

8,0 mm 4,18 4,63 5,08

10,0 mm 4,05 4,59 5,03

12,0 mm 3,92 4,55 4,99

4,86 6,63 8,40

SPLATE 60 80 100

Rax,90,k

STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

• For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.

R’V,k = kdens,v RV,k

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.

R’ax,k = kdens,ax Rax,k R’head,k ρ = kdens,ax Rhead,k k

[kg/m3 ]

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

• The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBS Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBS Ø7 screws has been evaluated assuming a plate thickness = SPLATE, and considering the thin (SPLATE ≤ 3,5 mm) intermediate (3,5 mm < SPLATE < 7,0 mm) or thick (SPLATE ≥ 7 mm) plate case. • In the case of combined shear and tensile stress, the following verification must be satisfied:

Fv,d Rv,d

2

+

Fax,d Rax,d

2

NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K. • For the calculation process a mass density ρk = 350 kg/m3 has been considered for CLT elements. • The characteristics shear resistance are calculated considering a minimum fixing length of 4 d1 . • The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer. • The axial thread withdrawal strength is valid for minimum CLT thickness tCLT,min = 10∙d1 .

≥ 1

• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.

NOTES | TIMBER • The characteristic steel-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the timber element and the connector.

NOTES | LVL • For the calculation process a mass density equal to ρk = 480 kg/m3 has been considered for softwood LVL elements. • The axial thread-withdrawal resistance was calculated considering a 90° angle between the grains and the connector. • The characteristic shear strengths are evaluated for connectors inserted on the side face (wide face) considering, for individual timber elements, a 90° angle between the connector and the grain, a 90° angle between the connector and the side face of the LVL element and a 0° angle between the force and the grain.

• Characteristic timber-to-timber shear strengths can be found on page 237. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector.

TIMBER | LBS | 233


LBS EVO

AC233 | AC257 ESR-4645

ETA-11/0030

ROUND HEAD SCREW FOR PLATES SCREW FOR PERFORATED PLATES FOR OUTDOOR USE LBS EVO version designed for steel-timber joints for outdoor use. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.

C4 EVO COATING The atmospheric corrosion strength class (C4) of the C4 EVO coating was tested by the Research Institutes of Sweden - RISE. Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).

STATICS These can be calculated according to Eurocode 5 under thick steel-timber plate connections, even with thin metal elements. Excellent shear strength values.

BIT INCLUDED

DIAMETER [mm] 3,5

5

7

12

LENGTH [mm] 25

40

100

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C4

EVO COATING

carbon steel with C4 EVO coating

FIELDS OF USE • • • • •

234 | LBS EVO | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber

200


CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 20

L

b

[mm]

[mm]

40 50 60 70

36 46 56 66

LBSEVO540 LBSEVO550 LBSEVO560 LBSEVO570

pcs

d1

CODE

[mm] 500 200 200 200

7 TX 30

LBSEVO780 LBSEVO7100

L

b

[mm]

[mm]

pcs

80 100

75 95

100 100

GEOMETRY AND MECHANICAL CHARACTERISTICS dUK d2 d1

dV,steel

dK

b L

t1

Nominal diameter

d1

[mm]

5

7

Head diameter

dK

[mm]

7,80

11,00

Thread diameter

d2

[mm]

3,00

4,40

Underhead diameter

dUK

[mm]

4,90

7,00

Head thickness

t1

[mm]

2,40

3,50

Hole diameter on steel plate

dV,steel

[mm]

5,0÷5,5

7,5÷8,0 4,0

Pre-drilling hole diameter(1)

dV,S

[mm]

3,0

Pre-drilling hole diameter(2)

dV,H

[mm]

3,5

5,0

Characteristic tensile strength

ftens,k

[kN]

7,9

15,4

Characteristic yield moment

My,k

[Nm]

5,4

14,2

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

softwood (softwood)

LVL softwood (LVL softwood)

pre-drilled beech LVL (beech LVL predrilled)

LVL beech (3) (Beech LVL)

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

42,0

Characteristic head-pull-through parameter

fhead,k [N/mm2]

10,5

20,0

-

-

Associated density

ρa

[kg/m3]

350

500

730

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

590 ÷ 750

(3)Valid for d = 5 mm and l ≤ 34 mm 1 ef

For applications with different materials please see ETA-11/0030.

T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch, pine, ash and birch (see page 314).

STEEL-TO-TIMBER APPLICATION The LBSEVO screw with diameter 7 is particularly suitable for custom-designed connections, which are characteristic of steel structures.

TIMBER | LBS EVO | 235


MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

F

5

7

d1

[mm]

12∙d∙0,7

42

59

a1

[mm]

5∙d∙0,7

18

25

a2

[mm]

α=90° 5

7

5∙d∙0,7

18

25

5∙d∙0,7

18

25

a3,t

[mm]

15∙d

75

105

a3,t

[mm]

10∙d

50

70

a3,c

[mm]

10∙d

50

70

a3,c

[mm]

10∙d

50

70

a4,t

[mm]

5∙d

25

35

a4,t

[mm]

10∙d

50

70

a4,c

[mm]

5∙d

25

35

a4,c

[mm]

5∙d

25

35 420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

15∙d∙0,7

a2

[mm]

7∙d∙0,7

25

a3,t

[mm]

20∙d

100

a3,c

[mm]

15∙d

75

a4,t

[mm]

7∙d

35

a4,c

[mm]

7∙d

35

F

α=90°

5

7

d1

[mm]

5

7

53

74

a1

[mm]

7∙d∙0,7

25

34

34

a2

[mm]

7∙d∙0,7

25

34

140

a3,t

[mm]

15∙d

75

105

105

a3,c

[mm]

15∙d

75

105

49

a4,t

[mm]

12∙d

60

84

49

a4,c

[mm]

7∙d

35

49

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

5∙d∙0,7

a2

[mm]

3∙d∙0,7

a3,t

[mm]

12∙d

a3,c

[mm]

7∙d

a4,t

[mm]

3∙d

a4,c

[mm]

3∙d

F

α=90°

5

7

d1

[mm]

18

25

a1

[mm]

4∙d∙0,7

5

7

14

20

11

15

a2

[mm]

4∙d∙0,7

14

20

60

84

a3,t

[mm]

7∙d

35

49

35

49

a3,c

[mm]

7∙d

35

49

15

21

a4,t

[mm]

7∙d

35

49

15

21

a4,c

[mm]

3∙d

15

21

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.

236 | LBS EVO | TIMBER

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.


STRUCTURAL VALUES | TIMBER geometry

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

SHEAR

steel-to-timber ε=90°

steel-to-timber ε=0° SPLATE

SPLATE L

b

d1

d1 [mm]

L

b

RV,90,k

[mm]

[mm]

SPLATE [mm] 40 50 60 70

5

7

[kN]

[kN]

1,5

2,0

2,5

3,0

4,0

5,0

6,0

1,5

2,0

2,5

3,0

4,0

5,0

6,0

36 46 56 66

2,24 2,39 2,55 2,71

2,24 2,39 2,55 2,71

2,24 2,39 2,55 2,71

2,24 2,39 2,55 2,71

2,23 2,39 2,55 2,71

2,18 2,38 2,54 2,69

2,13 2,36 2,52 2,68

0,98 1,15 1,32 1,37

0,98 1,15 1,32 1,37

0,97 1,14 1,32 1,37

0,96 1,13 1,32 1,37

0,95 1,12 1,30 1,37

0,94 1,10 1,28 1,36

0,92 1,09 1,27 1,36

3,0

4,0

5,0

6,0

8,0

10,0

12,0

3,0

4,0

5,0

6,0

8,0

10,0

12,0

75 95

3,80 4,25

3,88 4,38

4,13 4,63

4,40 4,87

4,63 5,08

4,59 5,03

4,55 4,99

1,52 1,91

1,61 1,99

1,83 2,17

2,04 2,35

2,22 2,53

2,17 2,52

2,13 2,51

S PLATE [mm] 80 100

RV,0,k

SHEAR geometry

L

TENSION

timber-to-timber ε=90°

timber-to-timber ε=0°

thread withdrawal ε=90°

thread withdrawal ε=0°

A b

d1

d1

L

b

A

RV,90,k

RV,0,k

Rax,90,k

Rax,0,k

[mm]

[mm] 40 50 60 70 80 100

[mm] 36 46 56 66 75 95

[mm] 20 25 30 35 45

[kN] 1,01 1,19 1,40 1,59 2,57 3,04

[kN] 0,59 0,75 0,88 0,96 1,54 1,74

[kN] 2,27 2,90 3,54 4,17 6,63 8,40

[kN] 0,68 0,87 1,06 1,25 1,99 2,52

5

7

ε = screw-to-grain angle GENERAL PRINCIPLES

NOTES

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic shear strengths were evaluated considering both an ε-angle of 90° (RV,90,k) and of 0° (RV,0,k) between the grains of the timber elements and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBS Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBS Ø7 screws has been evaluated assuming a plate thickness = SPLATE, and considering the thin (SPLATE ≤ 3,5 mm) intermediate (3,5 mm < SPLATE < 7,0 mm) or thick (SPLATE ≥ 7 mm) plate case.

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρ k

[kg/m3 ]

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation. • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 230).

TIMBER | LBS EVO | 237


LBS HARDWOOD

ETA-11/0030

UKTA-0836 22/6195

ETA-11/0030

ROUND HEAD SCREW FOR PLATES ON HARDWOODS HARDWOOD CERTIFICATION Special tip with embossed slit elements. ETA-11/0030 certification allows for use with high density timber without any pre-drill. Approved for structural applications subject to stresses in any direction vs the grain.

LARGER DIAMETER Internal thread diameter increased compared to the LBS version to ensure tightening in the highest density woods. In steel-timber connections, an increase in strength of more than 15 % can be achieved.

SCREW FOR PERFORATED PLATES Cylindrical shoulder designed for fastening metal elements. Achieves an interlocking effect with the hole in the plate, thus guaranteeing excellent static performance.

BIT INCLUDED

DIAMETER [mm] 3,5

12

5

LENGTH [mm] 25

40

70

200

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE • • • • •

238 | LBS HARDWOOD | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods beech, oak, cypress, ash, eucalyptus, bamboo


LBS HARDWOOD EVO

CODES AND DIMENSIONS d1

CODE

[mm]

5 TX 20

L

b

ROUND HEAD SCREW FOR PLATES ON HARDWOODS

pcs

[mm]

[mm]

LBSH540

40

36

500

LBSH550

50

46

200

LBSH560

60

56

200

LBSH570

70

66

200

DIAMETER [mm]

3

LENGTH [mm]

25

5

7

12

60

200 200

Also available in the LBS HARDWOOD EVO version, L from 80 to 200 mm, diameter Ø5 and Ø7 mm, see page 244.

GEOMETRY AND MECHANICAL CHARACTERISTICS dUK dK

d2 d1

dV,steel t1

b L

Nominal diameter

d1

[mm]

5

Head diameter

dK

[mm]

7,80

Thread diameter

d2

[mm]

3,48

Underhead diameter

dUK

[mm]

4,90

Head thickness

t1

[mm]

2,45

Hole diameter on steel plate

dV,steel

[mm]

5,0÷5,5

Pre-drilling hole diameter(1)

3,0

dV,S

[mm]

Pre-drilling hole diameter(2)

dV,H

[mm]

3,5

Characteristic tensile strength

ftens,k

[kN]

11,5

Characteristic yield moment

My,k

[Nm]

9,0

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

softwood (softwood)

oak, beech (hardwood)

ash (hardwood)

beech LVL (Beech LVL)

Characteristic withdrawal-resistance parameter

fax,k

[N/mm2]

11,7

22,0

30,0

42,0

Characteristic head-pull-through parameter

fhead,k [N/mm2]

10,5

-

-

-

Associated density

ρa

[kg/m3]

350

530

530

730

Calculation density

ρk

[kg/m3]

≤ 440

≤ 590

≤ 590

590 ÷ 750

For applications with different materials please see ETA-11/0030.

HARDWOOD PERFORMANCE Geometry developed for high performance and use without pre-drill hole on structural woods such as beech, oak, cypress, ash, eucalyptus, bamboo.

BEECH LVL Values also tested, certified and calculated for high density woods such as beechwood Microllam® LVL. Certified for use without pre-drilling, for densities of up to 800 kg/m3.

TIMBER | LBS HARDWOOD | 239


MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk > 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

15∙d∙0,7

a2

[mm]

a3,t

[mm]

a3,c

F

α=90°

5

d1

[mm]

53

a1

[mm]

7∙d∙0,7

25

5

7∙d∙0,7

25

a2

[mm]

7∙d∙0,7

25

20∙d

100

a3,t

[mm]

15∙d

75

[mm]

15∙d

75

a3,c

[mm]

15∙d

75

a4,t

[mm]

7∙d

35

a4,t

[mm]

12∙d

60

a4,c

[mm]

7∙d

35

a4,c

[mm]

7∙d

35

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

5∙d∙0,7

a2

[mm]

a3,t

[mm]

a3,c a4,t a4,c

F

α=90°

5

d1

[mm]

18

a1

[mm]

4∙d∙0,7

5

3∙d∙0,7

11

a2

[mm]

4∙d∙0,7

14

12∙d

60

a3,t

[mm]

7∙d

35

[mm]

7∙d

35

a3,c

[mm]

7∙d

35

[mm]

3∙d

15

a4,t

[mm]

7∙d

35

[mm]

3∙d

15

a4,c

[mm]

3∙d

15

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

14

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F

a1 a1

α

F α

α a3,t

F α

a4,t

F a4,c

a3,c

NOTE on page 243.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

240 | LBS HARDWOOD | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES | TIMBER(SOFTWOOD)

CHARACTERISTIC VALUES EN 1995:2014

SHEAR

TENSION

steel-to-timber ε=90°

geometry

thread withdrawal ε=90°

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN]

1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm

-

-

5

40

36

2,44

2,43

2,41

2,39

2,36

2,32

2,27

2,27

50

46

2,88

2,88

2,88

2,88

2,85

2,80

2,75

2,90

60

56

3,04

3,04

3,04

3,04

3,04

3,02

3,01

3,54

70

66

3,20

3,20

3,20

3,20

3,20

3,18

3,16

4,17

11,50

ε = screw-to-grain angle SHEAR

TENSION

steel-to-timber ε=0°

thread withdrawal ε=0°

steel tension

RV,0,k

Rax,0,k

Rtens,k

[kN]

[kN]

[kN]

1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm

-

-

geometry

SPLATE

L b

d1

d1

L

b

[mm]

[mm] SPLATE

[mm]

40

36

5

1,10

1,10

1,09

1,09

1,08

1,07

1,05

0,68

50

46

1,25

1,25

1,24

1,23

1,22

1,21

1,19

0,87

60

56

1,42

1,41

1,41

1,40

1,39

1,37

1,35

1,06

70

66

1,60

1,59

1,59

1,58

1,57

1,55

1,53

1,25

11,50

ε = screw-to-grain angle

NOTES and GENERAL PRINCIPLES on page 243.

TIMBER | LBS HARDWOOD | 241


STRUCTURAL VALUES | HARDWOOD

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

TENSION

steel-hardwood ε=90°

geometry

thread withdrawal ε=90°

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN]

1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm

-

-

40 50 60 70

36 46 56 66

4,08 5,21 6,35 7,48

11,50

5

3,56 3,88 4,16 4,44

3,54 3,88 4,16 4,44

3,51 3,88 4,16 4,44

3,49 3,88 4,16 4,44

3,44 3,88 4,16 4,44

3,36 3,85 4,13 4,42

3,29 3,82 4,10 4,39

SHEAR

TENSION

steel-hardwood ε=0°

geometry

thread withdrawal ε=0°

steel tension

SPLATE

L b

d1

d1

L

b

RV,0,k

Rax,0,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN]

1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm

-

-

40 50 60 70

36 46 56 66

1,22 1,56 1,90 2,24

11,50

5

1,51 1,76 2,04 2,19

1,50 1,75 2,03 2,19

1,49 1,74 2,02 2,19

1,48 1,74 2,01 2,19

1,47 1,72 1,99 2,19

1,45 1,69 1,96 2,18

1,42 1,67 1,93 2,17

ε = screw-to-grain angle

STRUCTURAL VALUES | BEECH LVL SHEAR geometry

TENSION

steel-beech LVL

thread withdrawal flat

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN]

-

-

40 50 60 70

36 46 56 66

7,56 9,66 11,76 13,86

11,50

5

1,5 mm 2,0 mm 2,5 mm 3,0 mm 4,0 mm 5,0 mm 6,0 mm 5,24 5,76 6,22 6,22

5,24 5,76 6,22 6,22

NOTES and GENERAL PRINCIPLES on page 243.

242 | LBS HARDWOOD | TIMBER

5,24 5,76 6,22 6,22

5,24 5,76 6,22 6,22

5,24 5,76 6,22 6,22

5,18 5,71 6,22 6,22

5,13 5,66 6,18 6,22


STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | TIMBER (SOFTWOOD)

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic steel-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear strength are calculated for screws inserted without pre-drilling hole.

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k ρ = kdens,ax Rhead,k k

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

[kg/m3 ]

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

• The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBSH Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • In the case of combined shear and tensile stress, the following verification must be satisfied:

Fv,d Rv,d

2

+

Fax,d Rax,d

NOTES | BEECH LVL • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered for individual timber elements in the calculation.

2

≥ 1

• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.

NOTES | HARDWOOD • The characteristic steel-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector. • In the case of screws inserted with pre-drilling hole, higher strength values can be achieved. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements.

MINIMUM DISTANCES NOTES | TIMBER • The minimum distances comply with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of 420 kg/m3 < ρk ≤ 500 kg/m3. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

TIMBER | LBS HARDWOOD | 243


LBS HARDWOOD EVO

ETA-11/0030

ROUND HEAD SCREW FOR PLATES ON HARDWOODS C4 EVO COATING The atmospheric corrosion strength class (C4) of the C4 EVO coating was tested by the Research Institutes of Sweden - RISE. Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch and pine (see page 314).

HARDWOOD CERTIFICATION Special tip with embossed slit elements. ETA-11/0030 certification allows for use with high density timber without any pre-drill. Approved for structural applications subject to stresses in any direction vs the grain.

ROBUSTNESS The inner core diameter of the screw has been enlarged compared to the LBS version to ensure screwing in higher density woods. The cylindrical under head is designed for fastening mechanical elements and producing an interlocking effect with the plate hole that provides excellent static perfornances. BIT INCLUDED

DIAMETER [mm] lbsh evo 3,5

5

12

7

LENGTH [mm] 25

60

200 200

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C4

EVO COATING

carbon steel with C4 EVO coating

FIELDS OF USE • • • • •

244 | LBS HARDWOOD EVO | TIMBER

timber based panels solid timber and glulam CLT and LVL high density woods ACQ, CCA treated timber


CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 20

L

b

[mm]

[mm]

d1

pcs

CODE

[mm]

L

b

[mm]

[mm]

pcs

LBSHEVO580

80

76

200

LBSHEVO760

60

55

100

LBSHEVO5100

100

96

200

LBSHEVO780

80

75

100

LBSHEVO5120

120

116

200

LBSHEVO7100

100

95

100

LBSHEVO7120

120

115

100

7 TX 30

LBSHEVO7160

160

155

100

LBSHEVO7200

200

195

100

GEOMETRY AND MECHANICAL CHARACTERISTICS dUK dK

d2 d1

dV,steel t1

Nominal diameter Head diameter Thread diameter Underhead diameter Head thickness Hole diameter on steel plate Pre-drilling hole diameter(1) Pre-drilling hole diameter(2) Characteristic tensile strength Characteristic yield moment

b L d1 dK d2 dUK t1 dV,steel dV,S dV,H ftens,k My,k

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [Nm]

5 7,80 3,48 4,90 2,45 5,0÷5,5 3,0 3,5 11,5 9,0

7 11,00 4,85 7,00 3,50 7,5÷8,0 4,0 5,0 21,5 21,5

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

The mechanical parameters are obtained analytically and validated by experimental tests (LBS H EVO Ø7) .

softwood (softwood)

oak, beech (hardwood)

ash (hardwood)

beech LVL (Beech LVL)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

22,0

30,0

42,0

Head-pull-through parameter

fhead,k [N/mm2]

10,5

-

-

-

Associated density

ρa

[kg/m3]

350

530

530

730

Calculation density

ρk

[kg/m3]

≤ 440

≤ 590

≤ 590

590 ÷ 750

For applications with different materials please see ETA-11/0030.

HYBRID STEEL-TIMBER STRUCTURES The LBSHEVO Ø7 mm screws are suitable for custom-designed connections, which are characteristic of steel structures. Maximum performance in hardwoods combined with the strengths of steel plates.

T3 TIMBER CORROSIVITY Coating suitable for use in applications on wood with an acidity level (pH) greater than 4, such as spruce, larch, pine, ash and birch (see page 314).

TIMBER | LBS HARDWOOD EVO | 245


MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER ρk > 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

F

5 53 25 100 75 35 35

15∙d∙0,7 7∙d∙0,7 20∙d 15∙d 7∙d 7∙d

7 74 34 140 105 49 49

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 25 25 75 75 60 35

7∙d∙0,7 7∙d∙0,7 15∙d 15∙d 12∙d 7∙d

7 34 34 105 105 84 49

screws inserted WITH pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

F

5 18 11 60 35 15 15

5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d

7 25 15 84 49 21 21

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 14 14 35 35 35 15

4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 7∙d 3∙d

7 20 20 49 49 49 21

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with EN 1995:2014, according to ETA-11/0030, considering a timber element mass density of 420 kg/m3 < ρk ≤ 500 kg/m3. • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.

• In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

246 | LBS HARDWOOD EVO | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES | TIMBER

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

TENSION

steel-to-timber ε=90°

geometry

thread withdrawal ε=90°

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN]

6,0 mm

-

-

5

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

80

76

3,35

3,35

3,35

3,35

3,35

3,34

3,32

4,80

100

96

3,67

3,67

3,67

3,67

3,67

3,65

3,64

6,06

120

116

3,98

3,98

3,98

3,98

3,98

3,97

3,95

7,32

SPLATE

7

1,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

60

55

2,81

3,02

3,50

3,99

8,0 mm 10,0 mm 12,0 mm 4,37

4,25

4,12

4,86

80

75

3,80

3,98

4,43

4,90

5,34

5,29

5,25

6,63

100

95

4,75

4,89

5,18

5,50

5,78

5,73

5,69

8,40

120

115

5,19

5,35

5,66

5,96

6,22

6,17

6,13

10,16

11,50

-

160

155

5,30

5,56

6,10

6,62

7,10

7,06

7,01

13,70

200

195

5,30

5,61

6,24

6,86

7,49

7,49

7,49

17,24

-

21,50

ε = screw-to-grain angle SHEAR

TENSION

steel-to-timber ε=0°

geometry

thread withdrawal ε=0°

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN] -

80 5

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

76

1,72

1,72

1,72

1,72

1,72

1,72

1,71

1,44

100

96

1,82

1,82

1,82

1,82

1,82

1,81

1,81

1,82

120

116

1,91

1,91

1,91

1,91

1,91

1,91

1,90

2,20

3,0 mm

4,0 mm

5,0 mm

6,0 mm

SPLATE

7

8,0 mm 10,0 mm 12,0 mm

-

60

55

1,12

1,23

1,48

1,73

1,95

1,92

1,88

1,46

80

75

1,52

1,63

1,88

2,14

2,35

2,31

2,27

1,99

100

95

1,91

2,04

2,31

2,58

2,81

2,76

2,72

2,52

120

115

2,31

2,41

2,64

2,88

3,11

3,10

3,08

3,05

160

155

2,70

2,80

3,00

3,19

3,38

3,36

3,35

4,11

200

195

2,97

3,07

3,26

3,46

3,64

3,63

3,61

5,17

11,50

-

21,50

ε = screw-to-grain angle NOTES and GENERAL PRINCIPLES on page 249.

TIMBER | LBS HARDWOOD EVO | 247


STRUCTURAL VALUES | HARDWOOD

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

TENSION

steel-to-timber ε=90°

geometry

thread withdrawal ε=90°

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN]

-

-

5

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

80

76

4,73

4,73

4,73

4,73

4,73

4,70

4,67

8,61

100

96

5,15

5,15

5,15

5,15

5,15

5,15

5,15

10,88

120

116

5,15

5,15

5,15

5,15

5,15

5,15

5,15

13,14

3,0 mm

4,0 mm

5,0 mm

6,0 mm

4,01

4,33

5,07

5,83

SPLATE 60

7

1,5 mm

55

8,0 mm 10,0 mm 12,0 mm 6,43

6,22

11,50

-

6,02

8,72

80

75

5,42

5,65

6,21

6,80

7,33

7,25

7,17

11,90

100

95

6,33

6,60

7,15

7,67

8,12

8,04

7,97

15,07

120

115

6,33

6,70

7,45

8,20

8,92

8,84

8,76

18,24

160

155

6,33

6,70

7,45

8,20

8,95

8,95

8,95

24,59

200

195

6,33

6,70

7,45

8,20

8,95

8,95

8,95

30,93

-

21,50

ε = screw-to-grain angle

SHEAR

TENSION

steel-to-timber ε=0°

geometry

thread withdrawal ε=0°

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN] -

80 5

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

76

2,27

2,27

2,27

2,27

2,27

2,27

2,26

2,58

100

96

2,44

2,44

2,44

2,44

2,44

2,44

2,43

3,26

120

116

2,61

2,61

2,61

2,61

2,61

2,61

2,60

3,94

3,0 mm

4,0 mm

5,0 mm

6,0 mm

SPLATE

7

8,0 mm 10,0 mm 12,0 mm

-

60

55

1,61

1,75

2,08

2,41

2,69

2,63

2,57

2,62

80

75

2,17

2,34

2,70

3,06

3,37

3,30

3,23

3,57

100

95

2,73

2,88

3,23

3,59

3,92

3,90

3,88

4,52

120

115

3,30

3,40

3,65

3,92

4,16

4,14

4,12

5,47

160

155

3,85

3,96

4,20

4,43

4,64

4,62

4,59

7,38

200

195

4,00

4,17

4,49

4,81

5,11

5,09

5,07

9,28

ε = screw-to-grain angle

248 | LBS HARDWOOD EVO | TIMBER

11,50

-

21,50


STRUCTURAL VALUES | BEECH LVL

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

TENSION

steel-beech LVL

thread withdrawal flat

steel tension

SPLATE

L b

d1

d1

L

b

RV,90,k

Rax,90,k

Rtens,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

[kN]

80 100 120

76 96 116

5

SPLATE 60 80 100 120 160 200

7

55 75 95 115 155 195

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

-

6,22 6,22 6,22

6,22 6,22 6,22

6,22 6,22 6,22

6,22 6,22 6,22

6,22 6,22 6,22

6,22 6,22 6,22

6,22 6,22 6,22

15,96 20,16 24,36

11,50

3,0 mm

4,0 mm

5,0 mm

6,0 mm

8,0 mm 10,0 mm 12,0 mm

-

-

7,14 8,44 8,44 8,44 8,44 8,44

7,44 8,85 8,85 8,85 8,85 8,85

8,22 9,68 9,68 9,68 9,68 9,68

9,06 10,51 10,51 10,51 10,51 10,51

9,79 11,26 11,34 11,34 11,34 11,34

16,17 22,05 27,93 33,81 45,57 57,33

21,50

9,64 11,11 11,93 11,93 11,93 11,93

9,49 10,96 11,93 11,93 11,93 11,93

ε = screw-to-grain angle

STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

• The values in the table are evaluated considering mechanical strength parameters of the Ø7 EVO screws obtained analytically and validated by experimental tests.

NOTES | TIMBER

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains of the second element and the connector.

• The tensile design strength of the connector is the lower between the timber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).

• In the case of screws inserted with pre-drilling hole, higher strength values can be achieved.

Rax,d = min

Rax,k kmod γM Rtens,k γM2

• For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear strength are calculated for screws inserted without pre-drilling hole. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b. • The characteristic shear-strength value for LBSH EVO Ø5 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plates according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBSH EVO Ø7 screws has been evaluated assuming a plate thickness = SPLATE, and considering the thin (SPLATE ≤ 3,5 mm) intermediate (3,5 mm < SPLATE < 7,0 mm) or thick (SPLATE ≥ 7 mm) plate case.

• The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different values of ρk , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient kdens (see page 243).

NOTES | HARDWOOD • For the calculation process a mass density equal to ρk = 550 kg/m3 has been considered for hardwood (oak) elements.

NOTES | BEECH LVL • For the calculation process a mass density equal to ρk = 730 kg/m3 has been considered for LVL beech elements. • A 90° angle between the connector and the fiber, a 90° angle between the connector and the side face of the LVL element, and a 0° angle between the force and the fiber were considered for individual timber elements in the calculation.

• In the case of combined shear and tensile stress, the following verification must be satisfied:

Fv,d Rv,d

2

+

Fax,d Rax,d

2

≥ 1

• In the case of steel-to-timber connections with a thick plate, it is necessary to assess the effects of timber deformation and install the connectors according to the assembly instructions.

TIMBER | LBS HARDWOOD EVO | 249


LBA

ETA-22/0002

HIGH BOND NAIL EXCELLENT PERFORMANCE The new LBA nails have shear strength values among the highest on the market and make it possible to certify characteristic nail strengths that more closely approximate actual experimental strengths.

CERTIFIED ON CLT AND LVL Tested and certified values for plates on CLT substrates. Its use is also certified on LVL.

25°

LBA 25 PLA

LBA BINDED The nail is also available in a bound version with the same ETA certification and therefore the same high performance.

STAINLESS STEEL VERSION The nails are also available with the same certification from ETA in A4|AISI316 stainless steel for outdoor applications, with very high strength values.

34°

LBA 34 PLA

DIAMETER [mm]

3

LENGTH [mm]

25

4

12

6 40

100

200

MATERIAL

Zn

electrogalvanized carbon steel

A4

SC1 III) SC2 C1 T1 C2 A4 | AISI316 austenitic stainless steel (CRC

ELECTRO PLATED

AISI 316

SC1

SC2 C1

SC3 T1 C2

SC4 T2 C3

SC3 T2 C3

SC4 T3 C4

T4 C5

T5

T3 C4

T4 C5

T5

LBA COIL

FIELDS OF USE • • • • •

250 | LBA | TIMBER

timber based panels fibreboard and MDF panels solid timber glulam (Glued Laminated Timber) CLT, LVL


CAPACITY DESIGN The strength values are much closer to the actual experimental strengths, so capacity design can be performed more reliably.

WKR Values also tested, certified and calculated for fastening standard Rothoblaas plates. Using the nailer speeds up and facilitates installation.

TIMBER | LBA | 251


Use with NINO angle brackets allows for some of the most versatile applications: even for beam-to-beam joints.

LBA achieves the highest performance together with the WKR angle brackets with the specific strength values on CLT.

GEOMETRY AND MECHANICAL CHARACTERISTICS

d1 dE

dV,steel

dK

b

t1

L

LBA

LBAI

Nominal diameter

d1

[mm]

4

6

4

Head diameter

dK

[mm]

8,00

12,00

8,00

External diameter

dE

[mm]

4,40

6,60

4,40

Head thickness

t1

[mm]

1,50

2,00

1,50

Hole diameter on steel plate

dV,steel

[mm]

5,0÷5,5

7,0÷7,5

5,0÷5,5

Pre-drilling hole diameter(1)

dV

[mm]

3,0

4,5

3,0

Characteristic yield moment

My,k

[Nm]

6,68

20,20

7,18

fax,k

[N/mm2]

6,43

8,37

6,42

ftens,k

[kN]

6,5

17,0

6,5

Characteristic withdrawal-resistance parameter(2) (3) Characteristic tensile strength

(1) Pre-drilling valid for softwood. (2) Valid for softwood - maximum density 500 kg/m3. Associated density ρ = 350 kg/m3. a (3) Valid for LBA460 | LBA680 | LBAI450. For other nail lengths refer to ETA-22/0002.

252 | LBA | TIMBER


CODES AND DIMENSIONS Zn

LOOSE NAILS LBA d1

ELECTRO PLATED

CODE

[mm]

4

6

L

b

pcs

[mm]

[mm]

LBA440

40

30

250

LBA450

50

40

250

LBA460

60

50

250

75

65

250

LBA4100

100

85

250

LBA660

60

50

250

LBA680

80

70

250

LBA6100

100

85

250

L

4 d1

25°

4

CODE

L

b

[mm]

[mm]

40

30

2000

LBA25PLA450

50

40

2000

LBA25PLA460

60

50

2000

d1

40

250

ELECTRO PLATED

CODE

4

L

L

b

[mm]

[mm]

pcs

LBA34PLA440

40

30

2000

LBA34PLA450

50

40

2000

LBA34PLA460

60

50

2000

34° Compatible with 34° strip magazine nailgun

d1

ATEU0116 and gas nailgun HH12100700.

Zn

ELECTRO PLATED

CODE

L

b

[mm]

[mm]

40

30

LBACOIL450

50

40

1600

LBACOIL460

60

50

1600

[mm] LBACOIL440

d1

[mm]

50

[mm]

LBA COIL - 15° plastic roll binding

4

[mm]

pcs

LBA 34 PLA - plastic stick binding 34°

ROLL-BOUND NAILS

L

b

LBAI450

pcs

LBA25PLA440

d1

L

Zn

ELECTRO PLATED

Compatible with Anker 25° nailgun HH3522.

15°

CODE

Zn

STRIP-BOUND NAILS LBA 25 PLA - plastic stick binding 25° [mm]

d1 [mm]

LBA475

d1

A4

AISI 316

LBAI A4 | AISI316

pcs 1600

Compatible with nailgun TJ100091.

NOTE: LBA, LBA 25 PLA, LBA 34 PLA and LBA COIL available in hot-dip galvanised version on request.

RELATED PRODUCTS CODE

description

d1 NAIL

LNAIL

HH3731

palm nailer

HH3522 ATEU0116

pcs

[mm]

[mm]

4÷6

-

1

Anker 25° nailgun

4

40÷60

1

strip magazine nailgun 34°

4

40÷60

1

HH12100700

Anker 34°gas nailgun

4

40÷60

1

TJ100091

Anker coil nailgun 15°

4

40÷60

1

For more information about nailguns see page 406.

HH3731

HH3522

ATEU0116

HH12100700

TJ100091

TIMBER | LBA | 253


MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | STEEL-TO-TIMBER ρk ≤ 420 kg/m3

nails inserted WITHOUT pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

4 28 14 60 40 20 20

10∙d∙0,7 5∙d∙0,7 15∙d 10∙d 5∙d 5∙d

F

12∙d∙0,7 5∙d∙0,7 15∙d 10∙d 5∙d 5∙d

6 50 21 90 60 30 30

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 4 14 14 40 40 28 20

5∙d∙0,7 5∙d∙0,7 10∙d 10∙d 7∙d 5∙d

6 21 21 60 60 60 30

5∙d∙0,7 5∙d∙0,7 10∙d 10∙d 10∙d 5∙d

nails inserted WITH pre-drilled hole

α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

4 14 8 48 28 12 12

5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d

F

6 21 13 72 42 18 18

5∙d∙0,7 3∙d∙0,7 12∙d 7∙d 3∙d 3∙d

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 4 11 11 28 28 20 12

4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 5∙d 3∙d

6 17 17 42 42 42 18

4∙d∙0,7 4∙d∙0,7 7∙d 7∙d 7∙d 3∙d

α = load-to-grain angle d = d1 = nominal nail diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-22/0002.

• In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be multiplied by a coefficient of 1,5.

EFFECTIVE NUMBER FOR SHEAR-STRESSED NAILS The load-bearing capacity of a connection made with several nails, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n nails arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

254 | LBA | TIMBER

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES | STEEL-TO-TIMBER

CHARACTERISTIC VALUES EN 1995:2014

LBA Ø4-Ø6

geometry

SHEAR

TENSION

steel-to-timber

thread withdrawal

SPLATE L b

d1

d1

L

b

RV,k

[mm]

[mm] SPLATE

[mm]

[kN]

4

1,5 mm

2,5 mm

[kN]

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

40

30

2,19

2,17

2,16

2,14

2,11

2,09

2,06

0,77

50

40

2,58

2,58

2,58

2,58

2,58

2,58

2,58

1,08

60

50

2,83

2,83

2,83

2,83

2,83

2,83

2,83

1,39

75

65

3,20

3,20

3,20

3,20

3,20

3,20

3,20

1,85

100

85

3,69

3,69

3,69

3,69

3,69

3,69

3,69

2,47

3,0 mm

4,0 mm

5,0 mm

6,0 mm

8,0 mm

10,0 mm

12,0 mm

-

SPLATE 6

2,0 mm

Rax,k

60

50

4,63

4,59

4,55

4,52

4,44

4,37

4,24

2,45

80

70

5,72

5,72

5,72

5,72

5,72

5,72

5,65

3,69

100

85

6,27

6,27

6,27

6,27

6,27

6,27

6,27

4,72

LBAI Ø4

geometry

SHEAR

TENSION

steel-to-timber

thread withdrawal

SPLATE L b

d1

d1

L

b

RV,k

[mm]

[mm] SPLATE

[mm]

[kN]

50

40

4

Rax,k [kN]

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

2,67

2,67

2,67

2,67

2,67

2,66

2,63

1,11

NOTES • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k ρ = kdens,ax Rhead,k k

[kg/m3 ]

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

GENERAL PRINCIPLES on page 257.

TIMBER | LBA | 255


STRUCTURAL VALUES | STEEL-TO-CLT

CHARACTERISTIC VALUES EN 1995:2014

LBA Ø4-Ø6

geometry

SHEAR

TENSION

steel-to-CLT

thread withdrawal

SPLATE L b

d1

d1

L

b

RV,k

[mm]

[mm] SPLATE

[mm]

[kN]

4

1,5 mm

2,5 mm

3,0 mm

[kN] 4,0 mm

5,0 mm

6,0 mm

-

40

30

2,19

2,17

2,16

2,14

2,11

2,09

2,06

0,77

50

40

2,58

2,58

2,58

2,58

2,58

2,58

2,58

1,08

60

50

2,83

2,83

2,83

2,83

2,83

2,83

2,83

1,39

75

65

3,20

3,20

3,20

3,20

3,20

3,20

3,20

1,85

100

85

3,69

3,69

3,69

3,69

3,69

3,69

3,69

2,47

3,0 mm

4,0 mm

5,0 mm

6,0 mm

8,0 mm

10,0 mm

12,0 mm

-

SPLATE 6

2,0 mm

Rax,k

60

50

4,63

4,59

4,55

4,52

4,44

4,37

4,24

2,45

80

70

5,72

5,72

5,72

5,72

5,72

5,72

5,65

3,69

100

85

6,27

6,27

6,27

6,27

6,27

6,27

6,27

4,72

LBAI Ø4

geometry

SHEAR

TENSION

steel-to-CLT

thread withdrawal

SPLATE L b

d1

d1

L

b

RV,k

Rax,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

4

50

40

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

2,67

2,67

2,67

2,67

2,67

2,66

2,63

1,11

NOTES | CLT • The characteristic values are according to the national specifications ÖNORM EN 1995 - Annex K.

• The characteristic strengths in the table are valid for nails inserted into the side face of the CLT panel (wide face) penetrating more than one layer.

• For the calculation process a mass density ρ k = 350 kg/m3 has been considered for of the boards constituting the CLT panel.

GENERAL PRINCIPLES on page 257.

256 | LBA | TIMBER


MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | CLT nails inserted WITHOUT pre-drilled hole

α=0°

F

F

lateral face d1

[mm]

a1

[mm]

a2

[mm]

a3,t

α=90° lateral face

4

6

d1

[mm]

4

6

6∙d

24

36

a1

[mm]

3∙d

12

18

a2

[mm]

3∙d

12

18

3∙d

12

18

[mm]

10∙d

40

60

a3,t

[mm]

7∙d

28

42

a3,c

[mm]

6∙d

24

36

a4,t

[mm]

3∙d

12

18

a3,c

[mm]

6∙d

24

36

a4,t

[mm]

7∙d

28

a4,c

[mm]

3∙d

12

18

42

a4,c

[mm]

3∙d

12

18

α = angle between force and direction of the grain of the CLT panel outer layer. d = d1 = nominal nail diameter

ti a1 a3,t

α F

F α

α a3,c

F

F α tCLT

a2

a4,t

a4,c

NOTES • The minimum distances are compliant with national specification ÖNORM EN 1995-1-1 - Annex K and are to be considered valid unless otherwise specified in the technical documents for the CLT panels.

• The minimum distances are valid for minimum CLT thickness tCLT,min = 10∙d1 and for minimum individual layer thickness ti,min = 9 mm.

STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-22/0002. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical strength values and the geometry of the nails, reference was made to ETA-22/0002. • Sizing and verification of the timber elements and metal plates must be done separately. • The characteristic shear strength are calculated for nails inserted without pre-drilled hole.

• The values in the table are independent of the load-to-grain angle. • The axial withdrawal resistance values were calculated considering a 90° ε angle between the grains and the connector and a penetration length of b. • The characteristic shear-strength value for LBA/LBAI Ø4 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plates according to ETA-22/0002 (SPLATE ≥ 1,5 mm). • The characteristic shear-strength value for LBA Ø6 nails has been evaluated assuming a plate thickness = SPLATE, always considering the case of thick plate according to ETA-22/0002 (SPLATE ≥ 2,0 mm). • In the case of combined shear and tensile stress, the following verification must be satisfied:

Fv,d Rv,d

2

+

Fax,d Rax,d

2

≥ 1

• The nails must be positioned in accordance with the minimum distances.

TIMBER | LBA | 257


STRUCTURAL VALUES | STEEL-TO-LVL

CHARACTERISTIC VALUES EN 1995:2014

LBA Ø4-Ø6

geometry

SHEAR

TENSION

steel-LVL

thread withdrawal

SPLATE L b

d1

d1

L

b

RV,90,k

[mm]

[mm] SPLATE

[mm]

[kN]

4

1,5 mm

[kN]

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

40

30

2,63

2,61

2,60

2,58

2,54

2,51

2,47

0,92

50

40

2,95

2,95

2,95

2,95

2,95

2,95

2,95

1,29

60

50

3,24

3,24

3,24

3,24

3,24

3,24

3,24

1,66

75

65

3,68

3,68

3,68

3,68

3,68

3,68

3,68

2,21

100

85

4,27

4,27

4,27

4,27

4,27

4,27

4,27

2,94

3,0 mm

4,0 mm

5,0 mm

6,0 mm

8,0 mm

10,0 mm

12,0 mm

-

SPLATE 6

Rax,90,k

60

50

5,57

5,52

5,47

5,43

5,33

5,24

5,07

3,04

80

70

6,56

6,56

6,56

6,56

6,56

6,56

6,48

4,53

100

85

7,22

7,22

7,22

7,22

7,22

7,22

7,22

5,63

LBAI Ø4

geometry

SHEAR

TENSION

steel-LVL

thread withdrawal

SPLATE L b

d1

d1

L

b

RV,0,k

Rax,0,k

[mm]

[mm] SPLATE

[mm]

[kN]

[kN]

4

50

40

1,5 mm

2,0 mm

2,5 mm

3,0 mm

4,0 mm

5,0 mm

6,0 mm

-

3,04

3,04

3,04

3,04

3,04

3,04

3,04

1,32

NOTES | LVL • For the calculation process a mass density equal to ρk = 480 kg/m3 has been considered for softwood LVL elements.

258 | LBA | TIMBER

GENERAL PRINCIPLES on page 257.


DWS DRYWALL SCREW OPTIMISED GEOMETRY Bugle head and phosphate-coated steel; ideal for fastening sheets of drywall.

FULLY FINE THREADED Fully fine threaded screw, ideal for fastening on sheet metal supports.

DWS STRIP

bound version

CODES AND DIMENSIONS

GEOMETRY

DWS - bulk screws d1

CODE

[mm]

4,2 PH 2

description

L

25

FE620005

35

FE620010

45

FE620015

55

FE620020

65

1000 sheet metal substructure

1000 500 500

sheet metal substructure

200

CODE

[mm] 3,9 PH 2 3,9 PH 2 3,9 PH 2

DIAMETER [mm] 3,5 3,5

12

4

LENGTH [mm] 25 25

65

200

SERVICE CLASS

DWS STRIP - bound screws d1

d1

pcs

[mm] FE620001

3,5 PH 2

L

L

description

pcs

[mm] HH10600404

30

HH10600405

35

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY 10000 timber substructure

10000

HH10600406

45

10000

HH10600401

30

10000

HH10600402

35

HH10600403

45

sheet-metal substructure 10000 max 0,75 10000

HH10600397

30

10000

HH10600398

35

fermacell

Compatible with nailgun HH3371, see page 405.

10000

C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

PO

PHOSPHATED

phosphate-coated carbon steel

TIMBER | DWS | 259


CONCRETE


CONCRETE

CTC CONNECTOR FORTIMBER-TO-CONCRETE FLOORS. . . . . . . . . 262

TC FUSION TIMBER-TO-CONCRETE JOINT SYSTEM . . . . . . . . . . . . . . . . . . . 270

MBS | MBZ SELF-TAPPING SCREW FOR MASONRY. . . . . . . . . . . . . . . . . . . . . 274

SKR EVO | SKS EVO SCREW ANCHOR FOR CONCRETE. . . . . . . . . . . . . . . . . . . . . . . . . 276

SKR | SKS | SKP SCREW ANCHOR FOR CONCRETE CE1. . . . . . . . . . . . . . . . . . . . . 278

CONCRETE | 261


CTC

AC233 ESR-4645

ETA-19/0244

CONNECTOR FOR TIMBER-TO-CONCRETE FLOORS CERTIFICATION Timber-to-concrete fastener with specific CE certification according to ETA-19/0244. Tested and calculated with parallel and crossed arrangement of 45° and 30° connectors, with and without wooden planking.

RAPID DRY SYSTEM Approved system, self-drilling, reversible, fast and minimally invasive. Optimum static and noise performances, both for new projects and structural restoration.

COMPLETE RANGE Self-perforating tip with notch and countersunk cylindrical head. Available in two diameters (7 and 9 mm) and two lengths (160 and 240 mm) to optimize the number of fasteners.

INSTALLATION INDICATOR During installation, the under head counter-thread serves as “correct installation” indicator and increases the fastener tightness inside the concrete.

BIT INCLUDED

DIAMETER [mm]

6

LENGTH [mm]

52

7

9

16 160 240

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

400

electrogalvanized carbon steel

FIELDS OF USE • • • • • • • •

262 | CTC | CONCRETE

timber based panels solid timber glulam (Glued Laminated Timber) CLT and LVL high density woods concrete EN 206-1 lightweight concrete EN 206-1 lightened concrete based on silicates


TIMBER-TO-CONCRETE Ideal for composite floors and for renovation of existing floors. Stiffness values also calculated in the presence of vapour barrier sheet or soundproofing layer.

STRUCTURAL RESTORATION Values also tested, certified and calculated for high density woods. Certification specific for application in timber-concrete structures.

CONCRETE | CTC | 263


Composite timber-concrete floors on CLT panel with 45° connectors arranged in a single row.

Composite timber-concrete floors with 30° connectors arranged in a double row.

GEOMETRY AND MECHANICAL CHARACTERISTICS

dS d2 d1

XXX

dK

CTC

sC

b1

b2 L

GEOMETRY Nominal diameter

d1

[mm]

7

9

Head diameter

dK

[mm]

9,50

11,50

Thread diameter

d2

[mm]

4,60

5,90

Shank diameter

dS

[mm]

5,00

6,50

Pre-drilling hole diameter(1)

dV,S

[mm]

4,0

5,0

(1) Pre-drilling valid for softwood.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

7

9

Tensile strength

ftens,k

[kN]

20,0

30,0

Yield moment

My,k

[Nm]

20,0

38,0

Coefficient of friction(2)

μ

[-]

0,25

0,25

(2) The friction component µ can be considered only in arrangement with inclined non-crossed screws (30° e 45°) and without the soundproofing foil.

softwood (softwood)

concrete [EN 206-1] + soundproofing layer

concrete [EN 206-1](3)

11,3 N/mm2

10,0 kN

15,0 kN

Withdrawal resistance parameter

fax,k

-

Associated density

ρa

[kg/m3]

350

-

-

Calculation density

ρk

[kg/m3]

≤ 590

-

-

(3) Value only valid in the absence of soundproofing foil for arrangements with 45° angled, uncrossed connectors

264 | CTC | CONCRETE


CODES AND DIMENSIONS L

b1

b2

[mm]

d1

CODE

[mm]

[mm]

[mm]

pcs

CTC7160 7 TX 30 CTC7240

160

40

110

100

240

40

190

100

L

b1

b2

[mm]

d1

CODE

[mm]

[mm]

[mm]

pcs

CTC9160 9 TX 40 CTC9240

160

40

110

100

240

40

190

100

SLIP MODULUS Kser The Kser slip modulus is to be understood as relating to a single connector or a pair of crossed connectors subject to a parallel force at the slip surface. connector arrangement without soundproofing layer

Kser [N/mm] CTC Ø7

connector arrangement with soundproofing layer

Kser [N/mm]

CTC Ø9

30°

CTC Ø7

CTC Ø9

48 lef

48 lef

16 lef

22 lef

70 lef

100 lef

30°

80 lef

lef

80 lef

lef

parallel at a 30°

parallel at a 30°

45°

45°

48 lef

lef

60 lef

lef

45° parallels 45°

45° parallels 45°

45°

70 lef

lef

45°

100 lef

lef

45° crossed

45° crossed

Ief = depth of CTC connector pull-through into timber element, in millimetres. Soundproofing foil is defined as a resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR.

MINIMUM DISTANCES FOR AXIALLY LOADED CONNECTORS d1

[mm]

7

9

a1

[mm]

130∙sin(α)

130∙sin(α)

a2

[mm]

35

45

a1,CG

[mm]

85

85

a2,CG

[mm]

32

37

aCROSS

[mm]

11

14

α = angle between connector and grain

α = 45°/30°

a1,CG

α = 45°

a1

a2,CG

parallel at 30°/45°

a2

a2,CG

a2,CG

a1

aCROSS

a2,CG

45° crossed

NOTE on page 269.

CONCRETE | CTC | 265


STRUCTURAL VALUES - CALCULATION STANDARD NTC 2018

NTC2018 UNI EN 1995:2014

PRELIMINARY SIZING OF CTC CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS Solid timber C24 (EN 338:2004) - not subject to continuous monitoring

span [m]

beam section BxH [mm]

Installation at a 45° angle, without soundproofing layer.

80 x 160

120 x 120

45°

120 x 200

120 x 240

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

3 32 7x160 100/100 1 16,2 36 9x160 200/200 2 18,2

-

3,5 32 7x240 120/120 1 13,9 60 9x160 100/200 2 26,0 22 7x160 150/200 1 9,5

4

4,5

5

6

-

-

-

-

-

-

-

28 9x240 150/200 1 9,4 24 9x240 200/200 1 8,1

44 9x240 100/150 1 13,3 32 9x240 150/200 1 10,8

64 9x240 150/300 2 19,4

84 9x160 100/100 2 31,8 20 9x240 200/300 1 7,6 16 7x240 250/300 1 6,1

-

-

3 18 7x160 200/200 1 9,1 22 9x160 150/150 1 11,1

3,5

4

4,5

5

6

-

-

-

-

-

-

-

-

-

20 9x160 200/300 1 7,6 16 7x240 250/300 1 6,1

28 7x240 150/200 1 9,4 24 7x240 250/300 1 8,1

88 9x240 120/120 2 26,7 24 7x240 200/300 1 8,1

124 9x240 100/100 2 37,6

span [m]

beam section BxH [mm]

80 x 160

Installation at a 45° angle, with soundproofing layer.

120 x 120

45°

120 x 200

120 x 240

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

-

64 9x240 100/150 2 27,7 22 7x160 150/200 1 9,5

-

-

3 32 7x160 200/200 1 16,2 40 9x160 150/150 1 20,2

3,5 48 7x240 150/150 1 20,8 60 9x160 100/150 1 26,0 26 7x240 250/400 1 11,3

Crossed installation at a 45° angle, with or without soundproofing layer.

80 x 160

120 x 120

45°

45°

120 x 200

120 x 240

266 | CTC | CONCRETE

-

span [m]

beam section BxH [mm] no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

-

-

-

-

4

4,5

5

6

-

-

-

-

-

-

-

-

32 7x240 250/250 1 12,1 24 7x240 300/400 1 9,1

48 7x240 150/300 1 16,2 32 7x240 250/350 1 10,8

68 7x240 150/150 1 20,6 52 7x240 200/200 1 17,5

-

82 9x240 120/200 1 24,8


STRUCTURAL VALUES - CALCULATION STANDARD NTC 2018

NTC2018 UNI EN 1995:2014

PRELIMINARY SIZING OF CTC CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS Glulam GL24h (EN14080:2013) - subject to continuous monitoring

beam section BxH [mm]

Installation at a 45° angle, without soundproofing layer.

120 x 160

120 x 200

45°

140 x 200

140 x 240

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

3 10 9x160 400/400 1 5,1

-

3,5 20 7x240 150/300 1 8,7 10 7x240 400/400 1 4,3

4 26 9x240 120/250 1 9,8 16 9x240 300/300 1 6,1 18 7x240 1 250/250 6,8

-

-

-

-

-

3 10 7x160 400/400 1 5,1

3,5 14 7x160 250/400 1 6,1 10 7x160 400/400 1 4,3

4 20 7x240 200/300 1 7,6 14 7x160 300/400 1 5,3 12 7x240 400/400 1 4,5

beam section BxH [mm]

120 x 160

Installation at a 45° angle, with soundproofing layer.

120 x 200

45°

140 x 200

140 x 240

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

-

-

-

-

-

-

3 16 7x160 400/400 1 8,1

3,5 30 7x240 200/300 1 13,0 18 7x160 400/400 1 7,8

4 44 7x240 150/250 1 16,7 32 7x240 200/400 1 12,1 28 7x240 250/400 1 10,6

beam section BxH [mm]

Crossed installation at a 45° angle, with or without soundproofing layer.

120 x 160

120 x 200

45°

45°

140 x 200

140 x 240

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

-

-

-

-

-

-

span [m] 4,5 36 9x240 100/200 1 12,1 30 9x240 120/250 1 10,1 24 9x240 1 150/300 8,1 18 7x240 1 300/300 6,1 span [m] 4,5 48 7x240 100/100 1 16,2 22 7x160 200/300 1 7,4 22 7x240 200/300 1 7,4 14 7x160 400/400 1 4,7 span [m] 4,5 68 9x240 100/200 1 22,9 48 7x240 150/300 1 16,2 46 7x240 150/350 1 15,5 32 7x240 300/300 1 10,8

5

5,5

6

-

-

-

38 9x240 100/250 1 11,5 32 9x240 1 120/250 9,7 28 7x240 1 150/250 8,5

44 9x240 100/200 1 12,1 42 9x240 1 100/250 11,6 36 9x240 1 120/250 9,9

62 9x240 1 100/100 15,7 48 9x240 1 100/200 12,1

5

5,5

6

-

-

-

-

-

-

40 7x240 100/200 1 12,1 36 7x240 150/150 1 10,9 16 7x240 350/350 1 4,8

58 7x240 100/100 1 16,0 32 7x240 150/250 1 8,8

48 7x240 100/200 1 12,1

5

5,5

6

-

-

-

-

-

68 7x240 150/150 1 20,6 62 7x240 120/250 1 18,8 44 7x240 200/300 1 13,3

84 7x240 100/200 1 23,1 74 9x240 150/150 1 20,4

-

-

100 9x240 120/120 1 25,3

CONCRETE | CTC | 267


STRUCTURAL VALUES - CALCULATION STANDARD EN 1995-1-1-2014

EN 1995:2014

PRELIMINARY SIZING OF CTC CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS Glulam GL24h (EN14080:2013)

beam section BxH [mm]

Installation at a 45° angle, without soundproofing layer.

120 x 160

120 x 200

45°

140 x 200

140 x 240

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

3 10 9x160 400/400 1 5,1

-

3,5 16 9x240 200/400 1 6,9 10 7x240 400/400 1 4,3

4 26 9x240 150/200 1 9,8 16 9x240 300/300 1 6,1 16 7x240 1 300/300 6,1

-

-

-

-

-

3 10 7x160 400/400 1 5,1

3,5 14 7x160 400/400 1 6,1 10 7x160 400/400 1 4,3

4 20 9x160 200/300 1 7,6 14 9x160 350/350 1 5,3 12 7x240 400/400 1 4,5

beam section BxH [mm]

120 x 160

Installation at a 45° angle, with soundproofing layer.

120 x 200

45°

140 x 200

140 x 240

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

-

-

-

-

-

-

3 16 7x160 400/400 1 8,1

3,5 28 7x160 200/350 1 12,1 18 7x160 400/400 1 7,8

4 48 9x160 150/200 1 18,2 32 7x240 200/400 1 12,1 24 9x160 300/400 1 9,1

beam section BxH [mm]

Crossed installation at a 45° angle, with or without soundproofing layer.

120 x 160

120 x 200

45°

45°

140 x 200

140 x 240

268 | CTC | CONCRETE

no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2 no. connectors per beam CTC distance[mm] no. of lines no. connectors/m2

-

-

-

-

-

-

span [m] 4,5 32 9x240 120/200 1 10,8 24 9x240 200/200 1 8,1 24 9x240 1 200/200 8,1 18 7x240 1 300/300 6,1

span [m] 4,5 48 7x240 100/100 1 16,2 20 9x160 200/350 1 6,7 16 7x160 250/400 1 5,4 14 7x160 400/400 1 4,7

span [m] 4,5 76 9x160 100/150 1 25,6 48 7x240 150/300 1 16,2 46 7x240 150/350 1 15,5 35 7x240 350/350 1 11,8

5 44 9x240 100/150 1 13,3 38 9x240 100/250 1 11,5 32 9x240 1 150/200 9,7 28 7x240 1 200/200 8,5

5,5

6

-

-

44 9x240 100/200 1 12,1 42 9x240 1 100/250 11,6 36 9x240 1 120/250 9,9

52 9x240 1 100/150 13,1 42 9x240 1 120/200 10,6

5

5,5

6

-

-

-

-

-

-

40 7x240 100/200 1 12,1 32 7x240 150/200 1 9,7 16 7x240 350/400 1 4,8

58 7x240 100/100 1 16,0 30 7x240 150/300 1 8,3

48 7x240 100/200 1 12,1

5

5,5

6

-

-

-

-

-

68 7x240 150/150 1 20,6 60 7x240 150/200 1 18,2 44 7x240 200/300 1 13,3

74 7x240 120/200 1 20,4 66 7x240 150/200 1 18,2

-

-

82 7x240 120/200 1 20,7


EXAMPLES OF POSSIBLE CONFIGURATIONS CTC CONNECTORS ARRANGED AT 45° IN PARALLEL CONFIGURATION ON 1 ROW min pitch

max pitch

max pitch

min pitch

sC tS H

L/4

L/2

B

L/4

CTC CONNECTORS ARRANGED AT 45° IN PARALLEL CONFIGURATION IN 2 ROWS min pitch

max pitch

max pitch

min pitch

sC tS H a2,CG L/4

L/2

L/4

a2 B

a2,CG

CTC CONNECTORS ARRANGED AT 45° IN CROSSED CONFIGURATION ON 1 ROW min pitch

max pitch

min pitch

sC tS H a2,CG L/4

L/2

L/4

aCROSS B

a2,CG

STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES

• For the mechanical strength values and the geometry of the screws, reference was made to ETA-19/0244.

• The pre-dimensioning of the CTC connectors was performed according to Appendix B of EN 1995-1-1:2014 and ETA-19/0244.

• The design shear strength of the single inclined connector is given by the minimum contribution between the design strength on the timber side (Rax,d), the concrete design shear strength (Rax,concrete,d) and the steel design shear strength (Rtens,d):

• The predimensioning tables for the number of connectors were calculated according to both the Italian standard NTC 2018 and the European standard EN 1995-1-1:2014, making the following assumptions: - distance between beams i = 660 mm; - class C20/25 concrete slab (Rck=25 N/mm2) with thickness sC=50 mm; - the presence of a 20 mm thick t s board with a characteristic density of 350 kg/m3; - in the concrete slab, a Ø8 electrowelded mesh with a mesh size of 200 x 200 mm is planned.

Rv,Rd =(cos α + µ sin α) min

Rax,d Rtens,d Rax,concrete,d

where α is the angle between connector and grain (45° or 30°). • Soundproofing foil is defined as a resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR. • The friction component µ can be considered only in arrangement with inclined non-crossed screws (30° e 45°) and without the soundproofing foil. • The minimum height of the timber beam must be H ≥ 100 mm. • The concrete collaborating slab must have a thickness sc of 50 mm ≤ sC ≤ 0,7 H; however, it is recommended to limit the thickness to a maximum of 100 mm to ensure the correct distribution of forces between the slab, connector and timber beam.

• The predimensioning tables for the number of connectors were calculated according to both the Italian standard NTC 2018 and the European standard EN 1995-1-1:2014, considering the following loads as agents: - own weight gk1 (timber beam + wooden planking + concrete slab); - permanent non-structural load gk2 = 2 kN/m2; - variable load of medium duration qk = 2 kN/m2. • Pitch means the minimum and maximum spacing values at which the connectors are positioned, respectively at the sides (L/4 - minimum spacing) and in the central part of the beam (L/2 - maximum spacing). • The connectors may be arranged in several rows (1 ≤ n ≤ 3) along the beam, subject to the minimum distances. • For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

Complete calculation reports for designing in wood? Download MyProject and simplify your work!

CONCRETE | CTC | 269


TC FUSION TIMBER-CONCRETE FUSION

ETA 22/0806

TIMBER-TO-CONCRETE JOINT SYSTEM HYBRID STRUCTURES The VGS, VGZ and RTR full-thread connectors are now certified for any type of application where a timber element (wall, ceiling, etc.) must transmit stresses to a concrete element (bracing core, foundation, etc.).

PREFABRICATION The concrete prefabrication combines with timber prefabrication: the reinforcing bars inserted into the concrete casting accommodate the full thread timber connectors; the supplementary casting carried out after installing the timber components completes the connection.

POST-AND-SLAB SYSTEMS It allows connections between CLT panels with exceptional strength and stiffness for shear, bending moment and axial stress: an example is its use with SPIDER and PILLAR.

VGS

RTR

FIELDS OF USE Timber-to-concrete joints: • CLT, LVL • glulam and solid timber • concrete according to EN 206-1

270 | TC FUSION | CONCRETE


SPIDER AND PILLAR TC FUSION complements the SPIDER and PILLAR systems, allowing the implementation of moment connections between panels. Rothoblaas waterproofing systems make it possible to separate timber and concrete.

CONCRETE | TC FUSION | 271


CONNECTORS type

description

d1

L

[mm]

[mm]

VGS

screw for timber

9 – 11 - 13

200 ÷ 1500

VGZ

screw for timber

9 – 11

200 ÷ 1000

RTR

threaded rod

16

2200

d1 L d1 L d1 L

FIELD OF USE ETA 22/0806 is specifically for timber-concrete applications with VGS, VGZ and RTR all-thread connectors. The calculation method for evaluating both joint strength and stiffness is made explicit. The connection allows the transfer of shear, tensile and bending moment stresses between timber elements (CLT, LVL, GL) and concrete, both at floor and wall level.

Nd Vy,d

Vy,d

Rigid joint: • cut in the panel plane (Vy) • out-of-plane cutting (Vx) • tension (N) • bending moment (M)

Nd

Hinge joint: • cut in the panel plane (Vy) • out-of-plane cutting (Vx) • tension (N) Vx,d

Md

Vx,d

EN 1995 ETA 11/0030

Md

EN 1992 EN 206-1 EN 10080

EN 1995-1 ETA CLT

ETA-22/0806 Rothoblaas FOR TIMBER-TO-CONCRETE CONNECTIONS

INSTALLATION e

l0 Sg

lbd

272 | TC FUSION | CONCRETE


APPLICATIONS | CLT-CONCRETE FLOOR-FLOOR

250 mm 250 mm

lc

lc

FLOOR-WALL

rospetto

a4t

a

a

tCLT

tCLT

a d

a4t

lc

S

V

S

0

0

0

0

G V

S

0

V 0

0

1

0

1

0

G

S

V

V

S

G

1

1

0

S

tCLT G

0

0

0

0

1

1

1

1

0

G

V

S

G

V

S

G

V

G

lc

0

WALL-FOUNDATION

WALL-WALL

VGS

RTR

FULLY THREADED SCREW WITH COUNTERSUNK OR HEXAGONAL HEAD

STRUCTURAL REINFORCEMENT SYSTEM

More information on applications with the TC FUSION system in the data sheets of the VGS and RTR connectors. Discover them on page 164 and page 196.

CONCRETE | TC FUSION | 273


MBS | MBZ SELF-TAPPING SCREW FOR MASONRY TIMBER AND PVC DOORS/WINDOWS The countersunk head (MBS) allows PVC window frames to be installed without damaging the frame. The cylindrical head (MBZ) is able to penetrate and remain embedded in timber frames.

IFT CERTIFICATION Strength values in different substrates tested in cooperation with the Institute for Window Technology (IFT) in Rosenheim.

HI-LOW THREADING The HI-LOW thread allows for safe fastening even near the edges of the support, thanks to the reduced tension induced on the material, ideal for frames.

DIAMETER [mm] 6

8

16

LENGTH [mm] 52 52

242

400

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

MBS

MBZ

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE Fastening of timber (MBZ) and PVC (MBS) window frames on the following supports: • solid and perforated brick • solid and perforated concrete • light concrete • autoclaved aerated concrete

274 | MBS | MBZ | CONCRETE


CODES AND DIMENSIONS MBS - countersunk screw d1

MBZ - cylindrical head

CODE

L

[mm]

pcs

d1

[mm] MBS7552 MBS7572 MBS7592 MBS75112 MBS75132 MBS75152 MBS75182 MBS75212 MBS75242

7,5 TX 30

CODE

L

[mm]

52 72 92 112 132 152 182 212 242

100 100 100 100 100 100 100 100 100

7,5 TX 30

pcs

[mm] MBZ7552 MBZ7572 MBZ7592 MBZ75112 MBZ75132 MBZ75152 MBZ75182 MBZ75212 MBZ75242

52 72 92 112 132 152 182 212 242

100 100 100 100 100 100 100 100 100

GEOMETRY AND PARAMETERS OF INSTALLATION MBS d1

MBZ

dK

d1

dK

d1

L

L

MBS

MBZ

Nominal diameter

d1

[mm]

7,5

7,5

Head diameter

dk

[mm]

10,00

8,00

Diameter of pre-drilling hole concrete/brickwork

d0

[mm]

6,0

6,0

Pre-drilling hole diameter in the timber element

dV

[mm]

6,2

6,2

Hole diameter in the PVC element

dF

[mm]

7,5

-

dK

dK dF

d1 MBS

dK

hnom

d1

dO

MBZ

hnom

d1 dK d0 dV dF hnom

screw diameter head diameter diameter of pre-drilling hole concrete/brickwork pre-drilling hole diameter in the timber element hole diameter in the PVC element nominal anchoring depth

dO

STRUCTURAL VALUES WITHDRAWAL RESISTANCE Type of support Concrete Solid brick Hollow brick Light concrete

hnom,min

Nrec(1)

[mm]

[kN]

30

0,89

40

0,65

80

1,18

40

0,12

60

0,24

80

0,17

hnom

(1)The recommended withdrawal values are obtained considering a safety coefficient of 3.

INSTALLATION dV

01a

MBS

02a

MBS

01b

MBZ

02b

MBZ

CONCRETE | MBS | MBZ | 275


SKR EVO | SKS EVO SCREW ANCHOR FOR CONCRETE RAPID DRY SYSTEM Fast and easy operation. The special threading requires a small predrill and guarantees fastening on concrete without creating expansion stresses in the concrete. Reduced minimum distances.

C4 EVO COATING Inorganic-based multilayer coating with a functional outer layer of epoxy matrix with aluminium flakes. Suitability for atmospheric corrosivity class C4 and service class 3.

LARGER HEAD Robust and easy to install, thanks to the increased geometry of the SKR hexagonal head.

DIAMETER [mm]

6

LENGTH [mm]

52

7,5

12

16

60

400 400

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

C4

EVO COATING

carbon steel with C4 EVO coating SKR EVO

SKS EVO

FIELDS OF USE Fastening of timber or steel elements to concrete supports.

276 | SKR EVO | SKS EVO | CONCRETE


CODES AND DIMENSIONS SKR EVO - hexagonal head CODE

d1

L

tfix

h1,min

hnom

d0

dF,timber

dF,steel

SW

Tinst

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

60

10

60

50

6

8

8-10

13

15

50

SKREVO7560 SKREVO7580

7,5

pcs

80

30

60

50

6

8

8-10

13

15

50

100

20

90

80

6

8

8-10

13

15

50

SKREVO1080

80

30

65

50

8

10

10-12

16

25

50

SKREVO10100

100

20

95

80

8

10

10-12

16

25

25

SKREVO75100

SKREVO10120

10

SKREVO10140

120

40

95

80

8

10

10-12

16

25

25

140

60

95

80

8

10

10-12

16

25

25

SKREVO10160

160

80

95

80

8

10

10-12

16

25

25

SKREVO12100

100

20

100

80

10

12

12-14

18

50

25

SKREVO12120

120

40

100

80

10

12

12-14

18

50

25

SKREVO12140

140

60

100

80

10

12

12-14

18

50

25

SKREVO12160

160

80

100

80

10

12

12-14

18

50

25

SKREVO12200

12

200

120

100

80

10

12

12-14

18

50

25

SKREVO12240

240

160

100

80

10

12

12-14

18

50

25

SKREVO12280

280

200

100

80

10

12

12-14

18

50

25

SKREVO12320

320

240

100

80

10

12

12-14

18

50

25

SKREVO12400

400

320

100

80

10

12

12-14

18

50

25

TX

Tinst

pcs

SKS EVO - countersunk head CODE

d1

L

tfix

h1,min

hnom

d0

dF,timber

dK

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

SKSEVO7560

60

10

60

50

6

8

13

TX40

-

50

SKSEVO7580

80

30

60

50

6

8

13

TX40

-

50

SKSEVO75100 SKSEVO75120

7,5

100

20

90

80

6

8

13

TX40

-

50

120

40

90

80

6

8

13

TX40

-

50

SKSEVO75140

140

60

90

80

6

8

13

TX40

-

50

SKSEVO75160

160

80

90

80

6

8

13

TX40

-

50

ADDITIONAL PRODUCTS - ACCESSORIES CODE

description

pcs

SOCKET13

SW 13 bushing 1/2” connection

1

SOCKET16

SW 16 bushing 1/2” connection

1

SOCKET18

SW 18 bushing 1/2” connection

1

GEOMETRY SKR EVO

Tinst tfix L

SKS EVO SW

dF d1 d0

hnom

h1

dK

external diameter of anchor d1 L anchor length t fix maximum fastening thickness h1 minimum hole depth hnom nominal anchoring depth d0 hole diameter in the concrete support dF maximum hole diameter in the element to be fastened SW wrench size dK head diameter T inst tightening torque

CONCRETE | SKR EVO | SKS EVO | 277


SKR | SKS | SKP

R120

SEISMIC C2

ETA

SCREW ANCHOR FOR CONCRETE CE1 SEISMIC PERFORMANCE Certified for applications on cracked and non-cracked concrete and in performance class for seismic actions C1 (M10-M16) and C2 (M12-M16).

IMMEDIATE STRENGTH Its operating principle allows the load to be applied after zero waiting times.

OPERATION BY SHAPE The stresses acting on the anchor are transmitted to the substrate predominantly through the interaction of the geometric conformation of the anchor, in particular, diameter and thread; allowing it to lock into the substrate and guaranteeing the seal. SKR

SKS

DIAMETER [mm]

6 6

LENGTH [mm]

52

16 16

60

290

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

400

electrogalvanized carbon steel

SKP

FIELDS OF USE Fastening of timber or steel elements to supports: • concrete according to EN 206:2013 • cracked and uncracked concrete

278 | SKR | SKS | SKP | CONCRETE


CODES AND DIMENSIONS SKR - hexagonal head with mock washer d1

CODE

[mm] 8 10

12

16

L

tfix

h1,min

hnom

hef

d0

dF

SW

Tinst

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[Nm]

pcs

SKR8100

100

40

75

60

48

6

9

10

20

50

SKR1080

80

10

85

70

56

8

12

13

50

50

SKR10100

100

30

85

70

56

8

12

13

50

25

SKR10120

120

50

85

70

56

8

12

13

50

25

SKR1290

90

10

100

80

64

10

14

15

80

25

SKR12110

110

30

100

80

64

10

14

15

80

25

SKR12150

150

70

100

80

64

10

14

15

80

25

SKR12210

210

130

100

80

64

10

14

15

80

20

SKR12250

250

170

100

80

64

10

14

15

80

15

SKR12290

290

210

100

80

64

10

14

15

80

15

SKR16130

130

20

140

110

85

14

18

21

160

10

TX

pcs

SKS - countersunk head d1

CODE

L

tfix

h1,min

hnom

hef

d0

dF

dK

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

SKS660

60

10

55

50

38

5

7

11

TX 30

100

SKS860

60

10

75

50

38

6

9

14

TX 30

50

[mm] 6 8 10

SKS880

80

20

75

60

48

6

9

14

TX 30

50

SKS8100

100

40

75

60

48

6

9

14

TX 30

50

SKS10100

100

30

85

70

56

8

12

20

TX 40

50

L

tfix

h1,min

hnom

hef

d0

dF

dK

TX

pcs

SKP - convex head d1

CODE

[mm] 6

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

SKP680

80

30

55

50

38

5

7

12

TX 30

50

SKP6100

100

50

55

50

38

5

7

12

TX 30

50

ADDITIONAL PRODUCTS - ACCESSORIES CODE

description

pcs

SOCKET10

SW 10 bushing 1/2” connection

1

SOCKET13

SW 13 bushing 1/2” connection

1

SOCKET15

SW 15 bushing 1/2” connection

1

SOCKET21

SW 21 bushing 1/2” connection

1

GEOMETRY SKR

Tinst

SKS SW

tfix

dF

L d1 d0

hef

hnom h

1

SKP dK

dK

d1 external diameter of anchor L anchor length t fix maximum fastening thickness h1 minimum hole depth hnom nominal anchoring depth hef effective anchor depth d0 hole diameter in the concrete support dF maximum hole diameter in the element to be fastened SW wrench size dK head diameter T inst tightening torque

CONCRETE | SKR | SKS | SKP | 279


METAL


METAL

SBD SELF-DRILLING DOWEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

SBS SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 292

SBS A2 | AISI304 SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 296

SPP SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 298

SBN - SBN A2 | AISI304 SELF-DRILLING METAL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

SAR SELF-DRILLING SCREW FOR STEEL, HEXAGONAL HEAD. . . . . . 304

MCS A2 | AISI304 SCREW WITH WASHER FOR METAL SHEET. . . . . . . . . . . . . . . . . . 306

MTS A2 | AISI304 SCREWS FOR METAL SHEET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

CPL PRE-PAINTED METAL SHEET CAP WITH PE GASKET. . . . . . . . . . 309

WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET. . . . . . . . . . 310

METAL | 281


TIMBER-TO-METAL DRILLING METAL Timber-metal screws have a special tip that allows the hole to be drilled into the metal elements directly during installation of the screw. Their operation follows the same principles as drill and cut bits. Metal drilling produces much heat around the working area: 80% of this heat is contained in the steel shavings generated during the process. It is essential to keep drilling waste away from the drill in order to preserve its pull-through capabilities.

Generally, wood-metal screw tips are made of carbon steel, which is less stable than drill steel tips (SNAIL METAL) when subjected to high temperatures. In extreme situations, the heat generated can reach such high levels that the tip melts and burns in the wood. Waste chips produced during drilling.

In timber, milling greater than the depth of the plate facilitates the removal of drilling residues and helps to maintain an acceptable temperature near the tip.

The temperature of the tip depends proportionally on: SCREWDRIVER REVOLUTIONS [RPM] We recommend the use of screwdrivers with speed control, equipped with a clutch or torque control (e.g. Mafel A 18M BL).

[kg]

APPLIED FORCE [kg] This is the force with which the operator pushes the screw during installation. PLATE HARDNESS It is the metal's strength to drilling or cutting, which does not depend so much on the material class as on the heat treatment to which the metal has been subjected (e.g. quenching/ tempering).

In general, a lower applied force and lower screwing speed is required to drill aluminium than steel, precisely because of its lower hardness. Insertion tests of self-drilling dowels in timber-steel applications with controlled force.

The table shows the balanced combinations of screwdriver RPM and force (Fappl) to be used to easily drill steel depending on the nominal diameter of the screw/dowel. The applied force can be decreased, as long as the number of screwdriver revolutions is increased proportionally (and vice versa). In the case of particularly hard steels, reducing the screwdriver revolutions and increasing the applied force can help.

d1

(RPM + Fappl) rec

[mm]

[RPM]

[kg]

3,5 4,2 4,8 5,5 6,3 7,5

2200 1900 1600 1400 1200 1100

35 40 47 53 60 68

RPM-Fappl combination to be applied depending on d1 .

282 | TIMBER-TO-METAL | METAL


SBD head

TIMBER-TO-METAL TIPS AND SCREWS HOW DO TIMBER-TO-METAL SCREWS WORK? The shape of the tip favours cleaning the hole, pushing steel shavings away from the hole. The narrowing at the tip of the SBD serves precisely to create space for cutting waste away from the drilling area.

SBN thread

Amax

The maximum fixable thickness (A max) corresponds to the length of the screw minus the tip and 3 thread turns. 3 thread turns are in fact the ideal length for gripping the screw in the metal plate. SBS

Lp must be long enough to channel the residues. If the thread makes contact with the plate before drilling is complete, the connector may break.

s

Lp

tip

The length of the tip Lp determines the maximum thickness that can be drilled.

fins

TIMBER-METAL TIP WITH FINS In applications where the thickness of the timber element to be fixed (A) is much greater than that of the metal plate (s), fins are used at the tip. The fins protect the thread, ensuring that it does not come into contact with the timber element.

By creating an enlarged hole, the fins do not damage the thread and allow it to reach the plate intact. Once they come into contact with the plate, the fins break, allowing the thread to grip the plate.

SBS screw before and after installation

An enlarged hole prevents the timber element from lifting from the base metal during metal drilling.

METAL | TIMBER-TO-METAL | 283


SBD

EN 14592

SELF-DRILLING DOWEL TAPERED TIP The new tapered self-perforating tip minimises insertion times in timber-to-metal connection systems and guarantees applications in hardto-reach positions (reduced application force).

GREATER STRENGTH Higher shear strengths than the previous version. The 7.5 mm diameter ensures higher shear strengths than other solutions on the market and enables optimisation of the number of fasteners.

DOUBLE THREAD The thread close to the tip (b1) facilitates screwing. The longer under-head thread (b2) allows quick and precise closing of the joint.

CYLINDRICAL HEAD It allows the dowel to penetrate beyond the surface of the timber substrate. It ensures an optimal appearance and meets fire-strength requisites.

BIT INCLUDED

DIAMETER [mm] LENGTH [mm]

SBD 3,5

7,5

25

95

235 240

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

8

electrogalvanized carbon steel

VIDEO Scan the QR Code and watch the video on our YouTube channel

FIELDS OF USE Self-drilling system for concealed timber-to. steel joints. It can be used with screw guns running at 6002100 rpm, minimum applied force 25 kg, with: • steel S235 ≤ 10.0 mm • steel S275 ≤ 10.0 mm • steel S355 ≤ 10.0 mm • ALUMINI, ALUMIDI and ALUMAXI brackets

284 | SBD | METAL


MOMENT RESTORING It restores shear and moment forces in concealed centreline joints of large beams.

EXCEPTIONAL SPEED The only dowel that drills a 5 mm thick S355 plate in 20 seconds (horizontal application with an applied force of 25 kg). No self-drilling pin exceeds the application speed of the SBD with its new tip.

METAL | SBD | 285


Fastening of Rothoblaas pillar-holder with internal knife plate F70.

Rigid ”knee“ joint with double internal plate (LVL).

CODES AND DIMENSIONS SBD L ≥ 95 mm d1

SBD L ≤ 75 mm CODE

[mm]

b2

L

b1

b2

[mm]

[mm]

[mm]

pcs

SBDS7595

95

40

10

50

SBDS75115

115

40

10

50

SBDS75135

135

40

10

50

SBDS75155

7,5 TX 40 SBDS75175

155

40

20

50

175

40

40

50

SBDS75195

195

40

40

50

b1

SBDS75215

215

40

40

50

SBDS75235

235

40

40

50

d1

b2

b1

L

b1

b2

[mm]

CODE

[mm]

[mm]

[mm]

7,5 SBD7555 TX 40 SBD7575

55

-

10

50

75

30

10

50

b1

Lp

GEOMETRY AND MECHANICAL CHARACTERISTICS SBD L ≥ 95 mm

SBD L ≤ 75 mm

S

S dK

dK d1 b2

b1

d1

Lp

b2 L

L SBD L ≥ 95 mm

SBD L ≤ 75 mm

Nominal diameter

d1

[mm]

7,5

7,5

Head diameter

dK

[mm]

11,00

11,00

Tip length

Lp

[mm]

20,0

24,0

Effective length

Leff

[mm]

L-15,0

L-8,0

Characteristic yield moment

My,k

[Nm]

75,0

42,0

286 | SBD | METAL

pcs


INSTALLATION | ALUMINIUM PLATE plate

single plate [mm]

ALUMINI ALUMIDI ALUMAXI

6 6 10

It is suggested to have a milling in the wood equal to the thickness of the plate increased by at least 1 mm.

40 kg

ta

s

B

ta

25 kg

s pressure to be applied

40 kg

pressure to be applied

recommended screwdriver

Mafell A 18M BL

recommended screwdriver

recommended speed

1st gear (600-1000 rpm)

recommended speed

t25 a kg

ta B

Mafell A 18M BL 1st gear (600-1000 rpm)

INSTALLATION | STEEL PLATE plate S235 steel S275 steel S355 steel

single plate

double plate

[mm]

[mm]

10 10 10

8 6 5

It is suggested to have a milling in the wood equal to the thickness of the plate increased by at least 1 mm.

40 kg

25 kg

B

s

ti

B

s

ta

ta

ta

s

25 kg

ta

40 kg

s

s

s

ta

ti

Mafell A 18M BL

B

ta

pressure to be applied

40 kg Mafell A 18M BL

ta ta pressure to be applied B recommended screwdriver

25 kg

recommended screwdriver recommended speed

2nd gear (1000-1500 rpm)

recommended speed

2nd gear (1500-2000 rpm)

PLATE HARDNESS The steel plate hardness can greatly vary the pull-through times of the dowels. Hardness is in fact defined as the material's strength to drilling or shear. In general, the harder the plate, the longer the drilling time. The hardness of the plate does not always depend on the strength of the steel, it can vary from point to point and is strongly influenced by heat treatments: standardised plates have a medium to low hardness, while the hardening process gives the steel high hardnesses.

METAL | SBD | 287


TIMBER-TO-METAL-TO-TIMBER STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014

1 INTERNAL PLATE - DOWEL HEAD INSTALLATION DEPTH 0 mm

s ta

ta B

B

beam width

[mm]

7,5x55

7,5x75

7,5x95

7,5x115

7,5x135

7,5x155

7,5x175

7,5x195

7,5x215

7,5x235

60

80

100

120

140

160

180

200

220

240

head insertion depth

p

[mm]

0

0

0

0

0

0

0

0

0

0

exterior wood

ta

[mm]

27

37

47

57

67

77

87

97

107

117

Rv,k [kN]

load-to-grain angle

7,48

9,20

12,10

12,88

12,41

15,27

16,69

17,65

18,41

18,64

30°

6,89

8,59

11,21

11,96

11,56

13,99

15,23

16,42

17,09

17,65

45°

6,41

8,09

10,34

11,20

10,86

12,96

14,05

15,22

16,00

16,62

60°

6,00

7,67

9,62

10,58

10,27

12,10

13,07

14,12

15,08

15,63

90°

5,66

7,31

9,01

10,04

9,77

11,37

12,24

13,18

14,19

14,79

7,5x235

1 INTERNAL PLATE - DOWEL HEAD INSTALLATION DEPTH 15 mm

p

s ta

ta B

7,5x55

7,5x75

7,5x95

7,5x115

7,5x135

7,5x155

7,5x175

7,5x195

7,5x215

beam width

B

[mm]

80

100

120

140

160

180

200

220

240

-

head insertion depth

p

[mm]

15

15

15

15

15

15

15

15

15

-

exterior wood

ta

[mm]

37

47

57

67

77

87

97

107

117

-

8,47

9,10

11,92

12,77

13,91

15,22

16,66

18,02

18,64

-

30°

7,79

8,49

11,17

11,86

12,82

13,95

15,20

16,54

17,43

-

Rv,k [kN]

load-to-grain angle

288 | SBD | METAL

45°

7,25

8,00

10,55

11,11

11,93

12,92

14,02

15,20

16,31

-

60°

6,67

7,58

10,03

10,48

11,19

12,06

13,04

14,09

15,21

-

90°

6,14

7,23

9,59

9,95

10,56

11,33

12,21

13,16

14,17

-


TIMBER-TO-METAL-TO-TIMBER STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014

2 INTERNAL PLATES - DOWEL HEAD INSTALLATION DEPTH 0 mm

s ta

s ti

ta

B

beam width

7,5x55

7,5x75

7,5x95

7,5x115

7,5x135

7,5x155

7,5x175

7,5x195

7,5x215

7,5x235

140

160

180

200

220

240

B

[mm]

-

-

-

-

head insertion depth

p

[mm]

-

-

-

-

0

0

0

0

0

0

exterior wood

ta

[mm]

-

-

-

-

45

50

55

60

70

75

interior wood

ti

[mm]

-

-

-

-

38

48

58

68

68

78

-

-

-

-

20,07

22,80

25,39

28,07

29,24

31,80

30°

-

-

-

-

18,20

20,91

23,19

25,56

26,55

29,07

Rv,k [kN]

load-to-grain angle

45°

-

-

-

-

16,67

19,36

21,39

23,51

24,36

26,63

60°

-

-

-

-

15,41

18,01

19,90

21,81

22,55

24,60

90°

-

-

-

-

14,35

16,73

18,64

20,38

21,01

22,89

7,5x235

2 INTERNAL PLATES - DOWEL HEAD INSTALLATION DEPTH 10 mm

p

s ta

s ti

ta

B 7,5x55

7,5x75

7,5x95

7,5x115

7,5x135

7,5x155

7,5x175

7,5x195

7,5x215

beam width

B

[mm]

-

-

-

140

160

180

200

220

240

-

head insertion depth

p

[mm]

-

-

-

10

10

10

10

10

10

-

exterior wood

ta

[mm]

-

-

-

50

55

60

75

80

85

-

interior wood

ti

[mm]

-

-

-

28

45

50

65

70

75

-

-

-

-

16,56

20,07

23,22

25,65

28,89

30,50

-

Rv,k [kN]

load-to-grain angle

30°

-

-

-

15,07

18,20

21,29

23,14

26,32

27,78

-

45°

-

-

-

13,86

16,67

19,53

21,11

24,05

25,50

-

60°

-

-

-

12,85

15,41

18,01

19,43

22,10

23,62

-

90°

-

-

-

12,00

14,35

16,73

18,01

20,46

22,02

-

METAL | SBD | 289


MINIMUM DISTANCES FOR DOWELS SUBJECT TO SHEAR α=0°

F

d1 a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] 5∙d [mm] 3∙d [mm] max(7∙d ; 80 mm) [mm] max(3,5∙d ; 40 mm) [mm] 3∙d [mm] 3∙d

F

7,5 38 23 80 40 23 23

d1 a1 a2 a3,t a3,c a4,t a4,c

α=90°

[mm] [mm] 3∙d [mm] 3∙d [mm] max(7∙d ; 80 mm) [mm] max(3,5∙d ; 40 mm) [mm] 4∙d [mm] 3∙d

7,5 23 23 80 40 30 23

α = load-to-grain angle d = d1 = nominal dowel diamter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

F

a4,t

a4,c

a3,c

NOTES • Minimum distances FOR CONNECTORS SUBJECTED TO SHEAR STRESS in accordance with EN 1995:2014.

EFFECTIVE NUMBER FOR SHEAR-STRESSED DOWELS The load-bearing capacity of a connection made with several dowels, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n dowels arranged parallel to the direction of the grain (α = 0°) at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5 6

40 1,49 2,15 2,79 3,41 4,01

50 1,58 2,27 2,95 3,60 4,24

60 1,65 2,38 3,08 3,77 4,44

70 1,72 2,47 3,21 3,92 4,62

a1( * ) [mm] 80 1,78 2,56 3,31 4,05 4,77

90 1,83 2,63 3,41 4,17 4,92

100 1,88 2,70 3,50 4,28 5,05

120 1,97 2,83 3,67 4,48 5,28

140 2,00 2,94 3,81 4,66 5,49

( * ) For intermediate a values a linear interpolation is possible. 1

STRUCTURAL VALUES GENERAL PRINCIPLES • Characteristic values according to EN 1995:2014. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and dowels geometry comply with CE marking according to EN 14592. • The values provided are calculated using 5 mm thick plates and a 6 mm thick milled cut in the wood. Values are relative to a single SBD dowel. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The dowels must be positioned in accordance with the minimum distances. • The effective length of SBD (L ≥ 95 mm) dowels takes into account the diameter reduction in the vicinity of the self-drilling tip.

290 | SBD | METAL

NOTES • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table on the timber side can be converted by the kdens,v coefficient

R’V,k = kdens,v RV,k R’ax,kρ = kdens,ax Rax,k k

3

350

380

385

405

425

430

440

R’[kg/m =] kdens,ax Rhead,k head,k C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.


INSTALLATION It is suggested to have a milling in the wood equal to the thickness of the plate, increased by at least 1-2 mm, placing SHIM spacers between the wood and the plate to centre it in the milling. In this way, the steel residue from the drilling of the metal has an outlet to escape and does not obstruct the passage of the drill through the plate, thus avoiding overheating of the plate and timber and also preventing the generation of smoke during installation.

Cutter increased by 1 mm on each side.

Shavings obstructing the holes in the steel during drilling (spacers not installed).

To avoid breakage of the tip at the moment of pin-plate contact, it is recommended to reach the plate slowly, pushing with a lower force until the moment of impact and then increasing it to the recommended value (40 kg for top-down applications and 25 kg for horizontal installations). Try to keep the dowel as perpendicular as possible to the surface of the timber and the plate.

Intact tip after correct installation of the dowel.

Broken (cut) tip due to excessive force during impact with metal.

If the steel plate is too hard, the dowel tip may shrink significantly or even melt. In this case, it is advisable to check the material certificates for any heat treatment or hardness tests performed. Try decreasing the force applied or alternatively changing the type of plate.

Tip melted during installation on a too hard plate without spacers between timber and plate.

Reduction of the tip when drilling the plate due to the high hardness of the plate.

METAL | SBD | 291


SBS

EN 14592

SELF-DRILLING TIMBER-TO-METAL SCREW CERTIFIED The SBS self-drilling screw is CE marked according to EN 14592. It is the ideal choice for professionals who demand quality, safety and reliable performance in structural timber-to-metal applications.

TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium (thickness: up to 8 mm) and steel (thickness: up to 6 mm).

CUTTING FINS The fins protect the screw thread during timber pull-through. They guarantee maximum threading efficiency in metal and perfect adhesion between the thickness of the wood and the metal.

BIT INCLUDED

DIAMETER 4 [mm] 5

6

4,2

6

8

100

240

3,5

7

8

LENGTH [mm] 25

32

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE Direct fastening, without pre-drilling hole, of timber elements to steel substructures: • in S235 steel with a maximum thickness of 6 mm • in aluminium with a maximum thickness of 8,0 mm

292 | SBS | METAL


CODES AND DIMENSIONS L

b

A

sS

sA

[mm]

d1

CODE

[mm]

[mm]

[mm]

[mm]

[mm]

SBS4232 4,2 TX 20 SBS4238 SBS4838 4,8 TX 25 SBS4845 SBS5545 5,5 TX 30 SBS5550 SBS6360 SBS6370 6,3 TX 30 SBS6385 SBS63100

32 38 38 45 45 50 60 70 85 100

18 19 23 25 29 29 35 45 55 55

17 23 22 29 28 33 39 49 64 79

1÷3 1÷3 2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 4÷6 4÷6

2÷4 2÷4 3÷5 3÷5 4÷6 4÷6 6÷8 6÷8 6÷8 6÷8

pcs 500 500 200 200 200 200 100 100 100 100

s S thickness that can be drilled, steel plate S235/St37 sA thickness that can be drilled, aluminium plate

GEOMETRY AND MECHANICAL CHARACTERISTICS A

s

SB

XXX

dk

S

ds

d2 d1 b

t1

Lp L

GEOMETRY Nominal diameter

d1

[mm]

4,2

4,8

5,5

6,3

Head diameter

dK

[mm]

8,00

9,25

10,50

12,00

Thread diameter

d2

[mm]

3,30

3,50

4,15

4,85

Shank diameter

dS

[mm]

3,40

3,85

4,45

5,20

Head thickness

t1

[mm]

3,50

4,20

4,80

5,30

Tip length

Lp

[mm]

10,0

10,5

11,5

15,0

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

4,2

4,8

5,5

6,3

Tensile strength

ftens,k

[kN]

7,5

9,5

10,5

16,5

Yield moment

My,k

[Nm]

3,4

7,6

10,5

18,0

Withdrawal resistance parameter

fax,k

[N/mm2]

-

-

-

-

Associated density

ρa

[kg/m3]

-

-

-

-

Head-pull-through parameter

fhead,k [N/mm2]

10,0

10,0

13,0

14,0

Associated density

ρa

350

350

350

350

[kg/m3]

INSTALLATION 01

02

03

RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm

METAL | SBS | 293


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

F

α=90°

d1

[mm]

4,2

4,8

5,5

6,3

d1

[mm]

4,2

4,8

5,5

6,3

a1

[mm]

10∙d

42

48

12∙d

66

76

a1

[mm]

5∙d

21

24

5∙d

28

32

a2

[mm]

5∙d

21

24

5∙d

28

32

a2

[mm]

5∙d

21

24

5∙d

28

32

a3,t

[mm]

15∙d

63

72

15∙d

83

95

a3,t

[mm]

10∙d

42

48

10∙d

55

63

a3,c

[mm]

10∙d

42

48

10∙d

55

63

a3,c

[mm]

10∙d

42

48

10∙d

55

63

a4,t

[mm]

5∙d

21

24

5∙d

28

32

a4,t

[mm]

7∙d

29

34

10∙d

55

63

a4,c

[mm]

5∙d

21

24

5∙d

28

32

a4,c

[mm]

5∙d

21

24

5∙d

28

32

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

F

α=90°

d1

[mm]

4,2

4,8

5,5

6,3

d1

[mm]

4,2

4,8

5,5

6,3

a1

[mm]

5∙d

21

24

5∙d

28

32

a1

[mm]

4∙d

17

19

4∙d

22

25

a2

[mm]

3∙d

13

14

3∙d

17

19

a2

[mm]

4∙d

17

19

4∙d

22

25

a3,t

[mm]

12∙d

50

58

12∙d

66

76

a3,t

[mm]

7∙d

29

34

7∙d

39

44

a3,c

[mm]

7∙d

29

34

7∙d

39

44

a3,c

[mm]

7∙d

29

34

7∙d

39

44

a4,t

[mm]

3∙d

13

14

3∙d

17

19

a4,t

[mm]

5∙d

21

24

7∙d

39

44

a4,c

[mm]

3∙d

13

14

3∙d

17

19

a4,c

[mm]

3∙d

13

14

3∙d

17

19

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTES • Minimum distances in accordance with EN 1995:2014.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

294 | SBS | METAL

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES | TIMBER-TO-STEEL

CHARACTERISTIC VALUES EN 1995:2014

SHEAR

TENSION

timber-to-steel min plate

geometry

timber-to-steel max plate

steel tension

head pull-through

A

L b

sS

sS

d1

d1

L

b

SS

RV,k

SS

RV,k

Rtens,k

A min

Rhead,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[kN]

[kN]

[mm]

[kN]

7,50

-

9,50

20

10,50

20

4,2 4,8 5,5

6,3

32

18

38

19

38

23

45

25

45

29

50

29

1 2 3

0,62 0,80 0,83 1,05 1,12 1,29

3 4 5

0,64 0,85 1,00 1,20 1,36 1,51

60

35

1,78

2,03

70

45

2,16

2,38

85

55

100

55

4

2,42

6

2,43

2,90 3,00

0,92 1,55 1,55 2,18

16,50

25

2,18 2,18 2,18

ε = screw-to-grain angle

STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | TIMBER

• Characteristic values according to EN 1995:2014.

• The characteristic plate shear strengths are evaluated considering the case of thin plate (SS ≤ 0,5 d1) and intermediate plate (0,5 d1 < SS < d1).

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of timber elements and steel plates must be carried out separately.

• The characteristic shear strengths on a steel plate are calculated for the minimum drilling hole thickness ss,min (min plate) and maximum ss,max (max plate). • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. • For the Ø4.2 and Ø4.8 screws, the characteristic pull-through strength of the head was calculated by taking the values from the experimental tests carried out at the HFB Engineering laboratory, Leipzig, Germany, as valid.

• The screws must be positioned in accordance with the minimum distances. • The head pull-through characteristic strength was calculated using timber elements.

METAL | SBS | 295


SBS A2 | AISI304 SELF-DRILLING TIMBER-TO-METAL SCREW BIMETAL SCREW The head and body are made of A2 | AISI304 stainless steel, thus providing high resistant to corrosion. The tip is made of carbon steel for excellent drilling performance.

TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium and steel. The fins protect the screw thread during timber pull-through.

STAINLESS STEEL The A2 | AISI304 stainless steel head and body make it ideal for outdoor applications. Very sharp under-head ribs for a perfect surface finish on the wooden element.

BIT INCLUDED

DIAMETER [mm] 3,5

4,8

6

8

LENGTH [mm] 25

45

120

240

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A2

AISI 304

A2 | AISI304 austenitic stainless steel (CRC II)

FIELDS OF USE Direct fastening, without pre-drilling hole, of timber elements to steel substructures: • in S235 steel with a maximum thickness of 6,0 mm • in aluminium with a maximum thickness of 8,0 mm

296 | SBS A2 | AISI304 | METAL


CODES AND DIMENSIONS L

b

A

sS

sA

[mm]

d1

CODE

[mm]

[mm]

[mm]

[mm]

[mm]

4,8 SBSA24845 TX 25

45

31

30

1÷3

2÷3

5,5 SBSA25555 TX 25

55

39

37

2÷5

3÷5

pcs

d1

CODE

L

b

A

sS

sA

[mm]

[mm]

[mm]

[mm]

[mm]

200

70 6,3 SBSA26370 TX 30 SBSA263120 120

53

49

3÷6

4÷8

100

103

99

3÷6

4÷8

100

200

s S thickness that can be drilled, steel plate S235/St37 sA thickness that can be drilled, aluminium plate

[mm]

pcs

GEOMETRY A

s d2 d 1

dk t1

b

Lp L

Nominal diameter

d1

[mm]

4,8

5,5

6,3

Head diameter

dK

[mm]

9,25

10,50

10,50

Thread diameter

d2

[mm]

3,50

4,15

4,80

Head thickness

t1

[mm]

4,25

4,85

4,50

Tip length

Lp

[mm]

10,3

10,0

12,0

INSTALLATION 01

02

03

RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm

OUTDOOR ENVIRONMENT Austenitic A2 stainless steel offers higher corrosion resistance. Suitable for outdoor applications up to 1 km from the sea and on class T4 acid wood.

METAL | SBS A2 | AISI304 | 297


SPP

EN 14592

SELF-DRILLING TIMBER-TO-METAL SCREW CERTIFIED The SPP self-drilling screw is CE marked according to EN 14592. It is the ideal choice for professionals who demand quality, safety and reliable performance in structural timber-to-metal applications.

TIMBER-TO-METAL TIP Special self-perforating tip with bleeder geometry for excellent drilling capacity both in aluminium (thickness: up to 10 mm) and steel (thickness: up to 8 mm).

CUTTING FINS The fins protect the screw thread during timber pull-through. They guarantee maximum threading efficiency in metal and perfect adhesion between the thickness of the wood and the metal.

WIDE RANGE The SPP version, with partially thread, is ideal for fastening sandwich panels, even thick ones, to steel. Very sharp under-head ribs for a perfect surface finish on the wooden element.

BIT INCLUDED

DIAMETER [mm] LENGTH [mm]

SPP 3,5

8

6,3

25

125

SERVICE CLASS

SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

C1

C2

C3

C4

C5

WOOD CORROSIVITY

T1

T2

T3

T4

T5

MATERIAL

Zn

ELECTRO PLATED

240 240

electrogalvanized carbon steel

FIELDS OF USE Direct fastening, without pre-drilling hole, of timber elements to steel substructures: • in S235 steel with a maximum thickness of 8 mm • in aluminium with a maximum thickness of 10 mm

298 | SPP | METAL


CODES AND DIMENSIONS d1

CODE

L

b

A

sS

sA

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

SPP63125 SPP63145 SPP63165 6,3 SPP63180 TX 30 SPP63200 SPP63220 SPP63240

125 145 165 180 200 220 240

60 60 60 60 60 60 60

96 116 136 151 171 191 211

6÷8 6÷8 6÷8 6÷8 6÷8 6÷8 6÷8

8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10 8 ÷ 10

pcs 100 100 100 100 100 100 100

s S thickness that can be drilled, steel plate S235/St37 sA thickness that can be drilled, aluminium plate

GEOMETRY AND MECHANICAL CHARACTERISTICS A

s

ds SPP

XXX

dk

d2 d1 b

t1

Lp

L

GEOMETRY Nominal diameter

d1

[mm]

6,3

Head diameter

dK

[mm]

12,50

Thread diameter

d2

[mm]

4,85

Shank diameter

dS

[mm]

5,20

Head thickness

t1

[mm]

5,30

Tip length

Lp

[mm]

20,0

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

6,3

Tensile strength

ftens,k

[kN]

16,5

Yield moment

My,k

[Nm]

18,0

Withdrawal resistance parameter

fax,k

[N/mm2]

-

[kg/m3]

-

Associated density

ρa

Head-pull-through parameter

fhead,k [N/mm2]

14,0

Associated density

ρa

350

[kg/m3]

SIP PANELS The SPP version is ideal for fastening SIP panels and sandwich panels thanks to the complete range of lengths (up to 240 mm).

METAL | SPP | 299


MINIMUM DISTANCES FOR SHEAR LOADS | TIMBER-TO-STEEL ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

F

α=0°

F

α=90°

d1

[mm]

6,3

d1

[mm]

a1

[mm]

12∙d

76

a1

[mm]

5∙d

6,3

a2

[mm]

5∙d

32

a2

[mm]

5∙d

32

a3,t

[mm]

15∙d

95

a3,t

[mm]

10∙d

63

a3,c

[mm]

10∙d

63

a3,c

[mm]

10∙d

63

a4,t

[mm]

5∙d

32

a4,t

[mm]

10∙d

63

a4,c

[mm]

5∙d

32

a4,c

[mm]

5∙d

32

32

α = load-to-grain angle d = d1 = nominal screw diameter

screws inserted WITH pre-drilled hole

F

α=0°

F

α=90°

d1

[mm]

6,3

d1

[mm]

a1

[mm]

5∙d

32

a1

[mm]

4∙d

6,3

a2

[mm]

3∙d

19

a2

[mm]

4∙d

25

a3,t

[mm]

12∙d

76

a3,t

[mm]

7∙d

44

a3,c

[mm]

7∙d

44

a3,c

[mm]

7∙d

44

a4,t

[mm]

3∙d

19

a4,t

[mm]

7∙d

44

a4,c

[mm]

3∙d

19

a4,c

[mm]

3∙d

19

25

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2

unloaded end 90° < α < 270°

F a3,t

unload edge 180° < α < 360°

α

F α

α

a1 a1

stressed edge 0° < α < 180°

F α

a4,t

F a4,c

a3,c

NOTES • Minimum distances in accordance with EN 1995:2014.

EFFECTIVE NUMBER FOR SHEAR LOADS The load-bearing capacity of a connection made with several screws, all of the same type and size, may be lower than the sum of the load-bearing capacities of the individual connection system. For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective load-bearing capacity is equal to:

Ref,V,k

a1 a1

Ref,V,k = nef RV,k

The nef value is given in the table below as a function of n and a1 .

n

2 3 4 5

4∙d 1,41 1,73 2,00 2,24

5∙d 1,48 1,86 2,19 2,49

6∙d 1,55 2,01 2,41 2,77

7∙d 1,62 2,16 2,64 3,09

( * ) For intermediate a values a linear interpolation is possible. 1

300 | SPP | METAL

8∙d 1,68 2,28 2,83 3,34

a 1( * ) 9∙d 1,74 2,41 3,03 3,62

10∙d 1,80 2,54 3,25 3,93

11∙d 1,85 2,65 3,42 4,17

12∙d 1,90 2,76 3,61 4,43

13∙d 1,95 2,88 3,80 4,71

≥ 14∙d 2,00 3,00 4,00 5,00


STRUCTURAL VALUES | STEEL-TO-TIMBER

CHARACTERISTIC VALUES EN 1995:2014

SHEAR

TENSION

timber-to-steel min plate

geometry

timber-to-steel max plate

steel tension

head pull-through

L b sS

sS

d1

d1

L

b

SPLATE

RV,k

SPLATE

RV,k

Rtens,k

A min

Rhead,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[kN]

[kN]

[mm]

[kN]

125

60

3,00

3,09

2,18

145

60

3,00

3,09

2,18

165

60

180

60

6,3

3,00 6

3,00

3,09 8

3,09

2,18 16,50

30

2,18

200

60

3,00

3,09

2,18

220

60

3,00

3,09

2,18

240

60

3,00

3,09

2,18

ε = screw-to-grain angle

INSTALLATION 01

02

03

RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm

STRUCTURAL VALUES GENERAL PRINCIPLES

NOTES | TIMBER

• Characteristic values according to EN 1995:2014.

• The characteristic plate shear strengths are evaluated by considering the case of intermediate plate (0,5 d1 < SPLATE < d1) or thick plate (SPLATE ≥ d1).

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• The characteristic shear strengths on a steel plate are calculated for the minimum drilling hole thickness Ssmin (min plate) and maximum Ssmax (max plate). • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered.

• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of timber elements and steel plates must be carried out separately. • The screws must be positioned in accordance with the minimum distances. • The head pull-through characteristic strength was calculated using timber elements.

METAL | SPP | 301


SBN - SBN A2 | AISI304 SELF-DRILLING METAL SCREW TIP FOR METAL Special self-perforating tip for iron and steel in thicknesses ranging from 0,7 mm to 5,25 mm. Ideal for fastening overlapping sections of metal and sheet metal.

FINE THREAD Fine thread ideal for precise fastening on sheet metal or for metal-to-metal or timber-to-metal couplings.

STAINLESS STEEL Also available in a bimetal version with head and body in A2 | AISI304 stainless steel and tip in carbon steel. Ideal for outdoor fastening of clips on aluminium supports.

DIAMETER [mm] 3,5 3,5

5,5

8

LENGTH [mm] 25 25

50

240

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

Zn

electrogalvanized carbon steel

A2

A2 | AISI304 austenitic stainless steel (CRC II)

ELECTRO PLATED

AISI 304

FIELDS OF USE Direct fastening, without pre-drill, of metal structural elements to steel substructures (maximum thickness: 5,25 mm).

302 | SBN - SBN A2 | AISI304 | METAL


CODES AND DIMENSIONS SBN d1

SBN A2 | AISI304 L

b

A

s

[mm]

CODE

[mm]

[mm]

[mm]

[mm]

3,5 SBN3525 TX 15

25

16

16

0.7 ÷ 2.25

3,9 SBN3932 TX 15

35

27

23

4,2 SBN4238 TX 20

38

30

4,8 SBN4845 TX 25

45

5,5 SBN5550 TX 25

50

pcs

L

b

A

s

[mm]

d1

CODE

[mm]

[mm]

[mm]

[mm]

pcs

500

3,5 SBNA23525 TX 15

25

18

20

0.7 ÷ 2.25

1000

0.7 ÷ 2.40

200

3,9 SBNA23932 TX 15

32

24

25

0.7 ÷ 2.40

1000

29

1.75 ÷ 3.00

200

34

34

1.75 ÷ 4.40

200

38

38

1.75 ÷ 5.25

200

s thickness that can be drilled, metal plate (steel or aluminium)

GEOMETRY A

s d1

dk b L

t1

Nominal diameter Head diameter Head thickness Tip length

d1 dK t1 Lp

[mm] [mm] [mm] [mm]

3,5 6,50 2,60 5,0

3,9 7,50 3,80 5,2

Lp

SBN 4,2 7,90 3,60 6,2

4,8 9,30 3,90 6,6

5,5 10,60 4,10 7,5

SBN A2 3,5 3,9 7,30 7,50 3,40 3,80 4,9 5,2

INSTALLATION 01

02

03

RECOMMENDATIONS FOR SCREWING: steel: vS ≈ 1000 - 1500 rpm aluminium: vA ≈ 600-1000 rpm

SBN A2 | AISI304 Ideal for outdoor fastening to standard Rothoblaas aluminium clips. See CLIP for decks from page 356.

METAL | SBN - SBN A2 | AISI304 | 303


SAR SELF-DRILLING SCREW FOR STEEL, HEXAGONAL HEAD SELF-PERFORATING TIP Self-perforating tip with bleeder geometry for excellent drilling capacity (up to 6 mm on steel).

EFFECTIVE Self-tapping thread for steel and hexagonal head with dummy washer SW 10.

WATERTIGHT Complete with integrated washer with EPDM seal for watertight fastening.

DIAMETER [mm] 3,5

6,3

8

LENGTH [mm] 25

60

200

240

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

EPDM EPDM gasket

FIELDS OF USE Direct fastening, without pre-drill hole, of metal structural elements and sheet metal to steel substructures maximum thickness 6,0 mm.

304 | SAR | METAL


CODES AND DIMENSIONS d1

dUK

[mm]

[mm]

6,3 SW 10

12,5

CODE

L

A

s

[mm]

[mm]

[mm]

pcs

SAR6360

60

0 ÷ 47

2÷6

100

SAR6370

70

14 ÷ 57

2÷6

100

SAR6380

80

24 ÷ 67

2÷6

100

SAR63100

100

44 ÷ 87

2÷6

100

SAR63120

120

64 ÷ 107

2÷6

100

SAR63140

140

84 ÷ 127

2÷6

100

SAR63160

160

104 ÷ 147

2÷6

100

SAR63180

180

124 ÷ 167

2÷6

100

SAR63200

200

144 ÷ 187

2÷6

100

s thickness that can be drilled, metal plate (steel or aluminium)

GEOMETRY A dUK

D SW

s d1

t1

L

Nominal diameter

d1

[mm]

6,3

Wrench size

SW

[mm]

SW 10

Head diameter

dUK

[mm]

12,50

Diameter of washer

D

[mm]

15,70

TRAPEZOIDAL METAL SHEET ROOFS Thanks to its steel drilling capability and the watertightness of the combined washer, it is the ideal choice for application on trapezoidal sheet metal.

METAL | SAR | 305


MCS A2 | AISI304 SCREW WITH WASHER FOR METAL SHEET INTEGRATED WASHER A2 | AISI304 stainless steel screw with integrated A2 | AISI304 stainless steel washer and EPDM gasket.

STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion. Also available in various colours: copper or chocolate brown.

TORX BIT Convex head with Torx slot for secure fastening of sheet metal on wood or plaster. Ideal for fixing gutters and sheet metal flaps on wood.

DIAMETER [mm] 3,5

8

4,5

LENGTH [mm] 25 25

120

240

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A2

AISI 304

A2 | AISI304 austenitic stainless steel (CRC II)

FIELDS OF USE It can be used outdoors in aggressive environments. Fastening metal structural elements to wooden substructures.

306 | MCS A2 | AISI304 | METAL


CODES AND DIMENSIONS MCS A2: stainless steel d1

MCS CU: copper finish CODE

L

[mm]

[mm]

L

pcs

[mm]

200

MCS4525CU

MCS4535A2

35

200

MCS4545A2

45

200 4,5 TX 20

25

200

MCS4535CU

35

200

MCS4545CU

45

200

MCS4560A2

60

200

MCS4560CU

60

200

MCS4580A2

80

100

MCS4580CU

80

100

MCS45100A2

100

200

MCS45100CU

100

100

MCS45120A2

120

200

MCS45120CU

120

200

L

pcs

MCS B: RAL 9002 - light grey

CODE

L

[mm]

pcs

d1

[mm] MCS4525A2M

4,5 TX 20

CODE

25

MCS M: RAL 8017 - chocolate brown d1

d1

[mm] MCS4525A2

4,5 TX 20

pcs

25

CODE

[mm]

[mm] MCS4525A2B

200

MCS4535A2M

35

200

MCS4545A2M

45

200

4,5 TX 20

25

200

MCS4535A2B

35

200

MCS4545A2B

45

200

GEOMETRY

D

d1

dk L

Nominal diameter

d1

[mm]

4,5

Head diameter

dK

[mm]

8,30

Diameter of washer

D

[mm]

20,00

PERGOLAS Ideal for fastening trapezoidal metal on the wooden pergolas and outdoor structures.

METAL | MCS A2 | AISI304 | 307


MTS A2 | AISI304 SCREWS FOR METAL SHEET HEXAGONAL HEAD Ideal for use in combination with WBAZ washers to achieve water-tight fastening to metal sheet; requires a pre-drill. The hexagonal head facilitates any subsequent removal.

STAINLESS STEEL The A2 | AISI304 stainless steel ensures high resistance to corrosion and excellent durability, even in very aggressive environments.

CODES AND DIMENSIONS d1

CODE

[mm] 6 SW 10

L

b

A

[mm]

[mm]

[mm]

pcs

MTS680

80

58

20 ÷ 40

100

MTS6100

100

58

40 ÷ 60

100

MTS6120

120

58

60 ÷ 80

100

GEOMETRY

d 1 d2

dk SW

b

L

GEOMETRY AND MECHANICAL CHARACTERISTICS DIAMETER [mm]

GEOMETRY 6

3,5

6

Nominal diameter

d1

[mm]

Wrench size

SW

-

SW 8

LENGTH [mm]

Head diameter

dK

[mm]

12,00

25

Thread diameter

d2

[mm]

4,10

Nominal diameter

d1

[mm]

6

Tensile strength

ftens,k

[kN]

9,8

Yield moment

My,k

[Nm]

8,5

Withdrawal resistance parameter

fax,k

[N/mm2]

13,3

Associated density

ρa

[kg/m3]

433

Head-pull-through parameter

fhead,k

[N/mm2]

18,5

Associated density

ρa

[kg/m3]

474

Mechanical parameters from experimental tests.

308 | MTS A2 | AISI304 | METAL

120

SERVICE CLASS SC1

CHARACTERISTIC MECHANICAL PARAMETERS

80

8

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A2

AISI 304

A2 | AISI304 austenitic stainless steel (CRC II)

240


CPL PRE-PAINTED METAL SHEET CAP WITH PE GASKET WATERPROOF Prepainted carbon steel cap complete with PE gasket for a watertight seal with the sheet. 40 x 50 mm aluminium version.

COMPLETE RANGE Full range of sizes for compatibility with different trapezoidal sheet metal sizes on the market.

AESTHETIC PERFORMANCE Available in a variety of colours to suit every roofing aesthetic requirement.

CODES AND DIMENSIONS RAL 9005 - light grey CODE CPLW1528 CPLW2036 CPLW2534 CPLW3040 CPLW4050

C

A

L

B

[mm]

[mm]

[mm]

[mm]

15 20 25 30 40

28 36 34 40 50

50 50 50 50 50

16 16 16 16 16

pcs 50 50 50 50 50

GEOMETRY

C B

RAL 3009 - Siena red CODE CPLR1528 CPLR2036 CPLR2534 CPLR3040 CPLR4050

C

A

L

B

[mm]

[mm]

[mm]

[mm]

15 20 25 30 40

28 36 34 40 50

50 50 50 50 50

16 16 16 16 16

50 50 50 50 50

CPLB1528 CPLB2036 CPLB2534 CPLB3040 CPLB4050

C

A

L

B

[mm]

[mm]

[mm]

[mm]

15 20 25 30 40

28 36 34 40 50

50 50 50 50 50

16 16 16 16 16

pcs 50 50 50 50 50

L

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

RAL 8017 - dark brown CODE

A

pcs

C2

C3

C4

C5

MATERIAL PRE PAINTED CARBON STEEL

prepainted carbon steel

PE

polyethylene

METAL | CPL | 309


WBAZ STAINLESS STEEL WASHER WITH SEALING GASKET WATERPROOF Perfect watertight closure and excellent sealing thanks to the EPDM sealing gasket.

RESISTANT TO UV RAYS Excellent resistance to UV rays. Ideal for outdoor use thanks to the adaptability of the EPDM gasket and washer in stainless steel A2 | AISI304.

VERSATILITY Ideal for use on sheets (thickness: up to 0,7 mm) in combination with TBS EVO Ø6 screws, that can be installed without pre-drill, or with MTS A2 | AISI304 screws, installed with pre-drill.

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

MATERIAL

A2

AISI 304

A2 | AISI304 austenitic stainless steel (CRC II)

EPDM EPDM gasket

FIELDS OF USE Ideal in combination with TBS EVO, TBS EVO C5 or MTS screws for fastening metal sheets to timber and metal substructures exposed to weathering and UV radiation.

310 | WBAZ | METAL


CODES AND DIMENSIONS D1

CODE

screw

D2

H

D1

[mm]

[mm]

[mm]

[mm]

6,0 ÷ 6,5

25

15

6,5

H

WBAZ25A2

pcs 100

D2

INSTALLATION

A

A

TBS EVO + WBAZ ØxL

fastening package [mm]

6 x 60

min. 0 - max. 30

6 x 80

min. 10 - max. 50

6 x 100

min. 30 - max. 70

6 x 120

min. 50 - max. 90

6 x 140

min. 70 - max. 110

6 x 160

min. 90 - max. 130

6 x 180

min. 110 - max. 150

6 x 200

min. 130 - max. 170

MTS A2 + WBAZ

fastening package

ØxL

[mm]

6 x 80

min. 10 - max. 50

6 x 100

min. 30 - max. 70

6 x 120

min. 50 - max. 90

For more information on related products see page 102 for TBS EVO and page 308 for MTS A2.

Correct tightening

Excessive tightening

Insufficient tightening

Tightening off axis

NOTES: The thickness of the washer after installation is approximately 8-9 mm. The maximum thickness of the fastening package was calculated by ensuring a minimum penetration length into the wood of 4d.

FAUX ROOFING TILE Can also be used on sandwich panels, corrugated panels and faux roofing tiles.

METAL | WBAZ | 311


DECKS AND FACADES


DECKS AND FACADES

SCI HCR

JFA

COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

ADJUSTABLE SUPPORT FOR DECKS . . . . . . . . . . . . . . . . . . . . . . . 374

SCI A4 | AISI316

SUPPORT

COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

ADJUSTABLE SUPPORT FOR DECKS . . . . . . . . . . . . . . . . . . . . . . . 378

SCI A2 | AISI304

ALU TERRACE

COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

ALUMINIUM PROFILE FOR PATIOS. . . . . . . . . . . . . . . . . . . . . . . . . 386

KKT COLOR A4 | AISI316

GROUND COVER

CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 324

ANTI-VEGETATION TARP FOR SUBSTRATES. . . . . . . . . . . . . . . . . 392

KKT A4 | AISI316

NAG

CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 328

LEVELING PAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

KKT COLOR

GRANULO

CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 332

GRANULAR RUBBER SUBSTRATE. . . . . . . . . . . . . . . . . . . . . . . . . . 393

FAS A4 | AISI316

TERRA BAND UV

SCREWS FOR FAÇADES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

BUTYL ADHESIVE TAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

KKZ A2 | AISI304

PROFID

COUNTERSUNK CYLINDRICAL HEAD SCREW. . . . . . . . . . . . . . . 338

SPACER PROFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

KKZ EVO C5

STAR

COUNTERSUNK CYLINDRICAL HEAD SCREW. . . . . . . . . . . . . . . 342

STAR FOR DISTANCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

EWS AISI410 | EWS A2

BROAD

CONVEX HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

COUNTERBORE CUTTER FOR KKT, KKZ, KKA . . . . . . . . . . . . . . . 394

KKF AISI410

CRAB MINI

PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

ONE-HANDED TERRACE CLAMP. . . . . . . . . . . . . . . . . . . . . . . . . . 395

KKA AISI410

CRAB MAXI

SELF-DRILLING SCREWTIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

BOARD CLAMP, LARGE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

KKA COLOR

LEVELLING WEDGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

SELF-DRILLING SCREW FOR ALUMINIUM. . . . . . . . . . . . . . . . . . . 354

SHIM SHIM LARGE LEVELLING WEDGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

FLAT | FLIP CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

SNAP CONNECTOR AND SPACER FOR DECKS. . . . . . . . . . . . . . . . . . . . 360

TVM CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

GAP CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

THERMOWASHER WASHER TO FASTEN INSULATIONTO TIMBER. . . . . . . . . . . . . . . 396

ISULFIX ANCHOR FOR FASTENING INSULATION TO BRICKWORK. . . . . 397

WRAF CONNECTOR FOR TIMBER-INSULATING LAYER-CEMENT WALLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

TERRALOCK CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

DECKS AND FACADES | 313


WOOD SPECIES | pH and density Each wood species has unique characteristics that influence its stability and strength to weathering, mould, fungus and pests. Where the density of the material is such that the functionality of the connector is compromised (ρk > 500 kg/m3), pre-drilling is required prior to screwing. The limiting density depends on the type of connector chosen.

ρk

pH

The pH of each wood is an indication of the presence of acetic acid, a corrosive agent for various types of metal in contact with wood, especially when the latter is in service class S3. The classification of wood for average moisture contents between 16 and 20 per cent (classes T3/T4) and consequently the type of connectors to be used depends on the pH value.

Douglas fir Pseudotsuga menziesii

North American spruce P. rubens, P. glauca,P. mariana

ρk = 510-750 kg/m3 pH = 3,3-5,8

Red maple Acer rubrum

ρk = 410-435 kg/m3 pH = 5,5-6,0

Blue Douglas fir Pseudotsuga taxifolia

ρk = 630-790 kg/m3 pH = 4,9-6,0

ρk = 510-750 kg/m3 pH = 3,1-4,4

White oak Quercus alba ρk ≈ 750 kg/m3 pH = 3,8-4,2

Red oak Quercus rubra ρk = 550-980 kg/m3 pH = 3,8-4,2

Grand fir Abies grandis ρk = 700-800 kg/m3 pH ~ 6,2

Western red cedar Thuja plicata ρk = 420-580 kg/m3 pH = 2,5-3,5

American black cherry Prunus serotina ρk = 490-630 kg/m3 pH ~ 3,9

Ipè Tabebuia spp. ρk = 960-1100 kg/m3 pH ~ 3,9

Heat treatments Heat or thermo-impregnating treatments can introduce aggressive components (e.g. copper) into the wood structure and/or lower the pH value. Sometimes the reduction in pH is such that the corrosivity class changes from T3 to T4. (e.g. Beech pH ~ 3,4).

Balsa Ochroma ρk = 90-260 kg/m3 pH = 5,5-6,7

Parana Pine Araucaria angustifolia ρk = 540-750 pH ~ 6,1

pH > 4

pH ≤ 4

"standard" timbers low acidity

“aggressive” woods high acidity

314 | WOOD SPECIES | pH and density | DECKS AND FACADES

Massaranduba-Balatá Manilkara ρk = 900-1000 kg/m3 pH = 4,9-5,2


Maritime pine Pinus pinaster

European chestnut Castanea sativa

ρk = 500-620 kg/m3 pH ~ 3,8

ρk = 580-600 kg/m3 pH = 3,4-3,7

Common ash Fraxinus excelsior

European larch Larix decidua

ρk = 720-860 kg/m3 pH ~ 5,8

ρk = 590-850 kg/m3 pH = 4,2-5,4

Oak Quercus petraea

Spruce Picea abies

ρk = 665-760 kg/m3 pH ~ 3,9

ρk = 470-680 kg/m3 pH = 4,1-5,3

Scots pine Pinus sylvestris

Beech Fagus

ρk = 510-890 kg/m3 pH ~ 5,1

ρk = 720-910 kg/m3 pH ~ 5,9

Oak or European oak Quercus robur

White birch Birch warty

ρk = 690-960 kg/m3 pH = 3,4-4,2

ρk = 650-830 kg/m3 pH = 4,85-5,35

Olmo Ulmus ρk = 550-850 kg/m3 pH = 6,45-7,15

Teak Tectona grandis ρk = 660-700 kg/m3 pH ~ 5,1

Jarrah Eucalyptus marginata ρk = 800-900 kg/m3 pH = 3-3,7

Idigbo Terminalia ivorensis ρk = 450-600 kg/m3 pH = 3,5-4,1

Iroko Milicia ρk = 690-850 kg/m3 pH = 5,6-7,0

Obeche Triplochiton scleroxylon

African ebony Acer rubrum

ρk = 400-550 kg/m3 pH = 5,4-6,2

ρk = 1000-1200 kg/m3 pH = 4,2

African padouk Pterocarpus soyauxii

African mahogany Khaya

ρk pH = 3,7-5,6

ρk = 450-550 kg/m3 pH = 5,0 - 5,4

= 700-850 kg/m3

Density and pH taken from: "Wagenführ R; Wagenführ A. Holzatlas (2022)" and from "Canadian Conservation Institute Jean Tetreault, Coatings for Display and Storage in Museums (January 1999)".

DECKS AND FACADES | WOOD SPECIES | pH and density | 315


SCI HCR COUNTERSUNK SCREW MAXIMUM CORROSION PERFORMANCE Rated in the highest corrosion resistance class by EN 1993-1-1:2006/ A1:2015 (CRC V), it offers the highest atmospheric corrosion (C5) and wood (T5) resistance.

HCR: HIGH CORROSION RESISTANCE Austenitic stainless steel. It is characterised by its high molybdenum and nickel content for maximum corrosion resistance, while the presence of nitrogen ensures excellent mechanical performance.

INDOOR POOLS The chemical composition, in particular the high nickel and molybdenum content, confers strength to chloride pitting and, hence, stress corrosion cracking. This is the reason why it is the only category of stainless steel suitable for use in indoor swimming pools according to Eurocode 3.

BIT INCLUDED

DIAMETER [mm] SCI HCR 3,5

5

8

50 70

320

LENGTH [mm] 20

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

HCR

HCR | AL-6XN (CRC V) super-austenitic stainless steel

FIELDS OF USE Outdoor and indoor use in extremely aggressive environments. • indoor pools • façade • very wet areas • oceanic climate

316 | SCI HCR | DECKS AND FACADES


CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 20

L

b

A

[mm]

[mm]

[mm]

pcs

SCIHCR550

50

30

20

200

SCIHCR560

60

35

25

200

SCIHCR570

70

42

28

100

GEOMETRY AND MECHANICAL CHARACTERISTICS A

dk

d2 d 1 t1

ds

b L

GEOMETRY Nominal diameter

d1

[mm]

5

Head diameter

dK

[mm]

9,80

Thread diameter

d2

[mm]

3,20

Shank diameter

dS

[mm]

3,60

Head thickness

t1

[mm]

4,65

Pre-drilling hole diameter(1)

dV

[mm]

3,0

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

5

Tensile strength

ftens,k

[kN]

4,9

Yield moment

My,k

[Nm]

3,4

Withdrawal resistance parameter

fax,k

[N/mm2]

12,5

Associated density

ρa

[kg/m3]

350

Head-pull-through parameter

fhead,k

[N/mm2]

9,4

Associated density

ρa

[kg/m3]

350

Mechanical parameters from experimental tests.

SAUNAS AND WELLNESS CENTRES Ideal in environments with very high moisture and the presence of salts and chlorides.

DECKS AND FACADES | SCI HCR | 317


SCI A4 | AISI316 COUNTERSUNK SCREW SUPERIOR STRENGTH Special asymmetrical umbrella thread, elongated reamer cutter and under-head cutting ribs provide the screw with higher torsional strength and safer screwing.

A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.

T5 TIMBER CORROSIVITY Suitable for use in applications on agressive woods with an acidity (pH) level below 4 such as oak, Douglas fir and chestnut, and in wood moisture conditions above 20%.

BIT INCLUDED

DIAMETER [mm] SCI A4 | AISI316 3,5

5

8

LENGTH [mm] 20

50

100

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A4

AISI 316

A4 | AISI316 austenitic stainless steel (CRC III)

FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with pre-drill).

318 | SCI A4 | AISI316 | DECKS AND FACADES


CODES AND DIMENSIONS

HBS EVO C5

SCI A4 | AISI316 d1

CODE

[mm]

5 TX 25

L

b

A

[mm]

[mm]

[mm]

C5

COUNTERSUNK SCREW

pcs

SCI5050A4

50

24

26

200

SCI5060A4

60

30

30

200

SCI5070A4

70

35

35

100

SCI5080A4

80

40

40

100

It is the screw of choice when high mechanical performance is required C1 C2 C3 C4 under very adverse environmental and wood corrosive conditions. T1 T2 T3

Find out more on page 58.

SCI5090A4

90

45

45

100

SCI50100A4

100

50

50

100

SC1

SC2

C5

EVO COATING

SC3

SC4

C5 T4

T5

GEOMETRY AND MECHANICAL CHARACTERISTICS A

IA SC

4

XXX

dk

d2 d1

90° t1

ds

b L

GEOMETRY Nominal diameter

d1

[mm]

5

Head diameter

dK

[mm]

10,00

Thread diameter

d2

[mm]

3,40

Shank diameter

dS

[mm]

3,65

Head thickness

t1

[mm]

4,65

Pre-drilling hole diameter(1)

dV

[mm]

3,0

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

5

Tensile strength

ftens,k

[kN]

4,3

Yield moment

My,k

[Nm]

3,9

Withdrawal resistance parameter

fax,k

[N/mm2]

17,9

Associated density

ρa

[kg/m3]

440

Head-pull-through parameter

fhead,k

[N/mm2]

17,6

Associated density

ρa

[kg/m3]

440

Mechanical parameters from experimental tests

MARINE ENVIRONMENTS Can be used in aggressive environments and in areas near the sea thanks to the A4 | AISI316 stainless steel.

DECKS AND FACADES | SCI A4 | AISI316 | 319


SCI A2 | AISI304

EN 14592

COUNTERSUNK SCREW 3 THORNS TIP Thanks to the 3 THORNS tip, minimum installation distances are reduced. More screws can be used in less space and larger screws in smaller elements. Costs and time for project implementation are reduced.

SUPERIOR STRENGTH New tip, special asymmetrical umbrella thread, elongated reamer cutter and under-head cutting ribs provide the screw with higher torsional strength and safer screwing.

A2 | AISI304 A2 austenitic stainless steel. It offers high corrosion resistance. Suitable for outdoor applications up to 1 km from the sea in class C4 on most acid woods in class T4.

BIT INCLUDED

DIAMETER [mm] SCI A2 | AISI305 3,5

SCI A2 COIL bound version

8

LENGTH [mm] 20

25

320 320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A2

AISI 304

A2 | AISI304 austenitic stainless steel (CRC II)

FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 470 kg/m3 (without pre-drill) and < 620 kg/m3 (with pre-drill).

320 | SCI A2 | AISI304 | DECKS AND FACADES


CODES AND DIMENSIONS d1

CODE

[mm] 3,5 TX 15

4 TX 20

4,5 TX 20

5 TX 25

SCI3525( * ) SCI3530( * ) SCI3535( * ) SCI3540( * ) SCI4030 SCI4035 SCI4040 SCI4045 SCI4050 SCI4060 SCI4535 SCI4540 SCI4545 SCI4550 SCI4560 SCI4570 SCI4580 SCI5040 SCI5045 SCI5050 SCI5060 SCI5070 SCI5080 SCI5090 SCI50100

L

b

A

[mm] 25 30 35 40 30 35 40 45 50 60 35 40 45 50 60 70 80 40 45 50 60 70 80 90 100

[mm] 18 18 18 18 18 18 24 30 30 35 24 24 30 30 35 40 40 20 24 24 30 35 40 45 50

[mm] 7 12 17 22 12 17 16 15 20 25 11 16 15 20 25 30 40 20 21 26 30 35 40 45 50

pcs

d1

CODE

[mm] 500 500 500 500 500 500 500 200 400 200 400 400 400 200 200 200 200 200 200 200 200 100 100 100 100

6 TX 30

8 TX 40

SCI6060 SCI6080 SCI60100 SCI60120 SCI60140 SCI60160 SCI80120 SCI80160 SCI80200 SCI80240 SCI80280 SCI80320

L

b

A

pcs

[mm] 60 80 100 120 140 160 120 160 200 240 280 320

[mm] 30 40 50 60 75 75 60 80 80 80 80 80

[mm] 30 40 50 60 65 85 60 80 120 160 200 240

100 100 100 100 100 100 100 100 100 100 100 100

RELATED PRODUCTS HUS A4 TURNED WASHER

see page 68

( * ) Not holding CE marking.

SCI A2 COIL

d1 [mm] 4 TX 20

Bound version available for fast and accurate installation. Ideal for large projects. Compatible with KMR 3373 and KMR 3352 for Ø4 and KMR 3372 and KMR 3338 for Ø5. For further information see page 403.

5 TX 25

CODE

L [mm]

b [mm]

A [mm]

pcs

SCICOIL4025

25

18

7

3000

SCICOIL5050 SCICOIL5060 SCICOIL5070

50 60 70

30 35 40

20 25 30

1250 1250 625

GEOMETRY AND MECHANICAL CHARACTERISTICS

XXX

dk

SCI

A

d2 d1

90° ds

t1

b L

GEOMETRY Nominal diameter Head diameter Thread diameter Shank diameter Head thickness Pre-drilling hole diameter(1)

d1 dK d2 dS t1 dV

[mm] [mm] [mm] [mm] [mm] [mm]

3,5 7,00 2,25 2,45 3,50 2,0

4 8,00 2,55 2,75 3,80 2,5

4,5 9,00 2,80 3,15 4,25 3,0

5 10,00 3,40 3,65 4,65 3,0

6 12,00 3,95 4,30 5,30 4,0

8 14,50 5,40 5,80 6,00 5,0

4 3,2 1,9 17,1 410 13,4 390

4,5 4,4 2,8 17,2 410 18,0 440

5 5,0 4,4 17,9 440 17,6 440

6 6,8 8,2 11,6 420 12,0 440

8 14,1 17,6 14,8 410 12,5 440

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter Tensile strength Yield moment Withdrawal resistance parameter Associated density Head-pull-through parameter Associated density

d1 ftens,k My,k fax,k ρa fhead,k ρa

[mm] [kN] [Nm] [N/mm2] [kg/m3] [N/mm2] [kg/m3]

3,5 2,2 1,3 19,1 440 16,0 380

DECKS AND FACADES | SCI A2 | AISI304 | 321


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

18

20

a3,t

[mm]

15∙d

53

60

a3,c

[mm]

10∙d

35

40

a4,t

[mm]

5∙d

18

20

a4,c

[mm]

5∙d

18

20

10∙d

3,5

4

4,5

35

40

45

F

α=90°

5

6

8

d1

[mm]

12∙d

60

72

96

a1

[mm]

23

5∙d

25

30

40

a2

[mm]

5∙d

18

20

23

5∙d

25

30

40

68

15∙d

75

90

120

a3,t

[mm]

10∙d

35

40

45

10∙d

50

60

80

45

10∙d

50

60

80

a3,c

[mm]

10∙d

35

40

45

10∙d

50

60

80

23

5∙d

25

30

40

a4,t

[mm]

7∙d

25

28

32

10∙d

50

60

80

23

5∙d

25

30

40

a4,c

[mm]

5∙d

18

20

23

5∙d

25

30

40

5

6

8

5∙d

3,5

4

4,5

18

20

23

5∙d

5

6

8

25

30

40

screws inserted WITH pre-drilled hole

α=0°

F

d1

[mm]

3,5

4

4,5

a1

[mm]

a2

[mm]

5∙d

18

20

23

3∙d

11

12

14

a3,t a3,c

[mm]

12∙d

42

48

[mm]

7∙d

25

28

a4,t

[mm]

3∙d

11

a4,c

[mm]

3∙d

11

F

5

6

8

d1

[mm]

5∙d

25

30

40

a1

[mm]

3∙d

15

18

24

a2

[mm]

54

12∙d

60

72

96

a3,t

32

7∙d

35

42

56

a3,c

12

14

3∙d

15

18

24

12

14

3∙d

15

18

24

α=90°

3,5

4

4,5

4∙d

14

16

18

4∙d

20

24

32

4∙d

14

16

18

4∙d

20

24

32

[mm]

7∙d

25

28

32

7∙d

35

42

56

[mm]

7∙d

25

28

32

7∙d

35

42

56

a4,t

[mm]

5∙d

18

20

23

7∙d

35

42

56

a4,c

[mm]

3∙d

11

12

14

3∙d

15

18

24

α = load-to-grain angle d = d1 = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

MINIMUM DISTANCES NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = nominal screw diameter.

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.

• The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

STRUCTURAL VALUES NOTES • The characteristic timber-to-timber shear strengths were evaluated by considering an angle ε of 90° between the grains of the second element and the connector. • The characteristic thread withdrawal strengths were evaluated by considering an angle ε of 90° between the grains of the timber element and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength values in the table can be converted by the kdens coefficient (see page 42).

322 | SCI A2 | AISI304 | DECKS AND FACADES

• For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 42).


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

geometry

timber-to-timber

TENSION timber-to-timber with washer legno-legno

thread withdrawal

head pull-through

head pull-through with washer

RV,k [kN] 1,44 1,92 2,13 2,29 2,46 2,46 3,79 4,00 4,00 4,00 4,00 4,00

Rax,k [kN] 1,08 1,08 1,08 1,08 1,17 1,17 1,56 1,95 1,95 2,28 1,77 1,77 2,21 2,21 2,58 2,94 2,94 1,61 1,93 1,93 2,41 2,82 3,22 3,62 4,02 1,95 2,60 3,25 3,90 4,87 4,87 6,76 9,01 9,01 9,01 9,01 9,01

Rhead,k [kN] 0,79 0,79 0,79 0,79 0,85 0,85 0,85 0,85 0,85 0,85 1,31 1,31 1,31 1,31 1,31 1,31 1,31 1,58 1,58 1,58 1,58 1,58 1,58 1,58 1,58 1,55 1,55 1,55 1,55 1,55 1,55 2,36 2,36 2,36 2,36 2,36 2,36

Rhead,k [kN] 4,31 4,31 4,31 4,31 4,31 4,31 7,02 7,02 7,02 7,02 7,02 7,02

con rondella

A L b d1

d1 L b A [mm] [mm] [mm] [mm] 25 18 7 30 18 12 3,5 35 18 17 40 18 22 30 18 12 35 18 17 40 24 16 4 45 30 15 50 30 20 60 35 25 35 24 11 40 24 16 45 30 15 50 30 20 4,5 60 35 25 70 40 30 80 40 40 40 20 20 45 24 21 50 24 26 60 30 30 5 70 35 35 80 40 40 90 45 45 100 50 50 60 30 30 80 40 40 100 50 50 6 120 60 60 140 75 65 160 75 85 120 60 60 160 80 80 200 80 120 8 240 80 160 280 80 200 320 80 240

RV,k [kN] 0,41 0,55 0,63 0,64 0,62 0,68 0,69 0,67 0,76 0,78 0,76 0,88 0,87 0,95 1,04 1,04 1,04 1,04 1,13 1,21 1,35 1,35 1,35 1,35 1,35 1,48 1,77 1,77 1,77 1,77 1,77 2,83 2,83 2,83 2,83 2,83 2,83

GENERAL PRINCIPLES • Characteristic values are consistent with EN 1995:2014 and in accordance with EN 14592. • Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

• The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • The screws must be positioned in accordance with the minimum distances. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• The characteristic resistance to head pull-through was calculated using timber elements.

• Mechanical strength values and screw geometry comply with CE marking according to EN 14592.

• The characteristic timber-to-timber shear strengths with washer were evaluated considering the actual thread length in the second element.

• Dimensioning and verification of the timber elements must be carried out separately.

DECKS AND FACADES | SCI A2 | AISI304 | 323


KKT COLOR A4 | AISI316

EN 14592

CONE-SHAPED CONCEALED HEAD SCREW COLOURED HEAD Version in A4 | AISI316 stainless steel with brown, grey or black coloured head. Excellent camouflaging with wood. Ideal for very aggressive environments, for acidic, chemically treated wood and very high internal moisture (T5).

COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional pull-through capacity.

BIT INCLUDED

DIAMETER [mm] KKT COLOR A4 | AISI316 3,5

5

8

LENGTH [mm] 20

43

70

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A4

AISI 316

A4 austenitic stainless steel | AISI316 (CRC III) with organic coloured head coating

FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill).

324 | KKT COLOR A4 | AISI316 | DECKS AND FACADES


CODES AND DIMENSIONS BROWN COLOUR HEAD d1

BLACK COLOUR HEAD

CODE

[mm]

5 TX 20

L

b

A

pcs

[mm]

[mm]

[mm]

KKT540A4M

43

25

16

200

KKT550A4M

53

35

18

200

KKT560A4M

60

40

20

200

KKT570A4M

70

50

25

100

pcs

d1

CODE

[mm] 5 TX 20

L

b

A

pcs

[mm]

[mm]

[mm]

KKT550A4N

53

35

18

200

KKT560A4N

60

40

20

200

GREY COLOUR HEAD d1

CODE

[mm] 5 TX 20

L

b

A

[mm]

[mm]

[mm]

KKT550A4G

53

35

18

200

KKT560A4G

60

40

20

200

GEOMETRY AND MECHANICAL CHARACTERISTICS A

d2 d1

dk ds

b L

GEOMETRY Nominal diameter

d1

[mm]

5,1

Head diameter

dK

[mm]

6,75

Thread diameter

d2

[mm]

3,40

Shank diameter

dS

[mm]

4,05

Pre-drilling hole diameter(1)

dV

[mm]

3,0 - 4,0

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

Tensile strength

ftens,k

[kN]

7,8

Yield moment

My,k

[Nm]

5,8

Withdrawal resistance parameter

fax,k

[N/mm2]

13,7

Associated density

ρa

[kg/m3]

350

Head-pull-through parameter

fhead,k [N/mm2]

23,8

Associated density

ρa

350

[kg/m3]

5,1

CARBONIZED WOOD Ideal for fastening wooden planks with a burnt effect. Can also be used with acetylate-treated woods.

DECKS AND FACADES | KKT COLOR A4 | AISI316 | 325


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d

[mm]

a1

[mm]

a2 a3,t

F

α=90°

5

d

[mm]

12·d

60

a1

[mm]

5

[mm]

5·d

25

a2

[mm]

5·d

25

[mm]

15·d

75

a3,t

[mm]

10·d

50

a3,c

[mm]

10·d

50

a3,c

[mm]

10·d

50

a4,t

[mm]

5·d

25

a4,t

[mm]

10·d

50

a4,c

[mm]

5·d

25

a4,c

[mm]

5·d

25

5·d

25

α = load-to-grain angle d = screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

d

[mm]

a1

[mm]

a2

[mm]

a3,t

[mm]

a3,c

[mm]

a4,t

[mm]

a4,c

[mm]

F

α=90°

5

d

[mm]

25

a1

[mm]

4·d

20

3·d

15

a2

[mm]

4·d

20

12·d

60

a3,t

[mm]

7·d

35

7·d

35

a3,c

[mm]

7·d

35

3·d

15

a4,t

[mm]

7·d

35

15

a4,c

[mm]

3·d

15

stressed end -90° < α < 90°

unloaded end 90° < α < 270°

5·d

3·d

5

α = load-to-grain angle d = screw diameter

a2 a2 a1 a1

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

326 | KKT COLOR A4 | AISI316 | DECKS AND FACADES

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber without pre-drilling hole

geometry

TENSION timber-to-timber with pre-drilling hole

thread withdrawal

head pull-through including upper thread withdrawal

legno-legno con preforo

A L b

d1

d1

L

b

A

[mm] [mm] [mm] [mm] 43 5

25

16

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

1,13

1,35

1,98

1,25

53

35

18

1,16

1,40

2,77

1,25

60

40

22

1,19

1,46

3,17

1,25

70

50

27

1,30

1,63

3,96

1,25

GENERAL PRINCIPLES

NOTES

• Characteristic values according to EN 1995:2014.

• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.

• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.

DECKS AND FACADES | KKT COLOR A4 | AISI316 | 327


KKT A4 | AISI316

EN 14592

CONE-SHAPED CONCEALED HEAD SCREW AGGRESSIVE ENVIRONMENTS A4 | AISI316 stainless steel version ideal for very aggressive environments, for acidic, chemically treated wood and very high internal moisture (T5). KKT X version with short length and long bit for use with clips.

COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.

BIT INCLUDED

DIAMETER [mm] KKT A4 | AISI316 3,5

5

8

LENGTH [mm] 20 20

80

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY

KKT X A4 | AISI316

C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL long insert included

KKT A4 | AISI316

A4

AISI 316

A4 | AISI316 austenitic stainless steel (CRC III)

FIELDS OF USE Outdoor use in highly aggressive environments. Wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill).

328 | KKT A4 | AISI316 | DECKS AND FACADES


CODES AND DIMENSIONS KKT A4 | AISI316 d1

KKT X A4 | AISI316 - fully threaded screw

CODE

[mm]

5 TX 20

L

b

A

[mm]

[mm]

[mm]

pcs

d1

CODE

[mm]

KKT540A4

43

25

16

200

KKTX520A4( * )

KKT550A4

53

35

18

200

KKTX525A4( * )

KKT560A4

60

40

20

200

KKT570A4

70

50

25

100

KKT580A4

80

53

30

5 TX 20

L

b

A

pcs

[mm]

[mm]

[mm]

20

16

4

200

25

21

4

200

KKTX530A4( * )

30

26

4

200

KKTX540A4

40

36

4

100

( * ) Not holding CE marking.

100

LONG BIT INCLUDED code TX2050

GEOMETRY AND MECHANICAL CHARACTERISTICS KKT A4 | AISI316

KKT X A4 | AISI316

AA

ds d2d2 d1d1 dk

dkdk dsds

ds d2 d1d2 d1

dk b L

bb LL

b L

GEOMETRY Nominal diameter

d1

[mm]

5,1

Head diameter

dK

[mm]

6,75 3,40

Thread diameter

d2

[mm]

Shank diameter

dS

[mm]

4,05

Pre-drilling hole diameter(1)

dV

[mm]

3,0 - 4,0

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

Tensile strength

ftens,k

[kN]

5,1 7,8

Yield moment

My,k

[Nm]

5,8

Withdrawal resistance parameter

fax,k

[N/mm2]

13,7

Associated density

ρa

[kg/m3]

350

Head-pull-through parameter

fhead,k [N/mm2]

23,8

Associated density

ρa

350

[kg/m3]

KKT X Ideal for fastening standard Rothoblaas clips (TVM, TERRALOCK) in outdoor environments. Long bit included in each package.

DECKS AND FACADES | KKT A4 | AISI316 | 329


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 60 25 75 50 25 25

12·d 5·d 15·d 10·d 5·d 5·d

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 25 25 50 50 50 25

5·d 5·d 10·d 10·d 10·d 5·d

α = load-to-grain angle d = screw diameter

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 75 35 100 75 35 35

15·d 7·d 20·d 15·d 7·d 7·d

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 35 35 75 75 60 35

7·d 7·d 15·d 15·d 12·d 7·d

α = load-to-grain angle d = screw diameter

screws inserted WITH pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 25 15 60 35 15 15

d a1 a2 a3,t a3,c a4,t a4,c

stressed end -90° < α < 90°

unloaded end 90° < α < 270°

5·d 3·d 12·d 7·d 3·d 3·d

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 20 20 35 35 35 15

4·d 4·d 7·d 7·d 7·d 3·d

α = load-to-grain angle d = screw diameter

a2 a2 a1 a1

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

330 | KKT A4 | AISI316 | DECKS AND FACADES

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014

KKT A4 |AISI316

SHEAR timber-to-timber without pre-drilling hole

geometry

TENSION timber-to-timber with pre-drilling hole

thread withdrawal

head pull-through including upper thread withdrawal

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

A L b

d1

d1

L

b

A

[mm] [mm] [mm] [mm]

5

43

25

16

1,13

1,35

1,98

1,25

53

35

18

1,16

1,40

2,77

1,25

60

40

20

1,19

1,46

3,17

1,25

70

50

25

1,41

1,77

3,96

1,25

80

53

30

1,59

2,00

4,20

1,25

KKT X A4 |AISI316

SHEAR

TENSION

steel-to-timber thin plate

geometry

steel-to-timber intermediate plate SPLATE

thread withdrawal

SPLATE

L b

d1

d1

L

b

SPLATE

[mm]

[mm]

[mm]

[mm]

20

16

25

21

5

30

26

40

36

RV,k

SPLATE

[kN]

[mm]

0,64 1,5

0,82 0,99

3

1,34

RV,k

Rax,k

[kN]

[kN]

0,74

1,27

0,92

1,66

1,10

2,06

1,48

2,85

GENERAL PRINCIPLES

NOTES

• Characteristic values according to EN 1995:2014.

• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of timber elements and steel plates must be carried out separately.

• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. • The characteristic shear strengths are evaluated considering the case of thin plate (SPLATE ≤ 0,5 d1) and intermediate plate (0,5 d1 < SPLATE < d1). • In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.

• The screws must be positioned in accordance with the minimum distances. • The KKT A4 screws with double thread are mainly used for timber-to-timber joints. • The KKT X total thread screws are mainly used for steel plates (e.g. TERRALOCK patio system).

DECKS AND FACADES | KKT A4 | AISI316 | 331


KKT COLOR

EN 14592

CONE-SHAPED CONCEALED HEAD SCREW ORGANIC COLOURED COATING Carbon steel version with coloured anti-rust coating (brown, grey, green, sand and black) for outdoor use in service class 3 on non acid timbers (T3).

COUNTER THREAD The inverse (left-hand) under-head thread guarantees excellent grip. Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY The three-lobed thread makes it possible to cut the wood grain during screwing. Exceptional timber pull-through.

KKT COLOR STRIP bound version BIT INCLUDED

DIAMETER [mm] KKT COLOR 3,5

5

6

8

LENGTH [mm] 20

43

120

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL ORGANIC COATING

carbon steel with coloured organic anti-rust coating

FIELDS OF USE Outdoor use. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill). WPC boards (with pre-drill).

332 | KKT COLOR | DECKS AND FACADES


CODES AND DIMENSIONS KKT BROWN COLOUR d1 [mm]

5 TX 20

6 TX 25

KKT GREEN COLOUR

CODE KKTM540 KKTM550 KKTM560 KKTM570 KKTM580 KKTM660 KKTM680 KKTM6100 KKTM6120

L [mm] 43 53 60 70 80 60 80 100 120

b [mm] 25 35 40 50 53 40 50 50 60

A [mm] 16 18 20 25 30 20 30 50 60

L [mm] 43 53 60 70 80

b [mm] 25 35 40 50 53

A [mm] 16 18 20 25 30

pcs

d1 [mm]

5 TX 20

CODE KKTG540 KKTG550 KKTG560 KKTG570 KKTG580

KKTV550 KKTV560 KKTV570

200 200 200 100 100 100 100 100 100

KKT SAND COLOUR

pcs

KKT BLACK COLOUR

5 TX 20

d1 [mm] 5 TX 20

KKT GREY COLOUR d1 [mm]

CODE

d1 [mm]

200 200 200 100 100

5 TX 20

CODE KKTS550 KKTS560 KKTS570

CODE KKTN540( * ) KKTN550 KKTN560

L [mm] 53 60 70

b [mm] 35 40 50

A [mm] 18 20 25

L [mm] 53 60 70

b [mm] 35 40 50

A [mm] 18 20 25

L [mm] 43 53 60

b [mm] 36 35 40

A [mm] 16 18 20

pcs 200 200 100

pcs 200 200 100

pcs 200 200 200

(*) Full threaded screw.

KKT COLOR STRIP

KKT BROWN COLOUR

Bound version available for fast and accurate installation. Ideal for large projects.

d1 [mm]

For information on screwdriver and additional products see page 403.

5 TX 20

CODE

L [mm] KKTMSTRIP540 43 KKTMSTRIP550 53

b [mm] 25 35

A [mm] 16 18

pcs 800 800

Compatible with KMR 3372 loaders, code HH3372 and HH3338 with appropriate TX20 bit (code TX2075)

GEOMETRY AND MECHANICAL CHARACTERISTICS A

d2 d1

dk ds

b L

GEOMETRY Nominal diameter

d1

[mm]

5,1

6

Head diameter

dK

[mm]

6,75

7,75

Thread diameter

d2

[mm]

3,40

3,90

Shank diameter

dS

[mm]

4,05

4,40

Pre-drilling hole diameter(1)

dV

[mm]

3,0 - 4,0

4,0 - 5,0

5,1

6 14,5

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

Tensile strength

ftens,k

[kN]

9,6

Yield moment

My,k

[Nm]

8,4

9,9

Withdrawal resistance parameter

fax,k

[N/mm2]

14,7

14,7

Associated density

ρa

[kg/m3]

400

400

Head-pull-through parameter

fhead,k [N/mm2]

68,8

20,1

Associated density

ρa

730

350

[kg/m3]

DECKS AND FACADES | KKT COLOR | 333


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

5 60 25 75 50 25 25

12·d 5·d 15·d 10·d 5·d 5·d

F

6 72 30 90 60 30 30

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 25 25 50 50 50 25

5·d 5·d 10·d 10·d 10·d 5·d

6 30 30 60 60 60 30

α = load-to-grain angle d = screw diameter

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

5 75 35 100 75 35 35

15·d 7·d 20·d 15·d 7·d 7·d

F

6 90 42 120 90 42 42

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 35 35 75 75 60 35

7·d 7·d 15·d 15·d 12·d 7·d

6 42 42 90 90 72 42

α = load-to-grain angle d = screw diameter

screws inserted WITH pre-drilled hole

α=0°

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

5 25 15 60 35 15 15

5·d 3·d 12·d 7·d 3·d 3·d

F

6 30 18 72 42 18 18

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 20 20 35 35 35 15

4·d 4·d 7·d 7·d 7·d 3·d

6 24 24 42 42 42 18

α = load-to-grain angle d = screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances are compliant with EN 1995:2014, according to ETA-11/0030, considering a calculation diameter of d = screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

334 | KKT COLOR | DECKS AND FACADES

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014

KKT

SHEAR timber-to-timber without pre-drilling hole

geometry

TENSION timber-to-timber with legno-legno pre-drilling hole

thread withdrawal

head pull-through including upper thread withdrawal

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

con preforo

A L b

d1

d1

L

b

A

[mm] [mm] [mm] [mm]

5

6

43

25

16

1,08

1,43

1,91

1,05

53

35

18

1,22

1,48

2,67

1,05

60

40

20

1,25

1,53

3,06

1,05

70

50

25

1,34

1,68

3,82

1,05

80

53

30

1,45

1,84

4,05

1,05

60

40

20

1,46

1,80

3,67

1,40

80

50

30

1,67

2,16

4,59

1,40

100

50

50

1,93

2,27

4,59

1,40

120

60

60

1,93

2,27

5,50

1,40

KKTN540

SHEAR

TENSION

steel-to-timber thin plate

geometry

steel-to-timber intermediate plate SPLATE

thread withdrawal

SPLATE

L b

d1

d1

L

b

SPLATE

RV,k

SPLATE

RV,k

Rax,k

[mm]

[mm]

[mm]

[mm]

[kN]

[mm]

[kN]

[kN]

5

40

36

2

1,32

3

1,50

2,75

GENERAL PRINCIPLES

NOTES

• Characteristic values according to EN 1995:2014.

• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread.

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• A characteristic head-pull-through parameter equal to 20 N/mm2 with associated density ρa = 350 kg/m3 is considered in the calculation phase for the Ø5 diameter.

• Mechanical strength values and screw geometry comply with CE marking according to EN 14592.

• The characteristic shear strengths are evaluated considering the case of thin plate (SPLATE ≤ 0,5 d1) and intermediate plate (0,5 d1 < SPLATE < d1).

• Dimensioning and verification of timber elements and steel plates must be carried out separately.

• In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

• The screws must be positioned in accordance with the minimum distances.

• For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.

• The KKT screws with twin thread are mainly used for wood-wood joints. • The KKTN540 fully threaded screw is mainly used for steel plates (e.g. FLAT patio system).

DECKS AND FACADES | KKT COLOR | 335


FAS A4 | AISI316 SCREWS FOR FAÇADES OPTIMISED GEOMETRY Thanks to its flange head, partially threaded body and self-drilling tip, it is the appropriate screw for fastening façade panels (HPL, fibre cement sheets, etc.) on timber battens.

A4 | AISI316 A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.

COLOURED HEAD Available in white, grey or black for perfect colour uniformity with the panel. The colour of the head can be customised on request.

DIAMETER [mm] 3,5

5

8

LENGTH [mm] 20

25

38

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A4

AISI 316

A4 | AISI316 austenitic stainless steel (CRC III)

FIELDS OF USE It can be used outdoors in aggressive environments. Fixing of façade elements (HPL panels, fibre cement slabs, etc.) to timber substructures.

336 | FAS A4 | AISI316 | DECKS AND FACADES


CODES AND DIMENSIONS FAS: stainless steel d1

FAS W: RAL 9010 - white CODE

[mm] FAS4825

4,8 TX 20 FAS4838

L

b

pcs

[mm]

[mm]

25

17

200

38

23

200

d1 [mm]

FASW4825

4,8 TX 20 FASW4838

FAS N: RAL 9005 - black d1

CODE

L

b

pcs

[mm]

[mm]

25

17

200

38

23

200

pcs

FAS G: RAL 7016 - anthracite gray L

b

[mm]

CODE

[mm]

[mm]

pcs

4,8 FASN4825 TX 20 FASN4838

25

17

200

38

23

200

L

b

[mm]

d1

CODE

[mm]

[mm]

4,8 FASG4825 TX 20 FASG4838

25

17

200

38

23

200

GEOMETRY

d1

dk t1

b L

Nominal diameter

d1

[mm]

5

Head diameter

dK

[mm]

12,30

Head thickness

t1

[mm]

2,70

COMPATIBILITY FAS is compatible with the most common fibre cement and HPL façade panel systems.

DECKS AND FACADES | FAS A4 | AISI316 | 337


KKZ A2 | AISI304

EN 14592

COUNTERSUNK CYLINDRICAL HEAD SCREW HARD WOODS Special tip with sword-shaped geometry specially designed to efficiently drill very high density woods without pre-drill (with pre-drill, over 1000 kg/m3).

DOUBLE THREAD The larger diameter right-hand under-head thread ensures an effective grip, guaranteeing good coupling of the wooden elements. Concealed head.

BURNISHED VERSION Available in a version in antique-burnished stainless steel, ideal to guarantee superb camouflaging in the wood.

BIT INCLUDED

DIAMETER [mm] KKZ A2 | AISI304 3,5

5

8

50 70

320

LENGTH [mm] 20

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

A2

KKZ A2 | AISI304

KKZ BRONZE A2 | AISI304

AISI 304

A2 | AISI304 austenitic stainless steel (CRC II)

FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 1240 kg/m3 (with pre-drill). WPC boards (with pre-drill).

338 | KKZ A2 | AISI304 | DECKS AND FACADES


CODES AND DIMENSIONS KKZ A2 | AISI304 d1

KKZ BRONZE A2 | AISI304

CODE

L

[mm] 5 TX 25

b1

b2

A

pcs

d1

[mm] [mm] [mm] [mm] KKZ550

50

KKZ560 KKZ570

22

11

60

27

70

32

CODE

L

[mm]

28

200

11

33

200

11

38

100

5 TX 25

b1

b2

A

pcs

[mm] [mm] [mm] [mm] KKZB550

50

22

11

28

200

KKZB560

60

27

11

33

200

GEOMETRY AND MECHANICAL CHARACTERISTICS A ds d2 d1

dk b2

b1 L

GEOMETRY Nominal diameter

d1

[mm]

5

Head diameter

dK

[mm]

6,80

Thread diameter

d2

[mm]

3,50

Shank diameter

dS

[mm]

4,35

Pre-drilling hole diameter(1)

dV

[mm]

3,5

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

Tensile strength

ftens,k

[kN]

5,7

Yield moment

My,k

[Nm]

5,3

Withdrawal resistance parameter

fax,k

[N/mm2]

17,1

Associated density

ρa

[kg/m3]

350

Head-pull-through parameter

fhead,k [N/mm2]

36,8

Associated density

ρa

350

[kg/m3]

5

HARD WOOD Also tested on very high density woods, such as IPE, massaranduba or bamboo Microllam® (over 1000 kg/m3).

ACID TIMBER T4 Based on Rothoblaas' experimental experience, A2 (AISI 304) stainless steel is suitable for use in applications on most agressive woods with acidity (pH) levels below 4, such as oak, Douglas fir and chestnut (see page 314).

DECKS AND FACADES | KKZ A2 | AISI304 | 339


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 60 25 75 50 25 25

12·d 5·d 15·d 10·d 5·d 5·d

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 25 25 50 50 50 25

5·d 5·d 10·d 10·d 10·d 5·d

α = load-to-grain angle d = nominal screw diameter

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 75 35 100 75 35 35

15·d 7·d 20·d 15·d 7·d 7·d

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 35 35 75 75 60 35

7·d 7·d 15·d 15·d 12·d 7·d

α = load-to-grain angle d = nominal screw diameter

screws inserted WITH pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 25 15 60 35 15 15

d a1 a2 a3,t a3,c a4,t a4,c

stressed end -90° < α < 90°

unloaded end 90° < α < 270°

5·d 3·d 12·d 7·d 3·d 3·d

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 20 20 35 35 35 15

4·d 4·d 7·d 7·d 7·d 3·d

α = load-to-grain angle d = nominal screw diameter

a2 a2 a1 a1

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = nominal screw diameter. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7.

340 | KKZ A2 | AISI304 | DECKS AND FACADES

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber without pre-drilling hole

geometry

TENSION timber-to-timber with pre-drilling hole

thread withdrawal

head pull-through including upper thread withdrawal

A L b1 d1

d1

L

b1

A

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

28

1,41

1,71

2,18

1,97

[mm] [mm] [mm] [mm] 50 5

22

60

27

33

1,52

1,83

2,67

1,97

70

32

38

1,61

1,83

3,17

1,97

GENERAL PRINCIPLES

NOTES

• Characteristic values according to EN 1995:2014.

• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• The axial resistance to head pull-through was calculated using timber elements also considering the underhead thread. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.

• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.

DECKS AND FACADES | KKZ A2 | AISI304 | 341


KKZ EVO C5

EN 14592

COUNTERSUNK CYLINDRICAL HEAD SCREW C5 ATMOSPHERIC CORROSIVITY Multi-layer coating capable of withstanding outdoor environments classified C5 according to ISO 9223. Salt Spray Test (SST) with exposure time greater than 3000 h carried out on screws previously screwed and unscrewed in Douglas fir timber.

DOUBLE THREAD The larger diameter right-hand under-head thread ensures an effective grip, guaranteeing good coupling of the wooden elements. Concealed head.

HARD WOODS Special tip with sword-shaped geometry specially designed to efficiently drill very high density woods without pre-drill (with pre-drill, over 1000 kg/m3).

BIT INCLUDED

DIAMETER [mm] KKZ EVO C5 3,5

5

8

50 70

320

LENGTH [mm] 20

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

C5

C5

EVO COATING

carbon steel with C5 EVO coating with very high corrosion resistance

FIELDS OF USE Use in aggressive outdoor environments. Wooden boards with density of < 780 kg/m3 (without pre-drill) and < 1240 kg/m3 (with pre-drill). WPC boards (with pre-drill).

342 | KKZ EVO C5 | DECKS AND FACADES


CODES AND DIMENSIONS d1

CODE

[mm] 5 TX 25

L

b1

b2

A

pcs

[mm]

[mm]

[mm]

[mm]

KKZEVO550C5

50

22

11

28

200

KKZEVO560C5

60

27

11

33

200

KKZEVO570C5

70

32

11

38

100

GEOMETRY AND MECHANICAL CHARACTERISTICS A ds d2 d1

dk b2

b1 L

GEOMETRY Nominal diameter

d1

[mm]

5

Head diameter

dK

[mm]

6,80

Thread diameter

d2

[mm]

3,50

Shank diameter

dS

[mm]

4,35

Pre-drilling hole diameter(1)

dV

[mm]

3,5

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

DISTANCE FROM THE SEA RESISTANCE TO CHLORIDE EXPOSURE(1)

A4

A4 | AISI316 stainless steel

AISI 316

C5

C5

C5 EVO anti-corrosion coating(2)

EVO COATING

distance from the sea

10 km

3 km

1 km

0,25 km

0

(1) C5 is defined according to EN 14592:2022 based on EN ISO 9223. (2) EN 14592:2022 currently limits the service life of alternative coatings to 15 years.

MAXIMUM STRENGTH It ensures high mechanical performance even in the presence of very adverse environmental and wood corrosive conditions.

DECKS AND FACADES | KKZ EVO C5 | 343


EWS AISI410 | EWS A2

EN 14592

CONVEX HEAD SCREW AESTHETIC PERFORMANCE AND ROBUSTNESS Countersunk teardrop shaped head with curved surface for a pleasant look and firm grip with the bit. The increased shank diameter with high torsional strength for a strong, safe screwing even in high density woods.

EWS AISI410 The martensitic stainless steel version offers the highest mechanical performance. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).

EWS A2 | AISI305 The austenitic A2 stainless steel version offers higher corrosion resistance. Suitable for outdoor applications up to 1 km from the sea and on most of T4 class acid woods.

BIT INCLUDED

DIAMETER [mm] EWS 3,5

5

8

LENGTH [mm] 20

50

80

320

MATERIAL SC1

410

SC2

SC3

SC4

C1 AISI410 martensitic stainless steel

C2

C3

C4

AISI

T1

A2

AISI 305

EWS AISI410

T2

T3

T4

T5

SC1

SC2

SC3

SC4

A2 | AISI305 austenitic stainless C1 C2 steel (CRC II)

C3

C4

T4

T5

T1

EWS A2 | AISI305

T2

T3

FIELDS OF USE Outdoor use. WPC boards (with pre-drill). EWS AISI410: wooden boards with density of < 880 kg/m3 (without pre-drill). EWS A2 | AISI305: wooden boards with density of < 550 kg/m3 (without pre-drill) and < 880 kg/m3 (with pre-drill).

344 | EWS AISI410 | EWS A2 | DECKS AND FACADES

C5


CODES AND DIMENSIONS 410

EWS AISI410 d1

CODE

[mm] EWS550 5 TX 25

EWS560

AISI

L

b

A

[mm]

[mm]

[mm]

50

30

20

60

A2

EWS A2 | AISI305

pcs

d1

AISI 305

CODE

[mm] 200

36

24

200

EWS570

70

42

28

100

EWS580

80

48

32

100

5 TX 25

L

b

A

pcs

[mm]

[mm]

[mm]

EWSA2550

50

30

20

200

EWSA2560

60

36

24

200

EWSA2570

70

42

28

100

GEOMETRY AND MECHANICAL CHARACTERISTICS A

d2 d1

dk t1

ds

b L

GEOMETRY EWS AISI410

EWS A2 | AISI305

Nominal diameter

d1

[mm]

5,3

5,3

Head diameter

dK

[mm]

8,00

8,00

Thread diameter

d2

[mm]

3,90

3,90

Shank diameter

dS

[mm]

4,10

4,10

Head thickness

t1

[mm]

3,65

3,65

Pre-drilling hole diameter(1)

dV

[mm]

3,5

3,5

EWS AISI410

EWS A2 | AISI305

(1) For high density materials, pre-drilled holes are recommended based on the wood specie.

CHARACTERISTIC MECHANICAL PARAMETERS Nominal diameter

d1

[mm]

5,3

5,3

Tensile strength

ftens,k

[kN]

13,7

7,3

Yield moment

My,k

[Nm]

14,3

9,7

Withdrawal resistance parameter

fax,k

[N/mm2]

16,5

16,6

Associated density

ρa

[kg/m3]

350

350

Head-pull-through parameter

fhead,k [N/mm2]

21,1

21,4

Associated density

ρa

350

350

[kg/m3]

WITHOUT PRE-DRILLED HOLE EWS AISI410 can be used, without pre-drill, in woods having a maximum density of 880 kg/m3. EWS A2 | AISI305 can be used, without predrill, in woods having a maximum density of 550 kg/m3.

DECKS AND FACADES | EWS AISI410 | EWS A2 | 345


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 60 25 75 50 25 25

12·d 5·d 15·d 10·d 5·d 5·d

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 25 25 50 50 50 25

5·d 5·d 10·d 10·d 10·d 5·d

α = load-to-grain angle d = screw diameter

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 75 35 100 75 35 35

15·d 7·d 20·d 15·d 7·d 7·d

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 35 35 75 75 60 35

7·d 7·d 15·d 15·d 12·d 7·d

α = load-to-grain angle d = screw diameter

screws inserted WITH pre-drilled hole

F

d a1 a2 a3,t a3,c a4,t a4,c

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=0°

F

5 25 15 60 35 15 15

d a1 a2 a3,t a3,c a4,t a4,c

stressed end -90° < α < 90°

unloaded end 90° < α < 270°

5·d 3·d 12·d 7·d 3·d 3·d

[mm] [mm] [mm] [mm] [mm] [mm] [mm]

α=90° 5 20 20 35 35 35 15

4·d 4·d 7·d 7·d 7·d 3·d

α = load-to-grain angle d = screw diameter

a2 a2 a1 a1

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances are according to EN 1995:2014 considering a calculation diameter of d = screw diameter.

346 | EWS AISI410 | EWS A2 | DECKS AND FACADES

• The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85.


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014

EWS AISI410

SHEAR timber-to-timber without pre-drilled hole

geometry

TENSION timber-to-timber with pre-drilling hole

thread withdrawal

head pull-through

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

A L b

d1

d1

L

b

A

[mm] [mm] [mm] [mm]

5

50

30

20

1,38

1,84

2,86

1,56

60

36

24

1,58

2,09

3,44

1,56

70

42

28

1,77

2,21

4,01

1,56

80

48

32

1,85

2,34

4,58

1,56

EWS A2 | AISI305

SHEAR timber-to-timber without pre-drilled hole

geometry

TENSION timber-to-timber with pre-drilling hole

thread withdrawal

head pull-through

A L b

d1

d1

L

b

A

[mm] [mm] [mm] [mm] 5

RV,k

RV,k

Rax,k

Rhead,k

[kN]

[kN]

[kN]

[kN]

50

30

20

1,39

1,80

2,88

1,58

60

36

24

1,55

1,92

3,46

1,58

70

42

28

1,64

2,06

4,03

1,58

GENERAL PRINCIPLES

NOTES

• Characteristic values according to EN 1995:2014.

• The axial thread withdrawal resistance was calculated considering a 90° angle between the grain and the connector and for a fixing length of b.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation.

• The axial resistance to head pull-through was calculated using wood elements. • For the calculation process a timber characteristic density ρk = 420 kg/m3 has been considered.

• Mechanical strength values and screw geometry comply with CE marking according to EN 14592. • Values were calculated considering the threaded part as being completely inserted into the wood. • Dimensioning and verification of the timber elements must be carried out separately. • The screws must be positioned in accordance with the minimum distances.

DECKS AND FACADES | EWS AISI410 | EWS A2 | 347


KKF AISI410

ETA-11/0030

UKTA-0836 22/6195

AC233 ESR-4645

ETA-11/0030

PAN HEAD SCREW PAN HEAD The flat under-head accompanies absorption of the shavings, preventing the wood from cracking and thus ensuring excellent surface finish.

LONGER THREAD Special asymmetric “umbrella” thread with increased length (60%) for higher grip. Fine thread for the utmost precision when tightening is complete.

OUTDOOR APPLICATIONS ON ACID WOOD Martensitic stainless steel. This stainless steels offers the highest mechanical performance compared to the other available stainless steels. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.).

BIT INCLUDED

DIAMETER [mm] KKF AISI410

3,5

4

6

8

LENGTH [mm] 20 20

120

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL

410 AISI

AISI410 martensitic stainless steel

FIELDS OF USE Outdoor use. Wooden boards with density < 780 kg/m3 (without pre-drill). WPC boards (with pre-drill).

348 | KKF AISI410 | DECKS AND FACADES


CODES AND DIMENSIONS d1

CODE

[mm] KKF430 4 TX 20

4,5 TX 20

L

b

A

pcs

[mm]

[mm]

[mm]

30

18

12

500

d1

CODE

[mm] KKF540

L

b

A

[mm]

[mm]

[mm]

40

24

16

pcs 200

KKF435

35

20

15

500

KKF550

50

30

20

200

KKF440

40

24

16

500

KKF560

60

35

25

200

KKF445

45

30

15

200

KKF570

70

40

30

100

5 TX 25

KKF450

50

30

20

200

KKF580

80

50

30

100

KKF4520( * )

20

15

5

200

KKF590

90

55

35

100

KKF4540

40

24

16

200

KKF5100

100

60

40

100

KKF4545

45

30

15

200

KKF680

80

50

30

100

KKF6100

100

60

40

100

KKF6120

120

75

45

100

KKF4550

50

30

20

200

KKF4560

60

35

25

200

KKF4570

70

40

30

200

6 TX 30

( * ) Not holding CE marking.

GEOMETRY AND MECHANICAL CHARACTERISTICS

d2 d1

XXX

dk

KKF

A

ds

t1

b L

GEOMETRY Nominal diameter

d1

[mm]

4

4,5

5

6

Head diameter

dK

[mm]

7,70

Thread diameter

d2

[mm]

2,60

8,70

9,65

11,65

3,05

3,25

4,05

Shank diameter

dS

[mm]

2,90

Head thickness

t1

[mm]

5,00

3,35

3,60

4,30

5,00

6,00

Pre-drilling hole diameter(1)

7,00

dV,S

[mm]

2,5

Pre-drilling hole diameter(2)

dV,H

[mm]

-

2,5

3,0

4,0

-

3,5

4,0

Nominal diameter

d1

[mm]

4

4,5

5

6

Tensile strength

ftens,k

[kN]

5,0

6,4

7,9

11,3

Yield moment

My,k

[Nm]

3,0

4,1

5,4

9,5

(1) Pre-drilling valid for softwood. (2) Pre-drilling valid for hardwood and beech LVL.

CHARACTERISTIC MECHANICAL PARAMETERS

softwood (softwood)

LVL softwood (LVL softwood)

hardwood predrilled (hardwood predrilled)

Withdrawal resistance parameter

fax,k

[N/mm2]

11,7

15,0

29,0

Head-pull-through parameter

fhead,k [N/mm2]

16,5

-

-

Associated density

ρa

[kg/m3]

350

500

730

Calculation density

ρk

[kg/m3]

≤ 440

410 ÷ 550

590 ÷ 750

For applications with different materials please see ETA-11/0030.

DECKS AND FACADES | KKF AISI410 | 349


MINIMUM DISTANCES FOR SHEAR LOADS ρk ≤ 420 kg/m3

screws inserted WITHOUT pre-drilled hole

α=0°

F

d1

[mm]

a1

[mm]

a2

[mm]

5∙d

20

a3,t

[mm]

15∙d

60

a3,c

[mm]

10∙d

40

a4,t

[mm]

5∙d

20

a4,c

[mm]

5∙d

20

10∙d

4

4,5

40

45

F

α=90°

5

6

d1

[mm]

10∙d

50

60

a1

[mm]

23

5∙d

25

30

a2

[mm]

5∙d

20

23

5∙d

25

30

68

15∙d

75

90

a3,t

[mm]

10∙d

40

45

10∙d

50

60

45

10∙d

50

60

a3,c

[mm]

10∙d

40

45

10∙d

50

60

23

5∙d

25

30

a4,t

[mm]

7∙d

28

32

10∙d

50

60

23

5∙d

25

30

a4,c

[mm]

5∙d

20

23

5∙d

25

30

5∙d

4

4,5

20

23

d1

[mm]

α=0°

4

4,5

5

6

25

30

420 kg/m3 < ρk ≤ 500 kg/m3

screws inserted WITHOUT pre-drilled hole

F

5∙d

F

5

6

d1

[mm]

α=90°

4

4,5

5

6 42

a1

[mm]

15∙d

60

68

15∙d

75

90

a1

[mm]

7∙d

28

32

7∙d

35

a2

[mm]

7∙d

28

32

7∙d

35

42

a2

[mm]

7∙d

28

32

7∙d

35

42

a3,t

[mm]

20∙d

80

90

20∙d

100

120

a3,t

[mm]

15∙d

60

68

15∙d

75

90

a3,c

[mm]

15∙d

60

68

15∙d

75

90

a3,c

[mm]

15∙d

60

68

15∙d

75

90

a4,t

[mm]

7∙d

28

32

7∙d

35

42

a4,t

[mm]

9∙d

36

41

12∙d

60

72

a4,c

[mm]

7∙d

28

32

7∙d

35

42

a4,c

[mm]

7∙d

28

32

7∙d

35

42

screws inserted WITH pre-drilled hole

α=0°

F

F

α=90°

d1

[mm]

4

4,5

5

6

d1

[mm]

4

4,5

5

6

a1

[mm]

5∙d

20

23

5∙d

25

30

a1

[mm]

4∙d

16

18

4∙d

20

24

a2

[mm]

3∙d

12

14

3∙d

15

18

a2

[mm]

4∙d

16

18

4∙d

20

24

a3,t

[mm]

12∙d

48

54

12∙d

60

72

a3,t

[mm]

7∙d

28

32

7∙d

35

42

a3,c

[mm]

7∙d

28

32

7∙d

35

42

a3,c

[mm]

7∙d

28

32

7∙d

35

42

a4,t

[mm]

3∙d

12

14

3∙d

15

18

a4,t

[mm]

5∙d

20

23

7∙d

35

42

a4,c

[mm]

3∙d

12

14

3∙d

15

18

a4,c

[mm]

3∙d

12

14

3∙d

15

18

α = load-to-grain angle d = nominal screw diameter stressed end -90° < α < 90°

a2 a2 a1 a1

unloaded end 90° < α < 270°

F α

α F a3,t

stressed edge 0° < α < 180°

unload edge 180° < α < 360°

α F α

a4,t

F a4,c

a3,c

NOTES • The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030. • The minimum spacing for all steel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,7. • The minimum spacing for all panel-to-timber connections (a1 , a2) can be multiplied by a coefficient of 0,85. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii), the minimum spacing and distances parallel to the grain must be multiplied by a coefficient of 1.5.

350 | KKF AISI410 | DECKS AND FACADES

• The spacing a1 in the table for screws with 3 THORNS tip and d1≥5 mm inserted without pre-drilling hole in timber elements with density ρ k ≤ 420 kg/m3 and load-to-grain angle α=0° was assumed to be 10∙d based on experimental tests; alternatively, adopt 12∙d in accordance with EN 1995:2014. • For a row of n screws arranged parallel to the direction of the grain at a distance a1 , the characteristic effective shear bearing capacity Ref,V,k can be calculated by means of the effective number nef (see page 34).


STRUCTURAL VALUES

CHARACTERISTIC VALUES EN 1995:2014 SHEAR

timber-to-timber ε=90°

geometry

timber-to-timber ε=0°

TENSION panel-to-timber

thread withdrawal ε=90°

thread withdrawal ε=0°

head pull-through

Rax,90,k

Rax,0,k

Rhead,k

SPAN

A L b d1

d1

L

b

A

[mm] [mm] [mm] [mm]

4

4,5

5

6

RV,90,k

RV,0,k

SPAN [mm]

[kN]

[kN]

12

0,76

0,38

20

15

0,87

0,45

24

16

0,91

0,51

30

18

35 40

15

RV,k [kN]

[kN]

[kN]

[kN]

0,75

0,91

0,27

1,06

0,83

1,01

0,30

1,06

0,83

1,21

0,36

1,06

45

30

15

0,89

0,56

0,83

1,52

0,45

1,06

50

30

20

1,00

0,62

0,83

1,52

0,45

1,06

20

15

5

0,45

0,28

0,45

0,85

0,26

1,35

40

24

16

1,08

0,55

1,05

1,36

0,41

1,35

45

30

15

1,07

0,61

1,05

1,70

0,51

1,35

15

50

30

20

1,17

0,69

1,05

1,70

0,51

1,35

60

35

25

1,29

0,79

1,05

1,99

0,60

1,35

70

40

30

1,33

0,86

1,05

2,27

0,68

1,35

40

24

16

1,21

0,60

1,15

1,52

0,45

1,66

50

30

20

1,36

0,75

1,19

1,89

0,57

1,66

1,19

2,21

0,66

1,66

1,19

2,53

0,76

1,66

1,19

3,16

0,95

1,66

60

35

25

1,48

0,88

70

40

30

1,59

0,96

80

50

30

1,59

1,11

15

90

55

35

1,59

1,11

1,19

3,47

1,04

1,66

100

60

40

1,59

1,11

1,19

3,79

1,14

1,66

80

50

30

2,08

1,37

1,63

3,79

1,14

2,42

100

60

40

2,27

1,58

1,63

4,55

1,36

2,42

120

75

45

2,27

1,65

1,63

5,68

1,70

2,42

15

ε = screw-to-grain angle

GENERAL PRINCIPLES

NOTES

• Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.

• The characteristic timber-to-timber shear strengths were evaluated considering both an ε angle of 90° (RV,90,k) and 0° (RV,0,k) between the grains and the connector in the second element. • The characteristic panel-timber shear strengths were evaluated considering an angle ε of 90° between the grains and the connector in the timber element. • The characteristic thread withdrawal resistances were evaluated considering both an ε angle of 90° (Rax,90,k) and of 0° (Rax,0,k) between the grains and the connector. • For the calculation process a timber characteristic density ρk = 385 kg/m3 has been considered. For different ρk values, the strength on the table (timber-to-timber shear and tensile) can be converted by the kdens coefficient.

• Design values can be obtained from characteristic values as follows:

Rd =

Rk kmod γM

The coefficients γM and kmod should be taken according to the current regulations used for the calculation. • For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030. • Sizing and verification of the timber elements and panels must be done separately. • The screws must be positioned in accordance with the minimum distances. • The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained. • Shear strengths were calculated considering the threaded part fully inserted in the second element. • The characteristic panel-timber shear strengths are calculated considering an OSB3 or OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with thickness SPAN and density ρk = 500 kg/m3. • The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.

R’V,k = kdens,v RV,k R’ax,k = kdens,ax Rax,k R’head,k = kdens,ax Rhead,k ρk

[kg/m3 ]

350

380

385

405

425

430

440

C-GL

C24

C30

GL24h

GL26h

GL28h

GL30h

GL32h

kdens,v

0,90

0,98

1,00

1,02

1,05

1,05

1,07

kdens,ax

0,92

0,98

1,00

1,04

1,08

1,09

1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.

• The characteristic resistance to head pull-through was calculated using timber elements.

DECKS AND FACADES | KKF AISI410 | 351


KKA AISI410 SELF-DRILLING SCREW TIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM TIMBER-TO-ALUMINIUM Self-perforating timber-to-metal tip with special bleeder geometry. Ideal for fastening timber or WPC boards to aluminium substructures.

TIMBER-TO-TIMBER Also ideal for fastening timber or WPC boards to thin wooden substructures, they, too, made with wooden boards.

METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to aluminium substructures. Can be used to fix aluminium-aluminium overlaps.

OUTDOOR APPLICATIONS ON ACID WOOD AISI410 martensitic stainless steel. This stainless steels offers the highest mechanical performance compared to the other available stainless steels. Suitable for outdoor applications and on acid wood, but away from corrosive agents (chlorides, sulphides, etc.). BIT INCLUDED

DIAMETER [mm] KKA AISI410 3,5

4

5

8

LENGTH [mm] 20 20

50

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

C2

C3

C4

C5

WOOD CORROSIVITY KKA Ø4

T1

T2

T3

T4

T5

MATERIAL

410 AISI

AISI410 martensitic stainless steel

KKA Ø5

FIELDS OF USE Outdoor use. Wooden boards with density of < 880 kg/m3 on aluminium with a thickness of < 3.2 mm (without pre-drill).

352 | KKA AISI410 | DECKS AND FACADES


CODES AND DIMENSIONS L

b1

b2

A

s

[mm]

d1

[mm]

[mm]

[mm]

[mm]

[mm]

4 KKA420 TX 20

20

11,4

-

-

1 ÷ 2,5

200

L

b1

b2

A

s

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

40

15,5

11

29

2÷3

100

50

20,5

11

39

2÷3

100

d1

CODE

CODE

[mm] KKA540

5 TX 25 KKA550 s

pcs

thickness that can be drilled, steel plate S235/St37 thickness that can be drilled, aluminium plate

GEOMETRY KKA Ø4

KKA Ø5

s

A s

t1

d2 d 1

dk b L

s

t1

d 2 d1

dk

Lp

ds

b2

b1

Lp

L

Nominal diameter

d1

[mm]

4

5

Head diameter

dK

[mm]

6,30

6,80

Thread diameter

d2

[mm]

2,80

3,50

Shank diameter

dS

[mm]

-

4,35

Head thickness

t1

[mm]

3,10

3,35

Tip length

Lp

[mm]

5,5

6,5

ALU TERRACE Ideal for fastening timber or WPC boards, clips or angle brackets to aluminium substructures.

DECKS AND FACADES | KKA AISI410 | 353


KKA COLOR SELF-DRILLING SCREW FOR ALUMINIUM ALUMINIUM Self-perforating tip with special bleeder geometry. Ideal for fastening clips to aluminium substructures.

ORGANIC COLOURED COATING Black coloured anti-rust coating for outdoor use in service class 3 on non-acidic woods (T3). Concealed effect on dark substructures and clips.

METAL-TO-ALUMINIUM Short version ideal for fastening clips, plates and angle brackets to steel or aluminium substructures. Can be used to fix metal-metal overlaps.

BIT INCLUDED

DIAMETER [mm] KKA COLOR

3,5

4

5

8

LENGTH [mm] 20 20

40

320

SERVICE CLASS SC1

SC2

SC3

SC4

ATMOSPHERIC CORROSIVITY C1

KKAN Ø4x20

C2

C3

C4

C5

WOOD CORROSIVITY T1

T2

T3

T4

T5

MATERIAL KKAN Ø4x30 KKAN Ø4x40 KKAN Ø5x40

long insert included

ORGANIC COATING

carbon steel with coloured organic anti-rust coating

FIELDS OF USE Outdoor use. Aluminium thickness < 3.2 mm (without pre-drill).

354 | KKA COLOR | DECKS AND FACADES


CODES AND DIMENSIONS L

b

A

s

[mm]

d1

CODE

[mm]

[mm]

[mm]

[mm]

KKAN420 4 KKAN430 TX 20 KKAN440

20

10

-

2÷3

200

5 KKAN540 TX 25 s

pcs

30

20

22

2÷3

200

40

30

32

2÷3

200

40

29

29

2÷3

200

thickness that can be drilled, steel plate S235/St37 thickness that can be drilled, aluminium plate LONG BIT INCLUDED code TX2050

GEOMETRY s

A s

t1

t1 d2 d 1

dk b L

s d 2 d1

dk

Lp

b

Lp

L

KKAN Ø4x20

KKAN Ø4x30 - Ø4x40 - Ø5x40

Nominal diameter

d1

[mm]

4

5

Head diameter

dK

[mm]

6,30

6,80

Thread diameter

d2

[mm]

2,80

3,50

Head thickness

t1

[mm]

3,10

3,35

Tip length

Lp

[mm]

5,5

6,5

TVM COLOR Ideal for fastening standard Rothoblaas clips (TVMN) on aluminium. Long bit included in each package.

DECKS AND FACADES | KKA COLOR | 355


FLAT | FLIP CONNECTOR FOR DECKING INVISIBLE Completely hidden. The version in aluminium with black coating guarantees an attractive result; the galvanized steel version offers good performance at low cost.

FAST INSTALLATION Fast, easy installation thanks to the single-screw fastening and the integrated spacer-tab for precise spacing. Ideal for application with the PROFID spacer.

SYMMETRICAL GROOVING Makes it possible to install deck planks regardless of the position of the grooving (symmetrical). Ribbed surface provides high mechanical strength.

BOARDS 7 mm

7 mm

FASTENING ON FLAT timber

WPC

aluminium

MATERIAL

alu

aluminium with organic coloured coating

Zn

electrogalvanized carbon steel

FLIP ELECTRO PLATED

FIELDS OF USE Outdoor use. Fastening of timber or WPC boards with symmetrical milling on substructures in wood, WPC or aluminium.

356 | FLAT | FLIP | DECKS AND FACADES


CODES AND DIMENSIONS

alu

FLAT CODE

material

PxBxs

pcs

Zn

ELECTRO PLATED

FLIP CODE

material

PxBxs

[mm] FLAT

black alluminum

54 x 27 x 4

200

KKT COLOR

FLIP

zinc-plated steel

54 x 27 x 4

200

L

pcs

KKA COLOR

fastening on wood and WPC for FLAT and FLIP

d1 [mm] 5 TX 20

pcs

[mm]

fastening on aluminium for FLAT and FLIP

CODE

L [mm]

pcs

KKTN540

40

200

d1

CODE

[mm]

[mm] KKAN420

4 TX 20 5 TX 25

20

200

KKAN430

30

200

KKAN440

40

200

KKAN540

40

200

GEOMETRY FLAT

FLIP 2

4

2

8,5

27

8

45°

8,5

5

54

5

27

42°

8

Ø5,3

7

27

6

6

Ø5,3

27

27

B

s P

54

7

27

B

4

s P

WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using KKA COLOR screws (KKAN440).

DECKS AND FACADES | FLAT | FLIP | 357


GROOVING GEOMETRY FLAT

FLIP 7 F

PROFID

7 F

H KKTN

PROFID

SYMMETRICAL GROOVING

H

Min. thickness

F

4 mm

Min. recommended height H

H

free

KKTN

INSTALLATION 01

02

Position the PROFID spacer at the joist centerline. First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.

Insert the FLAT/FLIP fastener into the groove cut so that the spacer tab adheres to the board.

03

04

Position the next board by inserting it into the FLAT/FLIP fastener.

Using the CRAB MINI or CRAB MAXI clamp, tighten the two boards until the gap between them is 7 mm (see product page 395).

05

06

Fix the fastener to the joist underneath by using the KKTN screw.

Repeat the operations for the remaining boards. Last board: repeat step 01.

358 | FLAT | FLIP | DECKS AND FACADES


CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L

1m2/i/(L + f) = pcs of FLAT/FLIP at m2 i = battens spacing L = board width

i

f = gap width

PRACTICAL EXAMPLE NUMBER OF BOARDS AND BATTENS A=6m A=6m

PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm

140 mm 18 mm

s = 18 mm

=4 BB =4 mm

f = 7 mm BATTENS

68 mm

b = 68 mm h = 38 mm

38 mm

i= 0,6 m

0,6 m 0,6 m

0,6 m 0,6 m

0,54 m 0,54 m

no. boards

= [B/(L+f)]

= [4/(0,14+0,007)]= 27 boards

no. 4 m boards = 27 boards no. 2 m boards = 27 boards

27 boards 4 m

no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens

27 boards 2 m

SCREW SELECTION Screw head thickness

Sscrew head

Grooving thickness Grooving dimension

F H

PROFID thickness

SPROFID

Pull-through length

L pen

f BOARD BATTEN

F FLAT/FLIP

PROFID

PROFID

2,8 mm (s-F)/2

4 mm 7 mm 8 mm

4∙d

20 mm

MINIMUM SCREW LENGTH H KKTN

= Sscrew head + F + H + SPROFID + Lpen = 2,8 + 4 + 7 + 8 + 20 = 41,8 mm CHOICE OF SCREW

KKTN550

FLAT / FLIP NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA

QUANTITY FOR THE NUMBER OF INTERSECTIONS

I = S/i/(L + f) = pcs of FLAT/FLIP

I = No. boards with FLAT/FLIP no. battens = pcs. of FLAT/FLIP

I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs FLAT/FLIP

no. boards with FLAT/FLIP = (number of boards - 1) = (27 - 1) = 26 boards no. of battens = (A/i) + 1 = (6/0.6) + 1 = 11 battens

waste coefficient = 1,05 I = 272 ∙ 1,05 = 286 pcs FLAT/FLIP

no. intersections = I = 26 ∙ 11 = 286 pcs FLAT/FLIP

I = 286 pcs FLAT/FLIP

I = 286 pcs FLAT/FLIP

FLAT/FLIP NUMBER = 286 pcs

SCREWS NUMBER = No. FLAT/FLIP = 286 pcs KKTN550 DECKS AND FACADES | FLAT | FLIP | 359


SNAP CONNECTOR AND SPACER FOR DECKS VERSATILITY It can be used both as a concealed connector for boards and as a spacer between boards and battens. SNAP is developed to be used individually but also in combination. In this case, SNAPs have dual functionality as connector and spacer, for maximum efficiency and convenience.

MICRO VENTILATION When used as a spacer, SNAP prevents water stagnation thanks to the micro-ventilation created under the decking boards.

DURABILITY PP (glass fiber reinforced polypropylene) material provides excellent durability at an affordable price.

BOARDS 7 mm

7 mm

FASTENING ON

timber

WPC

aluminium

MATERIAL

PP

PP Reinforced polypropylene

FIELDS OF USE Outdoor use. Fastening of timber or WPC boards with symmetrical milling on substructures in wood, WPC or aluminium.

360 | SNAP | DECKS AND FACADES


CODES AND DIMENSIONS CODE

material

SNAP

polypropylene

PxBxs

f

Ø

[mm]

[mm]

[mm]

70 x 28 x 4

7

5,5

KKT COLOR

pcs 100

KKZ A2 | AISI304

fastening on timber

fastening on hardwood

d1 [mm]

CODE

L [mm]

pcs

5 TX 20

KKTN540( * )

43

200

KKTN550

53

200

d1

CODE

L

[mm]

pcs

[mm]

5 TX 25

(*) Full threaded screw.

KKZ550

50

200

KKZ560

60

200

CODE

L

pcs

KKZ EVO C5

d1 [mm]

CODE

L [mm]

pcs

5 TX 20

KKTM550

53

200

d1

KKTM560

60

200

[mm]

fastening on hardwood

[mm]

5 TX 25

KKZEVO550C5

50

200

KKZEVO560C5

60

200

GEOMETRY 29,5

7

29,5

11 10,5 28 7 F

s

7

Ø5,3

P

10,5 B

H

4

70

INSTALLATION VISIBLE FASTENER

7

CONCEALED FASTENER

7

7 F

GROOVING

H

7

Min. thickness

F

4 mm

Min. recommended height H

H

7 mm

7

DECK KIT SNAP, KKT screws, TERRA BAND UV tape and GRANULO or NAG batten support are the best products for building a strong and durable terrace quickly and economically.

DECKS AND FACADES | SNAP | 361


TVM CONNECTOR FOR DECKING FOUR VERSIONS Different sizes for applications on boards with different thickness and gaps of varying width. Black version for complete concealment.

DURABILITY The stainless steel ensures high corrosion-resistance. The micro-ventilation between the boards helps the durability of the wooden elements.

ASYMMETRIC GROOVING Ideal for boards with asymmetrical “female-female” groove cuts. Ribbing on the surface of the connector ensures excellent stability.

BOARDS 7-9 mm

7-9 mm

TVM1

FASTENING ON TVM2

timber

WPC

aluminium

MATERIAL TVM3

A2

A2 | AISI304 austenitic stainless steel (CRC II)

A2

stainless steel with coloured organic coating

AISI 304

AISI 304

TVMN4

FIELDS OF USE Use in aggressive outdoor environments. Fastening timber or WPC boards on substructures in wood, WPC or aluminium.

362 | TVM | DECKS AND FACADES


CODES AND DIMENSIONS

A2

TVM A2 | AISI304 CODE

material

PxBxs

AISI 304

TVM COLOR

pcs

CODE

A2

AISI 304

material

PxBxs

[mm] TVM1

A2 | AISI304

22,5 x 31 x 2,4

500

TVM2

A2 | AISI304

22,5 x 28 x 2,4

500

TVM3

A2 | AISI304

30 x 29.4 x 2.4

500

KKT X

L

5 TX 20

pcs

200

L

pcs

CODE

[mm]

20 25 30 40

200 200 200 100

KKA AISI410

5 TX 20

[mm] KKTN540

40

200

L

pcs

KKA COLOR

fastening on aluminium for TVM A2 | AISI304

d1

d1

[mm] KKTX520A4 KKTX525A4 KKTX530A4 KKTX540A4

23 x 36 x 2.4

fastening on timber and WPC for TVM COLOR

CODE

[mm]

A2 | AISI304 with black coating

TVMN4

KKT COLOR

fastening on timber and WPC for TVM A2 | AISI304

d1

pcs

[mm]

fastening on aluminium for TVM COLOR

CODE

L

[mm]

pcs

d1

[mm]

CODE

[mm]

4 TX 20

KKA420

20

200

5 TX 25

KKA540 KKA550

40 50

100 100

4 TX 20

[mm] KKAN420 KKAN430 KKAN440

20 30 40

200 200 200

GEOMETRY TVM1

TVM2 10

1,5

2,4 6,5 8

1,5

TVM3 10

12

1

2,4 8,1 9,6

31

B

P

B

29,4

TVM3

14,4

17 30

9,6

27,8

2,4 12

14

22,5 8

15 1

2,4 8,6 11

14

22,5

P

TVMN4 12

23 9,6

P

B

36

P

13

B

KKA Can also be used for fastening on aluminium profiles using KKA AISI410 or KKA COLOR screws.

DECKS AND FACADES | TVM | 363


GROOVING GEOMETRY 7

7 ASYMMETRICAL GROOVING

F

PROFID

H KKT

F H PROFID

KKT

Min. thickness

F

3 mm

Min recommended height TVM1

H

7 mm

Min recommended height TVM2

H

9 mm

Min recommended height TVM3

H

10 mm

Min. recommended height TVMN

H

13 mm

INSTALLATION 01

02

Position the PROFID spacer at the joist centerline. First board: fix with suitable screws which are left visible.

Insert the TVM fastener into the groove cut so that the side fin adheres to the groove in the board.

03

04

Position the next board by inserting it into the TVM fastener.

Using the CRAB MINI or CRAB MAXI clamp, tighten the two boards until the gap between them is 7 mm (see product page 395).

05

06

Fix the fastener to the batten underneath by using the KKT screw.

Repeat the operations for the remaining boards. Last board: repeat step 01.

364 | TVM | DECKS AND FACADES


CALCULATION EXAMPLE INCIDENCE ESTIMATE FORMULA PER m2 f L

1m2/i/(L + f) = pcs of TVM at m2 i = battens spacing L = board width

i

f = gap width

PRACTICAL EXAMPLE NUMBER OF BOARDS AND BATTENS A=6m A=6m

PATIO SURFACE S = A ∙ B = 6 m ∙ 4 m = 24 m2 WOODEN PLANKING L = 140 mm

140 mm =4 BB =4 mm

21 mm

s = 21 mm f = 7 mm

BATTENS

60 mm

b = 60 mm h = 30 mm

30 mm

i= 0,6 m

0,6 m 0,6 m

0,6 m 0,6 m

0,54 m 0,54 m

no. boards

= [B/(L+f)]

= [4/(0,14+0,007)]= 27 boards

no. 4 m boards = 27 boards no. 2 m boards = 27 boards

27 boards 4 m

no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens

27 boards 2 m

SCREW SELECTION Screw head thickness

Sscrew head

2,8 mm

Grooving thickness Grooving dimension

F H

4 mm 10 mm

PROFID thickness

SPROFID

8 mm

Pull-through length

L pen

f BOARD BATTEN

F TVM

PROFID

4∙d

20 mm

MINIMUM SCREW LENGTH H KKTX

PROFID

= Sscrew head + H + SPROFID + Lpen = 2,8 + 10 + 8 + 20 = 40,8 mm CHOICE OF SCREW

KKTX540A4

TVM NUMBER CALCULATION QUANTITY FOR INCIDENCE FORMULA

QUANTITY FOR THE NUMBER OF INTERSECTIONS

I = S/i/(L + f) = pcs of TVM

I = no. boards with TVM no. battens = pcs. of TVM

I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs TVM

no. boards with TVM = (number of boards - 1) = (27 - 1) = 26 boards no. of battens = (A/i) + 1 = (6/0.6) + 1 = 11 battens

waste coefficient = 1,05 I = 272 ∙ 1,05 = 286 pcs TVM

no. intersections = I = 26 ∙ 11 = 286 pcs TVM

I = 286 pcs TVM

I = 286 pcs TVM

TVM NUMBER = 286 pcs

SCREWS NUMBER = No. TVM = 286 pcs KKTX540A4 DECKS AND FACADES | TVM | 365


GAP CONNECTOR FOR DECKING TWO VERSIONS Available in A2 | AISI304 stainless steel for excellent corrosion strength (GAP3) or in galvanized carbon steel (GAP4) for good performance at a low cost.

NARROW JOINTS Ideal for making floors with narrow joints between boards (from 3,0 mm). Fastening is performed before the board is positioned.

WPC AND HARDWOODS Ideal for symmetrically grooved boards such as those in WPC or high-density wood.

BOARDS 2-5 mm

2-5 mm

GAP 3 FASTENING ON

timber

WPC

aluminium

MATERIAL

A2

A2 | AISI304 austenitic stainless steel (CRC II)

Zn

electrogalvanized carbon steel

AISI 304

GAP 4

ELECTRO PLATED

FIELDS OF USE Use in aggressive outdoor environments. Fastening timber or WPC boards on substructures in wood, WPC or aluminium.

366 | GAP | DECKS AND FACADES


CODES AND DIMENSIONS GAP 3 A2 | AISI304 CODE

material

PxBxs

GAP3

A2 | AISI304

40 x 30 x 11

Zn

AISI 304

A2

GAP 4

pcs

CODE

material

PxBxs

500

GAP4

zinc-plated steel

41,5 x 42,5 x 12

500

L

pcs

ELECTRO PLATED

[mm]

[mm]

SCI A2 | AISI304

HTS

fastening on timber and WPC for GAP 3

d1

fastening on timber and WPC for GAP 4

CODE

L

[mm]

pcs

d1

[mm]

3,5 TX 10

25

500

SCI3535

35

500

3,5 TX 15

[mm] HTS3525

25

1000

HTS3535

35

500

L

pcs

SBN

fastening on aluminium for GAP 3

fastening on aluminium for GAP 4

CODE

L

[mm]

pcs

d1

SBNA23525

25

CODE

[mm]

[mm]

3,5 TX 15

CODE

[mm]

SCI3525

SBN A2 | AISI304 d1

pcs

3,5 TX 15

1000

[mm] SBN3525

25

500

GEOMETRY GAP 3 A2 | AISI304

GAP 4 11

15 4

9,8 2

1 9,6 11,6 1

6,5

12

16

12 16

16

19

40

19

12

4

16

41,5

6,5

11

30

1,5 8,8 11,8 1,5

42,5

11,8

s s P

P

B

B

WOOD PLASTIC COMPOSITE (WPC) Ideal for fastening WPC boards. Can also be used for fastening on aluminium using SBN A2 | AISI304 screws.

DECKS AND FACADES | GAP | 367


GAP 3 GROOVE GEOMETRY SYMMETRICAL GROOVING F

H

Min. thickness

F

3 mm

Min. recommended height GAP 3

H

8 mm

SCI

GAP 3 INSTALLATION 01

02

First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.

Insert the GAP3 fastener into the groove cut so that the clip’s central tab adheres to the groove in the board.

03

04

Fix the screw in the central hole.

Position the next board by inserting it into the GAP3 fastener so that the two tabs adhere to the groove in the board.

05

06

Using the CRAB MINI clamp, tighten the two boards until the gap between them is 3 or 4 mm depending on aesthetic requirements (see product page 395).

Repeat the operations for the remaining boards. Last board: repeat step 01.

368 | GAP | DECKS AND FACADES


GAP 4 GROOVE GEOMETRY SYMMETRICAL GROOVING F

H

Min. thickness

F

3 mm

Min recommended height GAP 4

H

7 mm

HTS

GAP 4 INSTALLATION 01

02

First board: fix it with suitable screws, left visible or hidden thanks to specific accessories.

Insert the GAP4 fastener into the groove cut so that the clips’ central tab adheres to the groove in the board.

03

04

Secure the screws in the two available holes.

Position the next board by inserting it into the GAP4 fastener so that the two tabs adhere to the groove in the board.

05

06

Using the CRAB MINI clamp, tighten the two boards until the gap between them is 4-5 mm depending on aesthetic requirements (see product page 395).

Repeat the operations for the remaining boards. Last board: repeat step 01.

DECKS AND FACADES | GAP | 369


TERRALOCK CONNECTOR FOR DECKING INVISIBLE Completely concealed, guarantees a highly attractive result. Ideal for both decks and façades. Available in metal and plastic.

VENTILATION The micro-ventilation under the boards prevents water stagnation, ensuring excellent durability. The larger bearing surface ensures that the substructure is not crushed.

INGENIOUS Assembly stop for an accurate and simple installation of the fastener. Slotted holes to follow movements of the wood. Allows replacement of individual boards.

BOARDS 2-10 mm

2-10 mm

FASTENING ON

timber

WPC

aluminium

MATERIAL

Zn

ELECTRO PLATED

PA

carbon steel with coloured antirust coating

polyamide/brown nylon

FIELDS OF USE Outdoor use. Fastening of wooden or WPC boards on substructures in timber, WPC or aluminium. In the case of dimensionally unstable wood, the use of the metal version is recommended.

370 | TERRALOCK | DECKS AND FACADES


CODES AND DIMENSIONS TERRALOCK

TERRALOCK PP

CODE TER60ALU TER180ALU TER60ALUN TER180ALUN

material

PxBxs

zinc-plated steel zinc-plated steel zinc-plated steel, black zinc-plated steel, black

[mm] 60 x 20 x 8 180 x 20 x 8 60 x 20 x 8 180 x 20 x 8

pcs

CODE TER60PPM TER180PPM

100 50 100 50

material

PxBxs

pcs

brown nylon brown nylon

[mm] 60 x 20 x 8 180 x 20 x 8

100 50

In the case of dimensionally unstable wood, the use of the metal version is recommended.

Upon request also available in A2 | AISI304 stainless steel for quantities over 20.000 pcs. (code TER60A2 e TER180A2).

KKT A4 | AISI316/KKT COLOR

KKF AISI410

fastening on wood and WPC for TERRALOCK

d1 [mm]

CODE

L [mm] 20 25 30 40 40

KKTX520A4 KKTX525A4 KKTX530A4 KKTX540A4 KKTN540

5 TX 20

fastening on wood and WPC for TERRALOCK PP

pcs

d1 [mm]

200 200 200 100 200

4,5 TX 20

CODE

L [mm]

pcs

KKF4520

20

200

KKF4540

40

200

GEOMETRY TERRALOCK

TERRALOCK PP 5 8

5 8 60 45 15

180 165

20 5 20 20 15

3

5

15

5 10 5

5 20 15

85

5 8

5 8 60 45 15

85

5 10 5

180 165 20

5 20 20 15

10

5 10 5

5

B

5 10 5

85

20 15 board L min = 100 mm

20

board L min = 145 mm

P

5

85

board L min = 100 mm

s

15

s

s

P B

board L min = 145 mm

P

B

s

P B

TERRALOCK PP Version in plastic, ideal for creating patios near aquatic environments. Durability in time guaranteed by microventilation under the boards. Totally concealed fastening. In the case of dimensionally unstable wood, the use of the metal version is recommended.

DECKS AND FACADES | TERRALOCK | 371


CONNECTOR SELECTION TERRALOCK 60

TERRALOCK PP 60

A. TERRALOCK 60 fastener: 2pcs B. top screws: 4pcs C. bottom screws: 1pc.

A. TERRALOCK PP 60 fastener: 2pcs B. top screws: 4pcs C. bottom screws: 1pc.

B

C

L

L

B

B C

A

B

S

A

B

H

S B

H

L

top screw type

C C

L

minimum board bottom screw type thickness

B

minimum joist height

C

top screw type

minimum board bottom screw type thickness

B

KKTX 5 x 20

S > 21 mm

KKT 5 x 40

H > 40 mm

KKTX 5 x 25

S > 26 mm

KKT 5 x 50

H > 50 mm

KKTX 5 x 30

S > 31 mm

KKT 5 x 60

H > 60 mm

C

KKF 4,5 x 20

S > 19 mm

KKF 4,5 x 40

TERRALOCK 180

TERRALOCK PP 180

A. TERRALOCK 180 fastener: 1pc B. top screws: 2pcs C. bottom screws: 1pc.

A. TERRALOCK PP 180 fastener: 1 pc. B. top screws: 2pcs C. bottom screws: 1pc.

L

C

B C

A

C

B

C

S

A

S H

H

L

top screw type

H > 38 mm

L

B B

minimum joist height

L

minimum board bottom screw type thickness

B

minimum joist height

top screw type

KKF 4,5 x 20

C

B

KKTX 5 x 20

S > 21 mm

KKT 5 x 40

H > 40 mm

KKTX 5 x 25

S > 26 mm

KKT 5 x 50

H > 50 mm

KKTX 5 x 30

S > 31 mm

KKT 5 x 60

H > 60 mm

372 | TERRALOCK | DECKS AND FACADES

minimum board bottom screw type thickness

minimum joist height

C S > 19 mm

KKF 4,5 x 40

H > 38 mm


TERRALOCK 60 INSTALLATION 01

02

03

04

Position two connectors per each fixing node.

Turn the board over and slide it under the previously fastened board fixed to the sub-structure.

Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.

It is recommended to use STAR spacers inserted between the boards.

TERRALOCK 180 INSTALLATION 01

02

03

04

For each board arrange one fastener and fix it by means of two KKTX screws.

Turn the board over and slide it under the previously fastened board fixed to the sub-structure.

Fix each fastener to the sub-structure by inserting a KKTX screw in one of the two slotted holes.

It is recommended to use STAR spacers inserted between the boards.

CALCULATION EXAMPLE i = i = joist spacing|

L = board width

|

f = joint width

f

TERRALOCK 180

TERRALOCK 60

L

i = 0,60 m

i

|

L = 140 mm

|

f = 7 mm

i = 0,60 m

|

L = 140 mm

|

f = 7 mm

1m2 / i / (L + f) ∙ 2 = pcs at m2

1m2/i/(L + f) =pcs at m2

1m2/ 0,6 m / (0,14 m + 0,007 m) ∙ 2 = 23 pcs /m2 + 46 pcs. top screws type B/m2

1m2/ 0,6 m/(0,14 m + 0,007 m) = 12 pcs /m2 + 24 pcs. top screws type B/m2

+ 12 pcs. bottom screws type C/m2

+ 12 pcs. bottom screws type C/m2

DECKS WITH COMPLEX GEOMETRIES Thanks to its special geometric configuration, the TERRALOCK fastener allows to create decks with complex geometric layouts that will meet any aesthetic requirement. The two slotted holes and optimal positioning of the end stop allow for assembly on inclined substructures.

DECKS AND FACADES | TERRALOCK | 373


JFA ADJUSTABLE SUPPORT FOR DECKS LEVELLING The height-adjustable support can easily adapt to variations in substrate level. The rise also allows for ventilation under the joists.

DOUBLE REGULATION Can be adjusted both from below, with a SW 10 wrench, or from above, using a flat-tip screwdriver. Fast, convenient, versatile system.

SUPPORT The TPV plastic support base reduces the noise produced by footsteps and is UV-resistant. The ball-joint can adapt to uneven surfaces.

HEIGHT

R

can be adjusted from above and below

USE

MATERIAL

Zn

ELECTRO PLATED

electrogalvanized carbon steel

FIELDS OF USE Raising and levelling of the substructure.

374 | JFA | DECKS AND FACADES


CODES AND DIMENSIONS CODE

screw Ø x L

R

pcs

[mm]

[mm]

JFA840

8 x 40

25≤ R≤ 40

100

JFA860

8 x 60

25≤ R≤ 57

100

JFA880

8 x 80

25≤ R≤ 77

100

GEOMETRY 16 19

H SW 10

R 14

25 50

57

L

20 Ø8

57

57

77

77

77

40

40

40

25

25

25

25

25

25

25

25

25

0

0 0 JFA840

0

0

0 0 JFA860

0

0

57

57

57

25

25

25

JFA880

TECHNICAL DATA CODE Screw Ø x L Assembly height

R

JFA840

JFA860

JFA880

[mm]

8 x 40

8 x 60

8 x 80

[mm]

25 ≤ R ≤ 40

25 ≤ R ≤ 57

25 ≤ R ≤ 77

+/- 5°

+/- 5°

+/- 5°

Ø10

Ø10

Ø10

Angle Pre-drill for bush

[mm]

Adjustment nut

SW 10

SW 10

SW 10

Total height

H

[mm]

51

71

91

Admissible capacity

Fadm

kN

0,8

0,8

0,8

UNEVEN SURFACES The adjustment from top and bottom allows for the most precise installation of decks on uneven surfaces.

DECKS AND FACADES | JFA | 375


JFA INSTALLATION WITH ADJUSTMENT FROM BELOW

01

02

03

04

Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter hole.

The depth of the pre-drill depends on the assembly height R and must be at least 16 mm (bushing size).

Use a hammer to insert the bushing.

Screw the support into the bushing and turn the joist.

Detail of adjustment from below.

Follow the course of the ground by acting independently on the individual supports.

H 05

06

Place the joist on the substrate, parallel to the one previously laid.

Adjust the height of the support from the bottom using a 10 mm SW wrench.

JFA INSTALLATION WITH ADJUSTMENT FROM ABOVE

01

02

03

04

Trace the joist midline, indicating the position of the holes and then pre-drill a 10 mm diameter through hole.

We recommend a maximum of 60 cm between supports, to be checked according to depending on the load.

Use a hammer to insert the bushing.

Screw the support into the bushing and turn the joist.

05

06

Place the joist on the substrate, parallel to the one previously laid.

Adjust the height of the support from above using a flat screwdriver.

Detail of adjustment from above.

Follow the course of the ground by acting independently on the individual supports.

H

376 | JFA | DECKS AND FACADES


CALCULATION EXAMPLE The number of supports per m2 is to be evaluated according to the load magnitude and the joist spacing.

INCIDENCE OF SUPPORTS ON SURFACE (I): q = load [kN/m2]

I = q/Fadm = pcs of JFA at m2

Fadm = admissible JFA capacity [kN]

MAXIMUM DISTANCE BETWEEN SUPPORTS (a): a

amax, JFA

a=

min

with:

amax, JFA = 1/pcs/m2/i

i

amax, batten

3

i = between battens spacing

E ∙ J ∙384

amax, batten =

flim ∙ 5 ∙ q ∙ i

flim = instantaneous strain limit between supports E = material elastic modulus J = joist section inertia modulus

PRACTICAL EXAMPLE PROJECT DATA A=6m

PATIO SURFACE S = A x B = 6 m x 4 m = 24 m2 BATTENS 50 mm

b = 50 mm h = 30 mm

B=4m

30 mm

i= 0,50 m

LOADS

0,50 m

Overload Category of use: category A (balconies) (EN 1991-1-1)

q

Admissible JFA support capacity

Fadm

Joist material

4,00 kN/m2

0.80 kN

C20 (EN 338:2016)

Limit for instantaneous deflection between supports

flim

a/400

-

Material elastic moment

E0,mean

Moment of joist section inertia

J

(b ∙ h3)/12

112500 mm4

Maximum joist deflection

fmax

(5/384) ∙ (q ∙ i ∙ a4)/(E ∙ J)

-

9,5 kN/mm2

JFA NUMBER CALCULATION INCIDENCE

NUMBER OF JFA SUPPORTS

I = q/Fadm = pcs of JFA at m2

n = I ∙ S ∙ waste coeff. = pcs. of JFA

I = 4,0 kN/m2/0,8 kN = 5,00 pcs/m2

n = 5,00 pcs/m2 ∙ 24 m2 ∙ 1,05 = 126 pcs of JFA waste coefficient = 1,05

CALCULATION OF MAXIMUM DISTANCE BETWEEN SUPPORTS SUPPORT STRENGTH LIMIT

JOIST FLEXURAL LIMIT 3

flim = fmax therefore:

3

amax, batten =

E ∙ J ∙384

amax, JFA = 1/n/i

400 ∙ 5 ∙ q ∙ i

amax, JFA = 1/5,00/0,5 = 0,40 m

9,5 ∙ 112500 ∙ 384

amax, batten =

∙ 10-3 = 0,47 m

400 ∙ 5 ∙ (4,0 ∙ 10-6) ∙ 500

a = min

amax, JFA

= min amax, batten

0,40 m 0,47 m

= 0,40 m

maximum distance between JFA supports

DECKS AND FACADES | JFA | 377


SUPPORT ADJUSTABLE SUPPORT FOR DECKS THREE VERSIONS The Small version (SUP-S) can be raised by up to 37 mm, the Medium version (SUP-M) by up to 220 mm and the Large version (SUP-L) by up to 1025 mm. All versions are adjustable in height.

STRENGTH Sturdy system suitable for heavy loads. The Small (SUP-S) and Medium (SUP-M) versions can handle up to 400 kg. The Large version (SUP-L) can handle up to 1000 kg.

COMPATIBLE All versions can be combined with a special head to facilitate lateral or upper fastening to the batten, which may be made of either timber or aluminium. A tile adapter is also available on request.

NEW “ALL IN ONE” SUP-L It features not only excellent adjustability and load-bearing capacity, but also versatile, self-levelling heads that can automatically correct the slope of uneven installation surfaces by up to 5%; thanks to the SUPLKEY key, it can be adjusted from above for maximum stability in tile flooring systems.

USE

MATERIAL

PP

polypropylene (PP)

FIELDS OF USE Substructure raising and levelling. Outdoor use.

378 | SUPPORT | DECKS AND FACADES


DURABILITY UV-resistant and suitable also for aggressive environment conditions. Ideal in combination with ALU TERRACE and KKA screws to create a system with excellent durability.

ADJUSTMENT FROM TOP Thanks to the SUPLKEY key, it is adjustable from the top for maximum stability in tile flooring systems.

DECKS AND FACADES | SUPPORT | 379


CODES AND DIMENSIONS - SUP-S Ø H

1

2

CODE 1

Ø

H

[mm]

[mm]

pcs

SUPS2230

150

22 - 30

20

2 SUPS2840

150

28 - 40

20

Ø1

pcs

INTERLOCKING HEAD FOR SUP-S Ø1

Ø

1 CODE 1

Ø

SUPSLHEAD1

[mm]

[mm]

70

3 x 14

20

CODES AND DIMENSIONS - SUP-M Ø

H

H

H

Ø

Ø

H

1

Ø

H

Ø

H

Ø

Ø

H

2

3

4

CODE 1

5

6

7

Ø

H

[mm]

[mm]

pcs

SUPM3550

200

35 - 50

25

2 SUPM5070

200

50 - 70

25

3 SUPM65100

200

65 - 100

25

4 SUPM95130

200

95 - 130

25

5 SUPM125160

200

125 - 160

25

6 SUPM155190

200

155 - 190

25

7 SUPM185220

200

185 - 220

25

INTERLOCKING HEAD FOR SUP-M Ø

Ø1

EXTENSIONS AND SLOPE ADAPTERS FOR SUP-M 1

h

2

Ø

Ø

3

Ø

4

H 1

2

B

P

1%

CODE 1

SUPMHEAD1

2 SUPMHEAD2

BxPxH

Ø

Ø1

[mm]

[mm]

[mm]

-

120

-

25

1

SUPMEXT30

120 x 90 x 30

-

3 x 14

25

380 | SUPPORT | DECKS AND FACADES

pcs

CODE

2%

3%

H

Ø

pcs

[mm]

[mm]

%

30

-

-

25

2 SUPCORRECT1

-

200

1

20

3 SUPCORRECT2

-

200

2

20

4 SUPCORRECT3

-

200

3

20


CODES AND DIMENSIONS - SUP-L

1

2

3

4

CODE

Ø

H

[mm]

[mm]

pcs

37 - 50

20

1

SUPL3750( * )

200

2

SUPL5075( * )

200

50 - 75

20

3 SUPL75125( * )

200

75 - 125

20

4 SUPL125225

200

125 - 225

20

5 SUPL225325

200

225 - 325

20

6 SUPL325425

200

325 - 425

20

7 SUPL425525

200

425 - 525

20

8 SUPL525625

200

525 - 625

20

9 SUPL625725

200

625 - 725

20

10 SUPL725825

200

725 - 825

20

11 SUPL825925

200

825 - 925

20

12 SUPL9251025

200

925 - 1025

20

(*) SUPLEXT100 extension not usable.

Head to be ordered separately. Codes 5-12 consist of the product SUPL125225 and of a number of SUPLEXT100 extensions to reach the indicated height range.

INTERLOCKING HEADS FOR SUP-L Ø1

Ø1

Ø

P

B

B

P 2

1

3

application

BxP

Ø

[mm]

[mm]

[mm]

SUPLHEAD1

timber/aluminium battens

70 x 110

-

3 x 14

20

2 SUPLHEAD2

timber/aluminium battens

60 x 40

-

-

20

3 SUPLHEAD3

tiles

-

120

-

20

CODE 1

ACCESSORIES FOR SUP-L

2

2

Ø

Ø

3

CODE

description

pcs

SUPLRING1

stem lock ring

20

1

SUPLEXT100

2 SUPLKEY

key for adjustment from the top

1

3 SUPLRING2

rotation lock ring

5

SUPLKEY and SUPLRING2 only compatible with SUPLHEAD3 heads. SUPLRING1 and SUPLRING2 are supplied together with the heads.

Ø

4

H

3

1%

1

pcs

EXTENSIONS AND SLOPE ADAPTERS FOR SUP-L 1

1

Ø1

CODE

2%

3%

H

Ø

pcs

[mm]

[mm]

%

100

-

-

20

2 SUPCORRECT1

-

200

1

20

3 SUPCORRECT2

-

200

2

20

4 SUPCORRECT3

-

200

3

20

DECKS AND FACADES | SUPPORT | 381


INSTALLATION OF SUP-S WITH SUPSLHEAD1 1

2

3

4

KF

K

KF

X

K

X

F

KK

X

F

KK

X

Fit the head SUPSLHEAD1 on the SUP-S and fix the batten with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-M WITH SUPMHEAD2 1

2

3

4

KF

K

X

F

KK

X

F

KK

X

Fit the head SUPMHEAD2 on the SUP-M and fix the batten laterally with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-M WITH SUPMHEAD1 3

4

X

K

KF

K

X

2

KF

1

Fit the head SUPMHEAD1 on the SUP-M and fix the batten with KKF 4,5 mm diameter screws.

INSTALLATION OF SUP-L WITH SUPLHEAD1 1

2

3

4

F

KK

X

F

KK

X

F

KK

X

F

KK

X

H

Fit the head SUPLHEAD1 on the SUP-L, adjust the height of the base as needed and fix the batten laterally with 4,5 mm diameter KKF screws. The tilting head allows self-levelling during installation for slopes of up to 5%.

382 | SUPPORT | DECKS AND FACADES


INSTALLATION OF SUP-L WITH SUPLHEAD1 AND SUPLRING1 1

2

3

4

F

KK

X

F

KK

X

F

KK

X

F

KK

X

H

If provided, add the SUPLEXT100 extension to the SUP-L support and then fit the SUPLHEAD1 head. To lock the tilting of the self-levelling head, secure it with SUPLRING1. Adjust the height of the base as needed and fix the batten laterally with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-L WITH SUPLHEAD2 AND SUPLRING1 1

2

3

4

60 - 40 mm

H

If provided, add the SUPLEXT100 extensions to the SUP-L support and then fir the SUPLHEAD2 head. To lock the tilting of the self-levelling head, secure it with SUPLRING1. Adjust the height as required and place the batten inside the fins.

DECKS AND FACADES | SUPPORT | 383


INSTALLATION OF SUP-L WITH SUPLHEAD3 HEAD | HEIGHT ADJUSTMENT FROM TOP 1

3

2

4 360°

H

Fit the SUPLHEAD3 head on SUP-L. Adjust the height of the support using SUPLKEY. Place the tiles on the supports. Level the floor by adjusting the height of the supports from the top with SUPLKEY without having to remove the tiles already installed. The tilting head allows self-levelling during installation for slopes of up to 5%.

INSTALLATION OF SUP-L WITH SUPLHEAD3 HEAD | HEIGHT ADJUSTMENT FROM BOTTOM 1

2

3

4

If provided, add the SUPLEXT100 extension to the SUP-L support and then fit the SUPLHEAD3 head. To lock the tilting of the self-levelling head, secure it with SUPLRING1. Position the SUPLRING2. Adjust the height as required and position the flooring.

CODES AND DIMENSIONS - FASTENING KKF AISI410 d1 [mm] KF

K

X F

KK

X

4,5 TX 20

384 | SUPPORT | DECKS AND FACADES

CODE

L [mm]

pcs

KKF4520

20

200

KKF4540

40

200

KKF4545

45

200

KKF4550

50

200

KKF4560

60

200

KKF4570

70

200


RECOMMENDATIONS FOR INSTALLATION

DECKS AND FACADES | SUPPORT | 385


ALU TERRACE ALUMINIUM PROFILE FOR PATIOS TWO VERSIONS ALUTERRA30 version for standard loads. ALUTERRA50 version, in black, for very high loads; can be used on both sides.

SUPPORT EVERY 1.10 m ALUTERRA50 designed with a very high inertia so that the SUPPORTS can be positioned every 1,10 m (along the profile midline), even with high loads (4,0 kN/m2).

DURABILITY The substructure made of aluminium profiles guarantees excellent patio durability. The drainage channel allows water to run off and generates effective micro-ventilation.

SECTIONS [mm]

50

30 53

60

SERVICE CLASS SC1

SC2

SC3

SC4

MATERIAL

alu

aluminium

alu

class 15 anodised aluminium in graphite black

FIELDS OF USE Patio substructure. Outdoor use.

386 | ALU TERRACE | DECKS AND FACADES


DISTANCE 1.10 m With an inter-profile distance of 80 cm (load: 4.0 kN/m2), the SUPPORTS can be spaced 1,10 m apart and placed along the ALUTERRACE50 midline.

COMPLETE SYSTEM Ideal for use in combination with SUPPORT, fixed laterally with KKA screws. System with excellent durability.

DECKS AND FACADES | ALU TERRACE | 387


Stabilization of ALUTERRA50 with stainless steel plates and KKA screws.

Aluminium substructure made with ALUTERRA30 and resting on GRANULO PAD

ACCESSORY CODES AND DIMENSIONS s s P

M P

s M M

s H

P

H M

P

LBVI15100 CODE

WHOI1540 pcs

CODE

-

50

40

50

s

M

P

H

[mm]

[mm]

[mm]

[mm]

A2 | AISI304

1,75

15

100

WHOI1540 A2 | AISI304

1,75

15

40

LBVI15100

material

FLIP

KKA AISI410

FLAT material

pcs

FLAT

black alluminum

200

FLIP

zinc-plated steel

200

KKA COLOR d1

CODE

[mm] 4 TX 20 5 TX 25

L

pcs

[mm] KKA420

20

200

KKA540

40

100

KKA550

50

100

388 | ALU TERRACE | DECKS AND FACADES

d1

CODE

[mm] 4 TX 20 5 TX 25

L

pcs

[mm] KKAN420

20

200

KKAN430

30

200

KKAN440

40

200

KKAN540

40

200


GEOMETRY

12 5

43

36 5

5 18,5 11,5

30

12

12 43

19 5

36

12

s

19

15,5 5018,5 H 30 15,5 11,5

P

53

60

s

15,5 50

53 B

MH

P

15,5 60

ALU TERRACE 30

B

ALU TERRACE 50

CODES AND DIMENSIONS CODE ALUTERRA30

s

B

P

H

[mm]

[mm]

[mm]

[mm]

1,8

53

2200

30

pcs

CODE

1

ALUTERRA50

s

B

P

H

[mm]

[mm]

[mm]

[mm]

2,5

60

2200

50

pcs 1

NOTES: upon request, P= 3000 mm version is available.

EXAMPLE OF FASTENING WITH SCREWS AND ALUTERRA30 01

02

03

04

Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.

Fix the ALU TERRACE with 4,0 mm diameter KKAN.

Fix the wooden or WPC boards directly on the ALU TERRACE with 5,0 mm diameter KKA screws.

Repeat the operations for the remaining boards.

EXAMPLE OF FASTENING WITH CLIP AND ALUTERRA50 01

02

03

04

Place the ALU TERRACE on the SUP-S fit with head SUPSLHEAD1.

Fix the ALU TERRACE with 4,0 mm diameter KKAN.

Fix the boards using FLAT concealed clips and 4,0 mm diameter KKAN screws.

Repeat the operations for the remaining boards.

DECKS AND FACADES | ALU TERRACE | 389


EXAMPLE PLACEMENT ON GRANULO PAD 01

02

Several ALUTERRA30 units can be connected lengthwise using stainless steel plates. Connection is optional.

Line up the ends of 2 aluminium profiles.

03

04

Place the LBVI15100 stainless steel plate on the aluminium profiles and fix with 4,0 x 20 KKA screws.

Do this on both sides to maximize stability.

EXAMPLE PLACEMENT ON SUPPORT 01

02

KF

K

KF

X

K

X

Several ALUTERRA50 units can be connected lengthwise using stainless steel plates. Connection is optional if the joint coincides with placement on the SUPPORT.

Connect the aluminium profiles with KKAN screws (diameter: 4,0 mm) and place 2 aluminium profiles end to end.

03

04

Place the LBVI15100 stainless steel plate on the lateral holes in the aluminium profiles and fix with 4,0 x 20 KKA screws or KKAN 4,0 mm diameter.

Do this on both sides to maximize stability.

390 | ALU TERRACE | DECKS AND FACADES


MAXIMUM DISTANCE BETWEEN SUPPORTS (a) ALU TERRACE 30 ALU TERRACE 30 SUPPORT

a

i

i = battens spacing

a

a = distance between supports i

OPERATING LOAD

a [m]

[kN/m2]

i=0,4 m

i=0,45 m

i=0,5 m

i=0,55 m

i=0,6 m

i=0,7 m

i=0,8 m

i=0,9 m

i=1,0 m

2,0

0,77

0,74

0,71

0,69

0,67

0,64

0,61

0,59

0,57

3,0

0,67

0,65

0,62

0,60

0,59

0,56

0,53

0,51

0,49

4,0

0,61

0,59

0,57

0,55

0,53

0,51

0,48

0,47

0,45

5,0

0,57

0,54

0,53

0,51

0,49

0,47

0,45

0,43

0,42

ALU TERRACE 50 ALU TERRACE 50 SUPPORT

a

i

i = battens spacing

a

a = distance between supports i

OPERATING LOAD

a [m]

[kN/m2]

i=0,4 m

i=0,45 m

i=0,5 m

i=0,55 m

i=0,6 m

i=0,7 m

i=0,8 m

i=0,9 m

i=1,0 m

2,0

1,70

1,64

1,58

1,53

1,49

1,41

1,35

1,30

1,25

3,0

1,49

1,43

1,38

1,34

1,30

1,23

1,18

1,14

1,10

4,0

1,35

1,30

1,25

1,22

1,18

1,12

1,07

1,03

1,00

5,0

1,25

1,21

1,16

1,13

1,10

1,04

1,00

0,96

0,92

NOTES • Example with limit deformation L/300; • Useful load according to EN 1991-1-1: - Category A areas = 2,0 ÷ 4,0 kN /m²; - Areas susceptible to category C2 crowding = 3,0 ÷ 4.0 kN/m²; - Areas susceptible to category C3 crowding = 3,0 ÷ 5,0 kN/m²;

The calculation was performed considering, for safety purposes, the static diagram of a single-span beam in simple support loaded with a uniformly distributed load.

DECKS AND FACADES | ALU TERRACE | 391


GROUND COVER ANTI-VEGETATION TARP FOR SUBSTRATES PERMEABLE The anti-vegetation tarp prevents the growth of grasses and roots, protecting the patio substructure from the ground. Permeable to water, allowing it to flow off.

STRONG The polypropylene non-woven fabric (50 g/m 2) effectively separates the patio substructure from the ground. Dimensions optimised for patios (1,6 m x 10 m).

CODE COVER50

material NWF

g/m2 50

HxL

A

[m]

[m2]

1.6 x 10

16

pcs 1

NAG LEVELING PAD OVERLAPPABLE Available in 3 thicknesses (2,0, 3,0 and 5,0 mm), can also be overlapped to obtain different thicknesses and thus effectively level the patio substructure.

DURABILITY The EPDM material guarantees excellent durability, is not subject to sagging in time and does not suffer from exposure to sunlight.

CODE

BxLxs

density

shore

pcs

65

50

[mm]

[kg/m3]

NAG60602

60 x 60 x 2

1220

NAG60603

60 x 60 x 3

1220

65

30

NAG60605

60 x 60 x 5

1220

65

20

Operating temperature -35°C | +90°C.

392 | GROUND COVER |  | DECKS AND FACADES


GRANULO GRANULAR RUBBER SUBSTRATE THREE FORMATS Available in sheet (GRANULOMAT 1,25 x 10 m), roll (GRANULOROLL and GRANULO100) or pad (GRANULOPAD 8 x 8 cm). Extremely versatile thanks to the variety of formats.

GRAINY RUBBER Made of granules of recycled rubber thermal-bonded with polyurethane. Resistant to chemical interactions, maintains its characteristics in time and is 100% recyclable.

ANTI-VIBRATION The thermal-bonded rubber granules dampen vibrations, thus insulating the noise produced by footsteps. Also ideal as a wall barrier and resilient strip for acoustic separation.

GRANULO PAD

GRANULO ROLL GRANULO MATT CODE

B

L

s

[mm]

[m]

[mm]

pcs

GRANULO100

100

15

4

1

GRANULOPAD

80

0,08

10

20

GRANULOROLL

80

5

8

1

GRANULOMAT110

1000

10

6

1

MATERIAL

rubber granules thermo-bound with PU

s: thickness | B: base| L: length

FIELDS OF USE Substrate for substructures in wood, aluminium, WPC and PVC. Outdoor use. Suitable for service classes 1-2-3.

DECKS AND FACADES | GRANULO | 393


TERRA BAND UV BUTYL ADHESIVE TAPE

CODE

s

B

L

pcs

[mm]

[mm]

[m]

TERRAUV75

0,8

75

10

1

TERRAUV100

0,8

100

10

1

TERRAUV200

0,8

200

10

1

s: thickness | B: base| L: length

PROFID SPACER PROFILE

CODE PROFID

s

B

L

density

[mm]

[mm]

[m]

kg/m3

8

8

40

1220

shore

pcs

65

8

s: thickness | B: base| L: length

STAR STAR FOR DISTANCES

CODE

thickness

STAR

4,5,6,7,8

pcs

[mm] 4

BROAD COUNTERBORE CUTTER FOR KKT, KKZ, KKA

CODE BROAD1 BROAD2

Øbit [mm] 4 6

Øcounterbore cutter [mm] 6,5 9,5

Lbit [mm] 41 105

394 | TERRA BAND UV | DECKS AND FACADES

TL [mm] 75 150

pcs 1 1


CRAB MINI ONE-HANDED TERRACE CLAMP

CODE

opening

compression

[mm]

[kg]

CRABMINI

263 - 415

max. 200

pcs 1

CRAB MAXI BOARD CLAMP, LARGE MODEL CODE

opening [mm] 200 - 770

CRABMAXI CODE

pcs 1

thickness [mm] 6,0 8,0 10,0

CRABDIST6 CRABDIST8 CRABDIST10

pcs 10 10 10

SHIM LEVELLING WEDGES

CODE

colour

SHBLUE SHBLACK SHRED SHWHITE SHYELLOW

blue black red white yellow

B [mm] 22 22 22 22 22

L [mm] 100 100 100 100 100

s [mm] 1 2 3 4 5

pcs

L [mm] 160 160 160 160 160

s [mm] 2 3 5 10 15

250 250 250 100 100

160

see above

80

500 500 500 500 500

SHIM LARGE LEVELLING WEDGES CODE

colour

LSHRED LSHGREEN LSHBLUE LSHWHITE LSHYELLOW

red green blue white yellow

B [mm] 50 50 50 50 50

LSHMIX

mix(*)

50

pcs

* 20 pcs. red, 20 pcs. green. 20 pcs. blue, 10 pcs. white, 10 pcs. yellow.

( )

DECKS AND FACADES | SHIM | 395


THERMOWASHER WASHER TO FASTEN INSULATION TO TIMBER CE FASTENING WITH HBS SCREWS The thermowasher is intended for use with screws with the CE marking in accordance with ETA. Ideal for Ø6 or Ø8 HBS screws, with lengths based on the thickness of the insulation to be fastened.

ANTI-THERMAL BRIDGE Incorporated hole cover to avoid thermal bridges. Large cable spaces for proper plaster adhesion. Has a system that prevents the screw from pulling out.

SERVICE CLASS SC1

CODES AND DIMENSIONS CODE THERMO65

SC2

SC3

SC4

MATERIAL

dSCREW

dHEAD

thickness

depth

[mm]

[mm]

[mm]

[mm]

6÷8

65

4

20

pcs

PP

Propylene (PP) system

700

FIELDS OF USE The propylene washer with an external diameter of 65 mm is compatible with 6 and 8 mm screw diameters. Suitable for all types of insulation and all fixture thicknesses.

396 | THERMOWASHER | DECKS AND FACADES


ISULFIX

ETA

ANCHOR FOR FASTENING INSULATION TO BRICKWORK CERTIFIED Anchor with the CE mark in accordance with ETA, with certified resistance values. Double expansion with preassembled steel nails allows for fast versatile fastening on concrete and brickwork.

DOUBLE EXPANSION Ø8 PVC double expansion anchor with preassembled steel nails, for fastening to concrete and brickwork. Can be used, with an additional washer, on particularly soft insulating materials.

ISULFIX90

additional washer

CODES AND DIMENSIONS CODE

dHEAD

L

dHOLE

A

[mm]

[mm]

[mm]

[mm] 80

250

60

150

8

120

150

160

100

ISULFIX8110 ISULFIX8150

110

ISULFIX8190

190

pcs

SERVICE CLASS SC1

SC2

SC3

SC4

A= maximum fastening thickness

CODE

dHEAD

description

pcs

additional washer for soft insulation

250

[mm] ISULFIX90

90

MATERIAL

PVC

PVC system with carbon steel nail

FIELDS OF USE Anchor available in various measurements for different insulation thicknesses; can be used with an additional washer for use with soft insulation; method of use and certified laying possibilities indicated in the relative ETA document.

DECKS AND FACADES | ISULFIX | 397


WRAF CONNECTOR FOR TIMBER-INSULATING LAYER-CEMENT WALLS TIMBER-INSULATING LAYER-CEMENT ENVELOPE Designed for binding the cement finishing layer with the timber substructure of prefabricated timber-insulating layer-cement envelope walls.

REDUCED CEMENT LAYER The omega shape of the connector allows the screw head to fit flush with the reinforcement of the cement layer without protruding, even in small thickness (up to 20 mm), and allows the screw to be applied at an angle of 0° to 45° to take full advantage of the screw thread withdrawal resistance.

LIFTING OF PREFABRICATED WALLS Allowing the reduction of the cement finishing layer also results in a reduction of the layer's weight, thus returning the centre of gravity of the weight to the timber during handling and transport of the prefabricated walls.

WRAF

MATERIAL

A2

A2 | AISI304 austenitic stainless steel (CRC II)

PP

polypropylene

AISI 304

WRAFPP

FIELDS OF USE • • • •

lightweight frame substructures timber, LVL, CLT, NLT based panel substructures hard and soft insulation layer cement-based finishing layers (plaster, concrete, lightweight concrete, etc.) • metal reinforcements (electrowelded mesh) • plastic reinforcements

398 | WRAF | DECKS AND FACADES


CODES AND DIMENSIONS

GEOMETRY 65 1,5

5,5 WRAF

WRAFPP

CODE

9

material

5

pcs 21

13 WRAF

A2 | AISI304

50

WRAFPP

polypropylene

50

INSTALLATION PARAMETERS A

FINISH

plaster, concrete, lightweight concrete, cement mortar

spl,min

[mm]

20

minimum thickness

B

GRID

Ø2 mm steel

M

[mm]

20 ÷ 30

mesh size

C

INSULATION LAYER

continuous insulation (soft or rigid)

sin,max

[mm]

400

thickness

D

SUBSTRUCTURE

solid timber, glulam, CLT, LVL

lef,min

[mm]

4∙d1

minimum penetration length

E

SCREWS

HBS, HBS EVO, SCI

d1

[mm]

6÷8

diameter

spl

M M

sin d1 lef

XXX

HBS

A

0-45° B

D C

XXX

HBS

E

NOTE: The number and position of the fastening systems depends on the design of the surface, the kind of insulator and acting load.

INSTALLATION SUGGESTIONS 1

Place the mesh for the surface finishing layer on top of the insulation, spacing it with the appropriate supports.

2

3

4

Apply the WRAF washers according to the defined arrangement, hooking it onto the net.

Fasten WRAF washers with screws to the substructure.

Apply the finishing coat to the wall.

DECKS AND FACADES | WRAF | 399


COMPLEMENTARY PRODUCTS


COMPLEMENTARY PRODUCTS A 12

WASP

CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

HOOK FOR TIMBER ELEMENTS TRANSPORT. . . . . . . . . . . . . . . . 413

A 18 | ASB 18

RAPTOR

CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

TRANSPORT PLATE FOR TIMBER ELEMENTS . . . . . . . . . . . . . . . . 413

KMR 3373 AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

LEWIS

KMR 3372 AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

DRILL BITS FOR DEEP DRILLING IN EUROPEAN SOFT AND HARDWOODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

KMR 3352

SNAIL HSS

SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 404

KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 404

KMR 3371

TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS. . . . . . . . 415

SNAIL PULSE CARBIDE DRILL BIT IN HM WITH SDS DRILL CHUCK SHANK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

BATTERY POWERED WITH BELT LOADER. . . . . . . . . . . . . . . . . . . 405

BIT

B 13 B

TORX BITS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

POWERED SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

D 38 RLE 4-SPEED DRILL DRIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

CATCH SCREWING DEVICE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

TORQUE LIMITER TORQUE LIMITER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

JIG VGU TEMPLATE FOR VGU WASHER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

JIG VGZ 45° TEMPLATE FOR 45° SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

BIT STOP DRIVER BIT HOLDER WITH END STOP . . . . . . . . . . . . . . . . . . . . . 410

DRILL STOP COUNTERBORE CUTTER WITH DEPTH STOP. . . . . . . . . . . . . . . 410

JIG ALU STA DRILLING TEMPLATE FOR ALUMIDI AND ALUMAXI. . . . . . . . . . . . 411

COLUMN RIGID AND INCLINED DRILLING COLUMN. . . . . . . . . . . . . . . . . . . 411

BEAR TORQUE WRENCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

CRICKET 8 SIZES RATCHETING WRENCH . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

COMPLEMENTARY PRODUCTS | 401


A 12 CORDLESS DRILL • • • • •

Soft / hard torque: 18/45 Nm Nominal minimum 1st gear: 0 - 510 (1/min) Nominal minimum 2° gear: 0 - 1710 (1/min) Nominal tension: 12 V Weight (including battery): 1,0 kg

CODES CODE

description

pcs

MA91D001

A 12 cordless screwdriver in T-MAX

1

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

A 18 | ASB 18 CORDLESS DRILL • • • • • •

Electronic anti-kickback function Soft / hard torque: 65/130 Nm Nominal minimum 1st gear: 0 - 560 (1/min) Nominal minimum 2° gear: 0 - 1960 (1/min) Nominal tension: 18 V Weight (including battery): 1,8 kg / 1,9 kg

A 18

ASB 18

CODES CODE

description

pcs

MA91C801

A 18 cordless screwdriver in T-MAX

1

MA91C901

ASB 18 percussion drill in T-MAX

1

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

402 | A 12 | A 18 | ASB 18 | COMPLEMENTARY PRODUCTS


KMR 3373 AUTOMATIC LOADER • Screw length: 25 - 50 mm • Screw diameter: 3,5 - 4,2 mm • Compatible with A 18 screwdriver

CODES CODE

description

pcs

HH3373

loader for cordless screwdriver

1

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

KMR 3372 AUTOMATIC LOADER • Screw length: 40 - 80 mm • Screw diameter: 4,5 - 5 mm, 6 mm with HZB6PLATE • Compatible with A 18 screwdriver

CODES CODE

description

pcs

HH3372

loader for cordless screwdriver

1

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

COMPLEMENTARY PRODUCTS | KMR 3373 | KMR 3372 | 403


KMR 3352 SCREWDRIVER WITH AUTOMATIC LOADER • • • •

Screw length: 25 - 50 mm Screw diameter: 3,5 - 4,2 mm Performance: 0 - 2850/750 (1/min/W) Weight: 2,2 kg

CODES CODE

description

pcs

HH3352

automatic screwdriver

1

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

KMR 3338 SCREWDRIVER WITH AUTOMATIC LOADER • • • •

Screw length: 40 - 80 mm Screw diameter: 4,5 - 5 mm, 6 mm with HZB6PLATE Performance: 0 - 2850/750 (1/min/W) Weight: 2,9 kg

CODES CODE

description

pcs

HH3338

automatic screwdriver

1

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

404 | KMR 3352 | KMR 3338 | COMPLEMENTARY PRODUCTS

Application example with extension HH14411591.


KMR 3371 BATTERY POWERED WITH BELT LOADER • Adapter for processing plasterboard and gypsum fibreboard of timber and metal substructures • Supplied in a case, with charger and two batteries • Screw length: 25 - 55 mm • Screw diameter: 3,5 - 4,5 mm • Speed: 0 - 1800/500 (U/min) • Weight: 2,4 kg

CODES CODE

description

pcs

HH3371

cordless screwdriver + adapter for screwdrivers with belt loader

1

TX20L177

TX20 bit for KMR 3371

5

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

B 13 B POWERED SCREWDRIVER • • • • • • •

Rated power consumption: 760 W Torque: 120 Nm Weight: 2,8 kg Neck Ø: 43 mm Nominal minimum 1st gear: 0 - 170 (1/min) Nominal minimum 2° gear: 0 - 1320 (1/min) Screw without pre-drill: 11 x 400 mm screws

CODES CODE

description

pcs

DUB13B

powered screwdriver

1

For accessories see the catalogue "Tools for timber construction" available at www.rothoblaas.com.

COMPLEMENTARY PRODUCTS | KMR 3371 | 405


ANKER NAILGUNS

HH3731

ATEU0116

HH3722

HH3522

TJ100091

HH12100700

CODES AND DIMENSIONS CODE

description

binding

d1 nail

d1 nail

L nail

consumption

[mm]

[mm]

[kg]

[l/

packaging

pcs

4-6

-

-

(1)

in case

1

]

HH3731

palm nailer

loose nails

ATEU0116

34° strip magazine Anker nailgun

plastic

4

40 - 60

2,36

4,60

in cardboard

1

HH3722

25° strip magazine Anker nailgun

plastic

4

40 - 50

2,55

1,73

in cardboard

1

HH3522

25° strip magazine Anker nailgun

plastic

4

40 - 60

4,10

2,80

in cardboard

1

TJ100091

Anker coil nailgun 15°

plastic (BC-coil)

4

40 - 60

2,30

2,50

in case

1

HH12100700

Anker 34° strip gas nailgun

plastic/paper

4

40 - 60

4,02

(2)

in case

1

(1) Depends on the type of nail. (2)Approximately 1200 rounds per gas cartridge and approximately 8000 rounds per battery charge.

RELATED PRODUCTS

LBA HIGH BOND NAIL 25°

LBA 25 PLA

page 250

34°

LBA 34 PLA

LBA COIL

406 | ANKER NAILGUNS | COMPLEMENTARY PRODUCTS


D 38 RLE 4-SPEED DRILL DRIVER • Rated power consumption: 2000 W • For inserting long screws and threaded rods • No. of revolutions under load in 1st, 2nd, 3rd and 4th speeds: 120 - 210 - 380 - 650 U/min • Weight: 8,6 kg • Mandrel connection: conical MK 3

CODES AND DIMENSIONS CODE

description

pcs

DUD38RLE

4-speed screwdriver

1

ACCESSORIES FRICTION

SCREW HANDLE

MANDREL

• Tightening torque 200 Nm • Square connection 1/2”

• Increased safety

• Opening 1-13 mm

CODE

pcs

CODE

pcs

CODE

pcs

DUVSKU

1

DUD38SH

1

ATRE2014

1

ADAPTER 1

ADAPTER 2

SLEEVES

• For MK3

• For sleeve

• For RTR

CODE

pcs

CODE

pcs

CODE

ATRE2019

1

ATCS2010

1

RELATED PRODUCTS

Ø

pcs

ATCS007

16 mm

1

ATCS008

20 mm

1

RTR STRUCTURAL REINFORCEMENT SYSTEM

page 196 COMPLEMENTARY PRODUCTS | D 38 RLE | 407


CATCH

MANUALS

SCREWING DEVICE • Thanks to CATCH, even longer screws can be screwed on quickly and safely without the risk of the bit slipping • Particularly useful in case of screwing in corners, which usually do not allow exerting a great screwing force

CODES AND DIMENSIONS CODE

pcs

suitable screws HBS

VGS

VGZ

[mm]

[mm]

[mm]

CATCH

Ø8

Ø9

Ø9 [mm]

1

CATCHL

Ø10 | Ø12

Ø11 | Ø13

-

1

Further information on the use of the product can be found at www.rothoblaas.com.

TORQUE LIMITER TORQUE LIMITER • It decouples as soon as the maximum torque is reached, thus protecting the screw from excessive load, especially in metal plate applications • Also compatible with CATCH and CATCHL

CODES AND DIMENSIONS CODE

version

pcs

TORLIM18

18 Nm

1

TORLIM40

40 Nm

1

408 | CATCH | TORQUE LIMITER | COMPLEMENTARY PRODUCTS


JIG VGU TEMPLATE FOR VGU WASHER • The VGU JIG template ensures precision pre-drilling and facilitates the VGS 45° screws fastening inside the washer • Essential for perfect hole centring • For diameters from 9 to 13 mm

CODES AND DIMENSIONS CODE

washer

dh

dV

pcs

[mm]

[mm]

[mm]

JIGVGU945

VGU945

5,5

5

1

JIGVGU1145

VGU1145

6,5

6

1

JIGVGU1345

VGU1345

8,5

8

1

NOTE:Further information on page 190.

JIG VGZ 45°

MANUALS

TEMPLATE FOR 45° SCREWS • For diameters from 7 to 11 mm • Screw length indicators • Screws can be inserted in double 45° mitre cuts

CODES AND DIMENSIONS CODE JIGVGZ45

description

pcs

steel template for screws at 45°

1

For detailed information on the use of the template, please see the installation manual on the website (www.rothoblaas.com).

COMPLEMENTARY PRODUCTS | JIG VGU | JIG VGZ 45° | 409


BIT STOP DRIVER BIT HOLDER WITH END STOP • With O-ring to prevent wood damage at end of travel • The internal device automatically stops the driver bit holder when it reaches the preset depth

CODES AND DIMENSIONS CODE

AT4030

Ø tip

Ø counterbore cutter

[mm]

[mm]

adjustable depth

5

pcs

1

DRILL STOP COUNTERBORE CUTTER WITH DEPTH STOP • Particularly indicated for build terraces • The rotating depth stop stops at the workpiece and leaves no marks on the material

CODES AND DIMENSIONS CODE

Ø tip

Ø counterbore cutter

[mm]

[mm]

F3577040

4

12

1

F3577050

5

12

1

F3577060

6

12

1

F3577504

set 4, 5, 6

12

1

410 | BIT STOP | DRILL STOP | COMPLEMENTARY PRODUCTS

pcs


JIG ALU STA DRILLING TEMPLATE FOR ALUMIDI AND ALUMAXI • Position, drill, done! For drilling dowel holes easily, quickly and precisely • It allows to drill precise holes for both ALUMIDI and ALUMAXI in a template

CODES AND DIMENSIONS CODE JIGALUSTA

B

L

s

[mm]

[mm]

[mm]

164

298

3

pcs 1

COLUMN RIGID AND INCLINED DRILLING COLUMN • For precise holes perpendicular to the work surface

1-3

2-4

CODES AND DIMENSIONS

1 2 3 4

CODE

version

F1403462 F1404462 F1403652 F1404652

rigid inclined rigid inclined

for bits length

hole depth

TL

pcs

[mm] 460 460 650 650

[mm] 310 250 460 430

[mm] approx. 630 approx. 630 approx. 810 approx. 810

1 1 1 1

COMPLEMENTARY PRODUCTS | JIG ALU STA | COLUMN | 411


BEAR TORQUE WRENCH • Precise tightening torque control • Essential when screwing full thread screws into a metal plate • Wide adjustment range

BEAR

BEAR2

CODES AND DIMENSIONS weight

tightening torque

CODE

dimensions

pcs

[mm]

[g]

[Nm]

BEAR

395 x 60 x 60

1075

10 - 50

1

BEAR2

535 x 60 x 60

1457

40 - 200

1

With 1/2'' square drive.

CRICKET 8 SIZES RATCHETING WRENCH • Ratchet spanner with through hole and 8 bushings of varying sizes • 4 ring spanners in a single tool

CODES AND DIMENSIONS CODE

CRICKET

dimensions / thread

length

[SW / M]

[mm]

10 / M6 - 13 / M8 14 / (M8) - 17 / M10 19 / M12 - 22 / M14 24 / M16 - 27 / M18

340

412 | BEAR | CRICKET | COMPLEMENTARY PRODUCTS

pcs

1


WASP

MANUALS ANNUAL REPORT REUSABLE 2006/42/CE

HOOK FOR TIMBER ELEMENTS TRANSPORT • Fastened with just one screw, it allows significant time savings due to its quick assembly and disassembly • The lifting hook can be used for both axial and lateral loads • Certified pursuant to the Machinery Directive 2006/42/EC

CODES AND DIMENSIONS CODE

max. capacity

WASP WASPL

1300 kg 1600kg

suitable screws

pcs

VGS Ø11 - HBS Ø10 VGS Ø11 - VGS Ø13 - HBS Ø12

2 1

RAPTOR

MANUALS REUSABLE 2006/42/CE

TRANSPORT PLATE FOR TIMBER ELEMENTS • Multiple application possibilities with the choice of 2, 4 or 6 screws depending on the load. • The lifting plate can be used for both axial and lateral loads • Certified pursuant to the Machinery Directive 2006/42/EC

CODES AND DIMENSIONS CODE RAP220100

max. capacity

suitable screws

pcs

3150 kg

HBS PLATE Ø10mm

1

COMPLEMENTARY PRODUCTS | WASP | RAPTOR | 413


LEWIS DRILL BITS FOR DEEP DRILLING IN EUROPEAN SOFT AND HARDWOODS • In alloy tool steel • With round-section twist flute, threaded tip, very high quality main cutting edge and roughing tooth • Version with independent head and hex shank (starting from Ø8 mm)

CODES AND DIMENSIONS CODE F1410205 F1410206 F1410207 F1410208 F1410210 F1410212 F1410214 F1410216 F1410218 F1410220 F1410222 F1410224 F1410228 F1410230 F1410232 F1410242 F1410305 F1410306 F1410307 F1410308 F1410309 F1410310 F1410312 F1410314 F1410316 F1410318 F1410320 F1410322 F1410324 F1410326 F1410328 F1410330 F1410332 F1410407 F1410408 F1410410 F1410412 F1410414 F1410416 F1410418 F1410420 F1410422 F1410424 F1410426

Ø tip

Ø shank

TL

SL

[mm]

[mm]

[mm]

[mm]

5 6 7 8 10 12 14 16 18 20 22 24 28 30 32 42 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 7 8 10 12 14 16 18 20 22 24 26

4,5 5,5 6,5 7,8 9,8 11,8 13 13 13 13 13 13 13 13 13 13 4,5 5,5 6,5 7,8 8 9,8 11,8 13 13 13 13 13 13 13 13 13 13 6,5 7,8 9,8 11,8 13 13 13 13 13 13 13

235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 235 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 460 460 460 460 460 460 460 460 460 460 460

160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 380 380 380 380 380 380 380 380 380 380 380

414 | LEWIS | COMPLEMENTARY PRODUCTS

pcs

CODE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F1410428 F1410430 F1410432 F1410440 F1410450 F1410612 F1410614 F1410616 F1410618 F1410620 F1410622 F1410624 F1410626 F1410628 F1410630 F1410632 F1410014 F1410016 F1410018 F1410020 F1410022 F1410024 F1410026 F1410028 F1410030 F1410032 F1410134 F1410136 F1410138 F1410140 F1410145 F1410150

Ø tip

Ø shank

TL

SL

[mm]

[mm]

[mm]

[mm]

28 30 32 40 50 12 14 16 18 20 22 24 26 28 30 32 14 16 18 20 22 24 26 28 30 32 34 36 38 40 45 50

13 13 13 13 13 11,8 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

460 460 460 460 460 650 650 650 650 650 650 650 650 650 650 650 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 1000 1000 1000 1000 1000 1000

380 380 380 380 380 535 535 535 535 535 535 535 535 535 535 535 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 535 535 535 535 535 535

TL

total length

SL

spiral length TL

SL

pcs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


LEWIS - SET CODES AND DIMENSIONS CODE

Ø set

TL

SL

[mm]

[mm]

[mm]

pcs

F1410200

10, 12, 14, 16, 18, 20, 22, 24

235

160

1

F1410303

10, 12, 14, 16, 18, 20, 22, 24

320

255

1

F1410403

10, 12, 14, 16, 18, 20, 22, 24

460

380

1

SNAIL HSS TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS AND OTHER MATERIALS • Very high quality polished drill bits, with 2 main cutting edges and 2 roughing teeth • Special twist with smoothed flute for improved chip evacuation • Ideal for free hand and stationary use

CODES AND DIMENSIONS CODE

Ø tip

Ø shank

TL

SL

pcs

CODE

Ø tip

Ø shank

TL

SL

pcs

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

[mm]

F1594020

2

2

49

22

1

F1599209

9

9

250

180

1

F1594030

3

3

60

33

1

F1599210

10

10

250

180

1

F1594040

4

4

75

43

1

F1599212

12

12

250

180

1

F2108005

5

5

85

52

1

F1599214

14

13

250

180

1

F2108006

6

6

92

57

1

F1599216

16

13

250

180

1

F2108008

8

8

115

75

1

F1599605

5

5

460

380

1

F1594090

9

9

125

81

1

F1599606

6

6

460

380

1

F1594100

10

10

130

87

1

F1599607

7

7

460

380

1

F1594110

11

11

140

94

1

F1599608

8

8

460

380

1

F1594120

12

12

150

114

1

F1599609

9

9

460

380

1

F1599205

5

5

250

180

1

F1599610

10

10

460

380

1

F1599206

6

6

250

180

1

F1599612

12

12

460

380

1

F1599207

7

7

250

180

1

F1599614

14

13

460

380

1

F1599208

8

8

250

180

1

F1599616

16

13

460

380

1

SNAIL HSS - SET CODES AND DIMENSIONS CODE

Ø set

pcs

[mm] F1594835

3, 4, 5, 6, 8

1

F1594510

3, 4, 5, 6, 8, 10, 12, 13, 14, 16

1

COMPLEMENTARY PRODUCTS | SNAIL HSS | 415


SNAIL PULSE CARBIDE DRILL BIT IN HM WITH SDS DRILL CHUCK SHANK • For drilling concrete, reinforced concrete, masonry and natural stone. • The 4 spiral HM cutting edges ensure rapid forward movement.

CODES AND DIMENSIONS CODE

Ø tip

TL

[mm]

[mm]

pcs

DUHPV505

5

50

1

DUHPV510

5

100

1

DUHPV605

6

50

1

DUHPV610

6

100

1

DUHPV615

6

150

1

DUHPV810

8

100

1 1

DUHPV815

8

150

DUHPV820

8

200

1

DUHPV840

8

400

1

DUHPV1010

10

100

1

DUHPV1015

10

150

1

DUHPV1020

10

200

1 1

DUHPV1040

10

400

DUHPV1210

12

100

1

DUHPV1215

12

150

1

DUHPV1220

12

200

1

DUHPV1240

12

400

1

DUHPV1410

14

100

1

DUHPV1420

14

200

1

DUHPV1440

14

400

1

DUHPV1625

16

250

1

DUHPV1640

16

400

1

DUHPV1820

18

200

1

DUHPV1840

18

400

1

DUHPV2020

20

200

1

DUHPV2040

20

400

1

DUHPV2240

22

400

1

DUHPV2440

24

400

1

DUHPV2540

25

400

1

DUHPV2840

28

400

1

DUHPV3040

30

400

1

416 | SNAIL PULSE | COMPLEMENTARY PRODUCTS


BIT TORX BITS CODES AND DIMENSIONS BITS C 6.3 L

CODE

bit

colour

geometry

pcs

TX1025

TX 10

yellow

10

TX1525

TX 15

white

10

TX2025

TX 20

orange

10

TX2525

TX 25

red

10

TX3025

TX 30

purple

10

TX4025

TX 40

blue

10

TX5025

TX 50

green

10

TX1550

TX 15

white

5

TX2050

TX 20

orange

5

TX2550

TX 25

red

5

TX3050

TX 30

purple

5

TX4050

TX 40

blue

5

TX4050L(*)

TX 40

blue

5

TX5050

TX 50

green

5

TX1575

TX 15

white

5

TX2075

TX 20

orange

5

TX2575

TX 25

red

5

bit

colour

TXE3050

TX 30

purple

5

TXE4050

TX 40

blue

5

CODE

bit

colour

TX25150

TX 25

red

[mm]

25

50

75

(*)Special tip for CATCH L.

BITS L

6.3

CODE

geometry

pcs

[mm] 50

LONG BITS L

geometry

pcs

[mm] 150

1

200

TX30200

TX 30

200 purple200

350

TX30350

TX 30

purple3 50 350

1

150

TX40150

TX 40

blue

1

200

TX40200

TX 40

blue 200

1

350

TX40350

TX 40

blue 350

1

520

TX40520

TX 40

blue 520

1

150

TX50150

TX 50

green

1

1

DRIVER BIT HOLDER CODE

description

TXHOLD

60 mm - magnetic

geometry

pcs 5

COMPLEMENTARY PRODUCTS | BIT | 417


Rotho Blaas Srl does not guarantee the legal and/or design conformity of data and calculations, as Rotho Blass provides indicative tools such as technical-commercial service within the sales activity. Rotho Blaas Srl follows a policy of continuous development of its products, thereby reserving the right to modify their characteristics, technical specifications and other documentation without notice. The user or the designer are responsible to verify, at each use, the conformity of the data to the regulations in force and to the project. The ultimate responsibility for choosing the appropriate product for a specific application lies with the user/designer. The values resulting from "experimental investigations" are based on the actual test results and valid only for the test conditions specified. Rotho Blaas Srl does not guarantee and in no case can be held responsible for damages, losses and costs or other consequences, for any reason (warranty for defects, warranty for malfunction, product or legal responsibility, etc.) deriving from the use or inability to use the products for any purpose; from non-conforming use of the product; Rotho Blaas Srl is not liable in any way for any errors in printing and/or typing. In the event of differences between the contents of the catalogue versions in the various languages, the Italian text is binding and takes precedence with respect to the translations. The latest version of the data sheets available can be found on the Rotho Blaas website. Pictures are partially completed with accessories not included. Images are for illustration purposes only. The use of third party logos and trademarks in this catalogue is subject to the terms and conditions set out in the general conditions of purchase, unless otherwise agreed with the supplier. Packaged quantities may vary. This catalogue is private property of Rotho Blaas Srl and may not be copied, reproduced or published, totally or in part, without prior written consent. All violations will be prosecuted according to law. The general purchase and sale conditions of Rotho Blaas Srl are available on the website www.rothoblaas.com All rights reserved. Copyright © 2023 by Rotho Blaas Srl All renderings © Rotho Blaas Srl


Solutions for Building Technology


FASTENING AIRTIGHTNESS AND WATERPROOFING SOUNDPROOFING FALL PROTECTION TOOLS AND MACHINES

Rotho Blaas Srl Via dell‘Adige N.2/1 | 39040, Cortaccia (BZ) | Italia Tel: +39 0471 81 84 00 | Fax: +39 0471 81 84 84 info@rothoblaas.com | www.rothoblaas.com

01SCREWS3EN

08|23

Rothoblaas is the multinational Italian company that has made innovative technology its mission, making its way to the forefront for timber buildings and construction safety in just a few years. Thanks to its comprehensive product range and the technically-prepared and widespread sales network, the company promotes the transfer of its knowhow to the customers and aims to be a prominent and reliable partner for developing and innovating products and building methods. All of this contributes to a new culture of sustainable construction, focused on increasing comfortable living and reducing CO2 emissions.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.