Skip to main content
Lisa Pytka
  • Portland, Oregon, United States

Lisa Pytka

(Statement of Responsibility) by Lisa Pytka(Thesis) Thesis (B.A.) -- New College of Florida, 2006(Electronic Access) RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE(Bibliography) Includes bibliographical references.(Source... more
(Statement of Responsibility) by Lisa Pytka(Thesis) Thesis (B.A.) -- New College of Florida, 2006(Electronic Access) RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE(Bibliography) Includes bibliographical references.(Source of Description) This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.(Local) Faculty Sponsor: Harley, Heid
Echolocating bottlenose dolphins (Tursiops truncatus) discriminate between objects on the basis of the echoes reflected by the objects. However, it is not clear which echo features are important for object discrimination. To gain insight... more
Echolocating bottlenose dolphins (Tursiops truncatus) discriminate between objects on the basis of the echoes reflected by the objects. However, it is not clear which echo features are important for object discrimination. To gain insight into the salient features, the authors had a dolphin perform a match-to-sample task and then presented human listeners with echoes from the same objects used in the dolphin's task. In 2 experiments, human listeners performed as well or better than the dolphin at discriminating objects, and they reported the salient acoustic cues. The error patterns of the humans and the dolphin were compared to determine which acoustic features were likely to have been used by the dolphin. The results indicate that the dolphin did not appear to use overall echo amplitude, but that it attended to the pattern of changes in the echoes across different object orientations. Human listeners can quickly identify salient combinations of echo features that permit object discrimination, which can be used to generate hypotheses that can be tested using dolphins as subjects.
Echolocating bottlenose dolphins (Tursiops truncatus) discriminate between objects on the basis of the echoes reflected by the objects. However, it is not clear which echo features are important for object discrimination. To gain insight... more
Echolocating bottlenose dolphins (Tursiops truncatus) discriminate between objects on the basis of the echoes reflected by the objects. However, it is not clear which echo features are important for object discrimination. To gain insight into the salient features, the authors had a dolphin perform a match-to-sample task and then presented human listeners with echoes from the same objects used in the dolphin's task. In 2 experiments, human listeners performed as well or better than the dolphin at discriminating objects, and they reported the salient acoustic cues. The error patterns of the humans and the dolphin were compared to determine which acoustic features were likely to have been used by the dolphin. The results indicate that the dolphin did not appear to use overall echo amplitude, but that it attended to the pattern of changes in the echoes across different object orientations. Human listeners can quickly identify salient combinations of echo features that permit object discrimination, which can be used to generate hypotheses that can be tested using dolphins as subjects.