Skip to main content

    Thomas Tedder

    CD22 is a membrane glycophosphoprotein found on nearly all healthy B-lymphocytes and most B-cell lymphomas. Recent in vitro studies have identified several anti-CD22 monoclonal antibodies (mAbs) that block the interaction of CD22 with its... more
    CD22 is a membrane glycophosphoprotein found on nearly all healthy B-lymphocytes and most B-cell lymphomas. Recent in vitro studies have identified several anti-CD22 monoclonal antibodies (mAbs) that block the interaction of CD22 with its ligand. One of these mAbs, HB22.7, has been shown to effectively induce apoptosis in several B- cell lymphoma cell lines. Lymphoma xeno- graft studies with Raji-xenograft
    Neuromyelitis optica (NMO) is an inflammatory autoimmune disorder of the CNS that predominantly affects the spinal cord and optic nerves. A majority (approximately 75%) of patients with NMO are seropositive for autoantibodies against the... more
    Neuromyelitis optica (NMO) is an inflammatory autoimmune disorder of the CNS that predominantly affects the spinal cord and optic nerves. A majority (approximately 75%) of patients with NMO are seropositive for autoantibodies against the astrocyte water channel aquaporin-4 (AQP4). These autoantibodies are predominantly IgG1, and considerable evidence supports their pathogenicity, presumably by binding to AQP4 on CNS astrocytes, resulting in astrocyte injury and inflammation. Convergent clinical and laboratory-based investigations have indicated that B cells play a fundamental role in NMO immunopathology. Multiple mechanisms have been hypothesized: AQP4 autoantibody production, enhanced proinflammatory B cell and plasmablast activity, aberrant B cell tolerance checkpoints, diminished B cell regulatory function, and loss of B cell anergy. Accordingly, many current off-label therapies for NMO deplete B cells or modulate their activity. Understanding the role and mechanisms whereby B ce...
    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing... more
    Brain parenchymal lesions are frequently observed on conventional magnetic resonance imaging (MRI) scans of patients with neuromyelitis optica (NMO) spectrum disorder, but the specific morphological and temporal patterns distinguishing them unequivocally from lesions caused by other disorders have not been identified. This literature review summarizes the literature on advanced quantitative imaging measures reported for patients with NMO spectrum disorder, including proton MR spectroscopy, diffusion tensor imaging, magnetization transfer imaging, quantitative MR volumetry, and ultrahigh-field strength MRI. It was undertaken to consider the advanced MRI techniques used for patients with NMO by different specialists in the field. Although quantitative measures such as proton MR spectroscopy or magnetization transfer imaging have not reproducibly revealed diffuse brain injury, preliminary data from diffusion-weighted imaging and brain tissue volumetry indicate greater white matter than...
    Lymphocyte migration into lymphoid organs is regulated by adhesion molecules including L-selectin and the beta7 integrins. L-selectin and alpha4beta7 are predominantly hypothesized to direct the selective migration of lymphocytes to... more
    Lymphocyte migration into lymphoid organs is regulated by adhesion molecules including L-selectin and the beta7 integrins. L-selectin and alpha4beta7 are predominantly hypothesized to direct the selective migration of lymphocytes to peripheral lymph nodes and the gut-associated lymphoid tissues, respectively. To further characterize interactions between L-selectin and beta7 integrins during lymphocyte recirculation, mice deficient in both receptors (L-selectin/beta7 integrin-/-) were generated. The simultaneous loss of L-selectin and beta7 integrin expression prevented the majority of lymphocytes (>95% inhibition) from attaching to high endothelial venules (HEV) of Peyer's patches and other lymphoid tissues during in vitro binding assays. Moreover, the inability to bind HEV eliminated the vast majority of L-selectin/beta7 integrin-/- lymphocyte migration into Peyer's patches during short-term and long-term in vivo migration assays (>99% inhibition,p < 0.01). The lac...
    The 2H4 antigen, comprised of a 200/220-kDa glycoprotein of the leukocyte common antigen (LCA) family, is expressed on a suppressor inducer, but not a helper inducer subset of T4 cells. Earlier studies have demonstrated that the T4+2H4+... more
    The 2H4 antigen, comprised of a 200/220-kDa glycoprotein of the leukocyte common antigen (LCA) family, is expressed on a suppressor inducer, but not a helper inducer subset of T4 cells. Earlier studies have demonstrated that the T4+2H4+ subset of cells maximally responded to the AMLR and this molecule has an important role in generated suppressor signals in AMLR/Con A-activated T cell systems. In the present study, we examined the effect of a series of monoclonal antibodies including anti-2H4 antibody on the initial activation of T4 cells in response to self-Ia antigens. We found that the addition of anti-2H4 antibody resulted in an augmentation of the proliferative response of T4 cells in AMLR, whereas other antibodies reactive with LCA/T200 antigens lacked this ability. Furthermore, anti-2H4 antibody enhanced both IL-2 production and IL-2R expression in this AMLR system. This enhancing effect was inhibited by anti-T3 antibody. Moreover, the suppressor inducer function of AMLR T4 c...
    IL-21 regulates the activity and number of IL-10-producing regulatory B cells (B10 cells) that modulate immune responses and limit diverse autoimmune diseases. A new study demonstrates that IL-35 has a similar function. Identifying... more
    IL-21 regulates the activity and number of IL-10-producing regulatory B cells (B10 cells) that modulate immune responses and limit diverse autoimmune diseases. A new study demonstrates that IL-35 has a similar function. Identifying regulatory circuits that control B10-cell function in vivo might open the door to future treatments for autoimmune diseases.
    Lymphocyte migration into lymphoid organs is regulated by tissue-specific adhesion molecules such as L-selectin and the alpha4beta7 integrin. Whether L-selectin also regulates lymphocyte subset-specific migration into specific lymphoid... more
    Lymphocyte migration into lymphoid organs is regulated by tissue-specific adhesion molecules such as L-selectin and the alpha4beta7 integrin. Whether L-selectin also regulates lymphocyte subset-specific migration into specific lymphoid tissues was examined in this study by comparing the migration of CD4+ T cells, CD8+ T cells, and B cells from L-selectin-deficient and wild-type mice. T cells were the predominant lymphocyte subset entering PLN, MLN, Peyer's patches, and spleen during short term (1-h) migration assays. However, both B cell and CD4+ and CD8+ T cell entries into PLN, MLN, and Peyer's patches were dramatically impaired (73-98%) by loss of L-selectin. Lymphocyte expression of alpha4beta7 integrin did not compensate for the loss of L-selectin, since both B and T cells predominantly migrated into the spleen in the absence of L-selectin. The more efficient migration of T cells into peripheral lymphoid tissues relative to that of B cells was partly explained by the fi...
    Background: Airway inflammation and airway hyperresponsiveness (AHR) are fundamental features of asthma. Migration of inflammatory cells from the circulation into the lungs is dependent on adhesion molecule interactions. The cell surface... more
    Background: Airway inflammation and airway hyperresponsiveness (AHR) are fundamental features of asthma. Migration of inflammatory cells from the circulation into the lungs is dependent on adhesion molecule interactions. The cell surface adhesion molecule L-selectin has been demonstrated to mediate leukocyte rolling on inflamed and noninflamed pulmonary endothelium. However, its role in the development of airway inflammation and AHR in asthma
    L-selectin is a cell adhesion molecule that tethers free-flowing leukocytes from the blood to luminal vessel walls, facilitating the initial stages of their emigration from the circulation toward an extravascular inflammatory insult.... more
    L-selectin is a cell adhesion molecule that tethers free-flowing leukocytes from the blood to luminal vessel walls, facilitating the initial stages of their emigration from the circulation toward an extravascular inflammatory insult. Following shear-resistant adhesion to the vessel wall, L-selectin has frequently been reported to be rapidly cleaved from the plasma membrane (known as ectodomain shedding), with little knowledge of the timing or functional consequence of this event. Using advanced imaging techniques, we observe L-selectin shedding occurring exclusively as primary human monocytes actively engage in transendothelial migration (TEM). Moreover, the shedding was localized to transmigrating pseudopods within the subendothelial space. By capturing monocytes in midtransmigration, we could monitor the subcellular distribution of L-selectin and better understand how ectodomain shedding might contribute to TEM. Mechanistically, L-selectin loses association with calmodulin (CaM; a negative regulator of shedding) specifically within transmigrating pseudopods. In contrast, L-selectin/CaM interaction remained intact in nontransmigrated regions of monocytes. We show phosphorylation of L-selectin at Ser 364 is critical for CaM dissociation, which is also restricted to the transmigrating pseudopod. Pharmacological or genetic inhibition of L-selectin shedding significantly increased pseudopodial extensions in transmigrating monocytes, which potentiated invasive behavior during TEM and prevented the establishment of front/back polarity for directional migration persistence once TEM was complete. We conclude that L-selectin shedding directly regulates polarity in transmigrated monocytes, which affirms an active role for this molecule in driving later stages of the multistep adhesion cascade.
    Cell-surface CD19 functions as a general rheostat for defining intrinsic and antigen receptor-induced signaling thresholds critical for clonal expansion of the B cell pool and humoral immunity. CD19 also governs B cell responses initiated... more
    Cell-surface CD19 functions as a general rheostat for defining intrinsic and antigen receptor-induced signaling thresholds critical for clonal expansion of the B cell pool and humoral immunity. CD19 also governs B cell responses initiated through the CD21 receptor, where complement C3d binding to CD21 links humoral immune responses with the innate immune system. Alterations in this signaling pathway can predispose mice and humans to autoantibody production and systemic autoimmunity. Transgenic mice that overexpress CD19 by 20-170% lose tolerance and generate autoantibodies. Likewise, B cells from CD21-deficient mice overexpress CD19 by approximately 50%, which leads to autoantibody production. Autoimmune patients with systemic sclerosis also overexpress CD19 by approximately 20%, which may contribute to their intrinsic B cell abnormalities and autoantibody production. Thus, chronic B cell activation resulting from augmented CD19 expression or signaling through the CD19 pathway may reveal a prototype autoimmune disease susceptibility pathway in mice and humans.
    Recent advances in the study of CD22 indicate a complex role for this transmembrane glycoprotein member of the immunoglobulin superfamily in the regulation of B lymphocyte survival and proliferation. CD22 has been previously recognized as... more
    Recent advances in the study of CD22 indicate a complex role for this transmembrane glycoprotein member of the immunoglobulin superfamily in the regulation of B lymphocyte survival and proliferation. CD22 has been previously recognized as a potential lectin-like adhesion molecule that binds alpha2,6-linked sialic acid-bearing ligands and as an important regulator of B-cell antigen receptor (BCR) signaling. However, genetic studies in mice reveal that some CD22 functions are regulated by ligand binding, whereas other functions are ligand-independent and may only require expression of an intact CD22 cytoplasmic domain at the B-cell surface. Until recently, most of the functional activity of CD22 has been widely attributed to CD22's ability to recruit potent intracellular phosphatases and limit the intensity of BCR-generated signals. However, a more complex role for CD22 has recently emerged, including a central role in a novel regulatory loop controlling the CD19/CD21-Src-family protein tyrosine kinase (PTK) amplification pathway that regulates basal signaling thresholds and intensifies Src-family kinase activation after BCR ligation. CD22 is also central to the regulation of peripheral B-cell homeostasis and survival, the promotion of BCR-induced cell cycle progression, and is a potent regulator of CD40 signaling. Herein we discuss our current understanding of how CD22 governs these complex and overlapping processes, how alterations in these tightly controlled regulatory activities may influence autoimmune disease, and the current and future applications of CD22-directed therapies in oncology and autoimmunity.
    CD19 is a B lymphocyte cell surface protein expressed from the earliest stages of B lymphocyte development unitl their terminal differentiation into plasma cells. In this report the human CD19 gene (hCD19) was localized to band p11.2 on... more
    CD19 is a B lymphocyte cell surface protein expressed from the earliest stages of B lymphocyte development unitl their terminal differentiation into plasma cells. In this report the human CD19 gene (hCD19) was localized to band p11.2 on the proximal short arm of chromosome 16 by in situ hybridization to metaphase chromosomes, using hCD19 cDNA as probe. hCD19 gene localization was confirmed by polymerase chain reaction based analysis with hCD19-specific primers, using a panel of human/hamster somatic cell hybrid DNA as templates. The mouse CD19 gene (MCd19) was mapped to bands F3-F4 of chromosome 7 by in situ hybridization to metaphase chromosomes, using a mCD19 cDNA probe. Segregation analysis of nucleotide sequence polymorphisms in inter-specific backcross progeny revealed linkage of mCd19 with hemoglobin ß (Hbb), Int-2, and H19, other loci previously mapped to the same region of mouse chromosome 7, confirming the localization of mCd19 to this region. The order of these loci was de...
    The selectin family of adhesion molecules mediates the initial interactions of leukocytes with endothelium. The extracellular region of each selectin contains an amino-terminal C-type lectin domain, followed by an EGF-like domain and... more
    The selectin family of adhesion molecules mediates the initial interactions of leukocytes with endothelium. The extracellular region of each selectin contains an amino-terminal C-type lectin domain, followed by an EGF-like domain and multiple short consensus repeat units (SCR). Previous studies have indirectly suggested a role for each of the extracellular domains of the selectins in cell adhesion. In this study, a panel of chimeric selectins created by exchange of domains between L- and P-selectin was used to directly examine the role of the extracellular domains in cell adhesion. Exchange of only the lectin domains between L- and P-selectin conferred the adhesive and ligand recognition functions of the lectin domain of the parent molecule. However, chimeric selectins which contained both the lectin domain of L-selectin and the EGF-like domain of P-selectin exhibited dual ligand-binding specificity. These chimeric proteins supported adhesion both to myeloid cells and to high endothelial venules (HEV) of lymph nodes and mesenteric venules in vivo. Exchange of the SCR domains had no detectable effect on receptor function or specificity. Thus, the EGF-like domain of P-selectin may play a direct role in ligand recognition and leukocyte adhesion mediated by P-selectin, with the lectin plus EGF-like domains collectively forming a functional ligand recognition unit.
    Peripheral B-cell numbers are tightly regulated by homeostatic mechanisms that influence the transitional and mature B-cell compartments and dictate the size and clonotypic diversity of the B-cell repertoire. B-lymphocyte stimulator... more
    Peripheral B-cell numbers are tightly regulated by homeostatic mechanisms that influence the transitional and mature B-cell compartments and dictate the size and clonotypic diversity of the B-cell repertoire. B-lymphocyte stimulator (BLyS, a trademark of Human Genome Sciences, Inc.) plays a key role in regulating peripheral B-cell homeostasis. CD22 also promotes peripheral B-cell survival through ligand-dependent mechanisms. The B-cell subsets affected by the absence of BLyS and CD22 signals overlap, suggesting that BLyS- and CD22-mediated survival are intertwined. To examine this, the effects of BLyS insufficiency following neutralizing BLyS mAb treatment in mice also treated with CD22 ligand-blocking mAb were examined. Combined targeting of the BLyS and CD22 survival pathways led to significantly greater clearance of recirculating bone marrow, blood, marginal zone and follicular B cells than either treatment alone. Likewise, BLyS blockade further reduced bone marrow, blood and spleen B-cell numbers in CD22(-/-) mice. Notably, BLyS receptor expression and downstream signaling were normal in CD22(-/-) B cells, suggesting that CD22 does not directly alter BLyS responsiveness. CD22 survival signals were likewise intact in the absence of BLyS, as CD22 mAb treatment depleted blood B cells from mice with impaired BLyS receptor 3 (BR3) signaling. Finally, enforced BclxL expression, which rescues BR3 impairment, did not affect B-cell depletion following CD22 mAb treatment. Thus, the current studies support a model whereby CD22 and BLyS promote the survival of overlapping B-cell subsets but contribute to their maintenance through independent and complementary signaling pathways.
    Cultured human epithelium bound and internalized radiolabelled Epstein-Barr virus (EBV) within 1 h of exposure. A similar percentage of cultured cells also were reactive with monoclonal antibodies to the EBV/C3d receptor of B lymphocytes.... more
    Cultured human epithelium bound and internalized radiolabelled Epstein-Barr virus (EBV) within 1 h of exposure. A similar percentage of cultured cells also were reactive with monoclonal antibodies to the EBV/C3d receptor of B lymphocytes. In cross-sections of fresh frozen, stratified epithelium, receptor expression seemed limited to the less differentiated subpopulation of cells. These findings support the notion of direct infection of epithelial cells by EBV and suggest a viral life cycle in epithelium dependent on the stage of cell differentiation.
    Summary L-selectin binding activity for its ligand expressed by vascular endothelium is rapidly and tran- siently increased after leukocyte activation. To identify mechanisms for upregulation and assess how this influences... more
    Summary L-selectin binding activity for its ligand expressed by vascular endothelium is rapidly and tran- siently increased after leukocyte activation. To identify mechanisms for upregulation and assess how this influences leukocyte/endothelial cell interactions, cell-surface dimers of L-selectin were induced using the coumermycin-GyrB dimerization strategy for cross-linking L-selectin cytoplasmic domains in L-selectin cDNA-transfected lymphoblastoid cells. Coumermycin- induced L-selectin dimerization resulted in
    Human CD83 (hCD83) is a 45 000 Mr cell-surface protein expressed predominantly by dendritic lineage cells. In this report, the genomic locus encoding mouse CD83 (Cd83) was isolated and the gene structure determined. The Cd83 gene spans... more
    Human CD83 (hCD83) is a 45 000 Mr cell-surface protein expressed predominantly by dendritic lineage cells. In this report, the genomic locus encoding mouse CD83 (Cd83) was isolated and the gene structure determined. The Cd83 gene spans approximately 19 kilobases (kb) and is composed of five exons, with two exons encoding a single extracellular immunoglobulin (Ig)-like domain. Mouse CD83 (mCD83) cDNAs were isolated by reverse transcriptase polymerase chain reaction of mouse RNA. Sequence determination revealed substantial conservation, with mCD83 and hCD83 sharing 63% amino acid identity. The transmembrane and cytoplasmic regions of CD83 were most highly conserved. Mouse CD83 mRNA of 2.4 kb was abundantly expressed in spleen and brain, but could also be detected in most tissues analyzed. These results suggest that in the mouse, as in humans, widely distributed dendritic cells may express mCD83. Chromosome localization revealed that the Cd83 gene is present on mouse chromosome 13 band A5, while the locus for the human gene (CD83) is located within a homologous region of human chromosome 6p23. Thus, the CD83 protein and gene appear to be well conserved during recent mammalian evolution. The isolation and characterization of the mCD83 cDNA and gene provides important information and tools that will facilitate the study of CD83 and dendritic cell function in a mouse model system.

    And 20 more