Skip to main content

    Sofia Moco

    The identification of metabolites in biochemical studies is a major bottleneck in the proliferating field of metabolomics. In particular in plant metabolomics, given the diversity and abundance of endogenous secondary metabolites in... more
    The identification of metabolites in biochemical studies is a major bottleneck in the proliferating field of metabolomics. In particular in plant metabolomics, given the diversity and abundance of endogenous secondary metabolites in plants, the identification of these is not only challenging but also essential to understanding their biological role in the plant, and their value to quality and nutritional attributes as food crops. With the new generation of analytical technologies, in which liquid chromatography (LC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) play a pioneering role, profiling metabolites in complex extracts is feasible at high throughput. However, the identification of key metabolites remains a limitation given the analytical effort necessary for traditional structural elucidation strategies. The hyphenation of LC-solid phase extraction (SPE)-NMR is a powerful analytical platform for isolating and concentrating metabolites for unequivocal identificat...
    As one of the main phytoalexins and phytoestrogens, glyceollin is an important prenylflavonoid in Glycine max [L.] Merri. (soybean). Many kinds of elicitors can be used to induce its accumulation. Its biosynthesis pathway is commonly used... more
    As one of the main phytoalexins and phytoestrogens, glyceollin is an important prenylflavonoid in Glycine max [L.] Merri. (soybean). Many kinds of elicitors can be used to induce its accumulation. Its biosynthesis pathway is commonly used to study the characteristics of prenyltransferase, which catalyzes the prenylated reaction happening in a very few plant families in nature. Glycinol, the direct precursor of glyceollin, is necessary to study the prenylated reaction in soybean. In comparing with the other elicitors to elicit the glycinol accumulation in soybean cotyledons, AgNO3 is the most effective elicitor. Exposure of 6-8 days old cotyledons to 0.01 mol/L AgNO3 and incubation for 24 h result in the accumulation of 256 microg (glycinol)/g (fresh weight). The glycinol was extracted by methanol. Then the isolation and purification were conducted by preparative high performance liquid chromatography. Instead of 100% acetonitrile-0.1% formic acid as the elution system, the extract w...
    Although the prevalence of main idiopathic forms of inflammatory bowel disease (IBD) has risen considerably over the last decades, their clinical features do not allow accurate prediction of prognosis, likelihood of disease progression,... more
    Although the prevalence of main idiopathic forms of inflammatory bowel disease (IBD) has risen considerably over the last decades, their clinical features do not allow accurate prediction of prognosis, likelihood of disease progression, or response to specific therapy. Through a better understanding of the molecular pathways involved in IBD and the promise of more targeted therapies, the personalized approach to the management of IBD shows potential. To achieve this, there remains a significant need to better understand the disease process at cellular and molecular levels for any given individual with IBD. The complexity of biological functional networks behind the etiology of IBD highlights the need for their comprehensive analysis. In this, omics technologies can generate a systemic view of IBD pathogenesis on which to base novel, multiple pathway-integrated therapies. Omics sciences have just started to contribute here by generating gene, protein expression, metabolite data at gl...
    Identification and quantification of metabolites occurring within specific cell types or single cells of plants and other organisms is of particular interest for natural product chemistry, chemical ecology, and biochemistry in general.... more
    Identification and quantification of metabolites occurring within specific cell types or single cells of plants and other organisms is of particular interest for natural product chemistry, chemical ecology, and biochemistry in general. The integration of studies at the gene, transcript, protein and metabolite levels in localized regions will provide useful information for the understanding of biology as a system. In this review, we summarize the latest developments in the analysis of metabolites present in small samples, micrometabolomics, dealing with sample preparation methods, with focus on laser-assisted microdissection, and the analytical technologies used. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) are among the most emergent technologies in metabolomics, enabling the shortest route toward metabolite identification.
    neo-Clerodane diterpenes of plant origin are molecules difficult to monitor due to their nonspecific UV/vis absorption. The present work describes for the first time the application of the LC-MS-SPE-NMR technique for the isolation and... more
    neo-Clerodane diterpenes of plant origin are molecules difficult to monitor due to their nonspecific UV/vis absorption. The present work describes for the first time the application of the LC-MS-SPE-NMR technique for the isolation and characterization of three new neo-clerodane diterpenes, 3beta-hydroxyteucroxylepin and teuluteumin A and teuluteumin B, from Teucrium luteum subsp. flavovirens, harvested from two different locations.
    Increasing evidence points toward the critical and long-term involvement of prenatal and early nutrition and lifestyle on later health and disease risk predisposition. Metabolomics is now a well-established top-down systems biology... more
    Increasing evidence points toward the critical and long-term involvement of prenatal and early nutrition and lifestyle on later health and disease risk predisposition. Metabolomics is now a well-established top-down systems biology approach that explores the genetic-environment-health paradigm. The generalization of such approaches has opened new research areas to deepen our current understanding of many physiological processes, as well as foods and nutrient functionalities in target populations. It is envisioned that this will provide new avenues toward preventive medicine and prognostic strategies for tailored therapeutic and personalized nutrition management. The development of systems biology approaches and the new generation of biomarker patterns will provide the opportunity to associate complex metabolic regulations with the etiology of multifactorial pediatric diseases. This may subsequently lead to the development of system mechanistic hypotheses that could be targeted with new nutritional personalized concepts. Therefore, this review aims to describe recent applications of metabolomics in preclinical and clinical fields with insights into disease diagnostics/monitoring and improvement of homeostasis metabolic regulation that may be translatable to novel therapeutic and nutrition advances in pediatric research.
    Health is influenced by genetic, lifestyle, and diet determinants; therefore, nutrition plays an essential role in health management. Still, the substantiation of nutritional health benefits is challenged by the intrinsic macro- and... more
    Health is influenced by genetic, lifestyle, and diet determinants; therefore, nutrition plays an essential role in health management. Still, the substantiation of nutritional health benefits is challenged by the intrinsic macro- and micronutrient complexity of foods and individual responses. Evidence of healthy effects of food requires new strategies not only to stratify populations according to their metabolic requirements but also to predict and measure individual responses to dietary intakes. The influence of the gut microbiome and its interaction with the host is pivotal to understand nutrition and metabolism. Thus, the modulation of the gut microbiome composition by alteration of food habits has potentialities in health improvement or even disease prevention. Dietary polyphenols are naturally occurring constituents in vegetables and fruits, including coffee and cocoa. They are commonly associated to health benefits, although mechanistic evidence in vivo is not yet fully understood. Polyphenols are extensively metabolized by gut bacteria into a complex series of end-products that support a significant effect on the functional ecology of symbiotic partners that can affect the host physiology. This review reports recent nutritional metabolomics inspections of gut microbiota-host metabolic interactions with a particular focus on the cometabolism of cocoa and coffee polyphenols.
    Systems biology approaches are providing novel insights into the role of nutrition for the management of health and disease. In the present study, we investigated if dietary preference for dark chocolate in healthy subjects may lead to... more
    Systems biology approaches are providing novel insights into the role of nutrition for the management of health and disease. In the present study, we investigated if dietary preference for dark chocolate in healthy subjects may lead to different metabolic response to daily chocolate consumption. Using NMR- and MS-based metabolic profiling of blood plasma and urine, we monitored the metabolic response of 10 participants stratified as chocolate desiring and eating regularly dark chocolate (CD) and 10 participants stratified as chocolate indifferent and eating rarely dark chocolate (CI) to a daily consumption of 50 g of dark chocolate as part of a standardized diet over a one week period. We demonstrated that preference for chocolate leads to different metabolic response to chocolate consumption. Daily intake of dark chocolate significantly increased HDL cholesterol by 6% and decreased polyunsaturated acyl ether phospholipids. Dark chocolate intake could also induce an improvement in the metabolism of long chain fatty acid, as noted by a compositional change in plasma fatty acyl carnitines. Moreover, a relationship between regular long-term dietary exposure to a small amount of dark chocolate, gut microbiota, and phenolics was highlighted, providing novel insights into biological processes associated with cocoa bioactives.
    Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers... more
    Metabolism is essential to understand human health. To characterize human metabolism, a high-resolution read-out of the metabolic status under various physiological conditions, either in health or disease, is needed. Metabolomics offers an unprecedented approach for generating system-specific biochemical definitions of a human phenotype through the capture of a variety of metabolites in a single measurement. The emergence of large cohorts in clinical studies increases the demand of technologies able to analyze a large number of measurements, in an automated fashion, in the most robust way. NMR is an established metabolomics tool for obtaining metabolic phenotypes. Here, we describe the analysis of NMR-based urinary profiles for metabolic studies, challenged to a large human study (3007 samples). This method includes the acquisition of nuclear Overhauser effect spectroscopy one-dimensional and J-resolved two-dimensional (J-Res-2D) (1)H NMR spectra obtained on a 600 MHz spectrometer, equipped with a 120 μL flow probe, coupled to a flow-injection analysis system, in full automation under the control of a sampler manager. Samples were acquired at a throughput of ~20 (or 40 when J-Res-2D is included) min/sample. The associated technical analysis error over the full series of analysis is 12%, which demonstrates the robustness of the method. With the aim to describe an overall metabolomics workflow, the quantification of 36 metabolites, mainly related to central carbon metabolism and gut microbial host cometabolism, was obtained, as well as multivariate data analysis of the full spectral profiles. The metabolic read-outs generated using our analytical workflow can therefore be considered for further pathway modeling and/or biological interpretation.