www.fgks.org   »   [go: up one dir, main page]

JPH1180395A - Porous film and separator for nonaqueous electrolyte cell or battery - Google Patents

Porous film and separator for nonaqueous electrolyte cell or battery

Info

Publication number
JPH1180395A
JPH1180395A JP9243917A JP24391797A JPH1180395A JP H1180395 A JPH1180395 A JP H1180395A JP 9243917 A JP9243917 A JP 9243917A JP 24391797 A JP24391797 A JP 24391797A JP H1180395 A JPH1180395 A JP H1180395A
Authority
JP
Japan
Prior art keywords
film
battery
separator
substrate
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9243917A
Other languages
Japanese (ja)
Inventor
Yasuhisa Tojo
泰久 東條
Hiroyuki Higuchi
浩之 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9243917A priority Critical patent/JPH1180395A/en
Publication of JPH1180395A publication Critical patent/JPH1180395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a nonaqueous electrolyte cell or battery, hardly causing internal short-circuiting due to the penetration or the like of electroconductive particles and having a high surface hardness and to obtain a porous film suitable for composing the separator. SOLUTION: This porous film having a surface protecting layer is obtained by using a polyolefin porous film such as polyethylene or polypropylene as a substrate, coating at least one surface of the substrate with a mixture containing inorganic fine particles such as aluminum oxide or silicon dioxide and a resin to be a binder and then ultrasonically treating the resultant coated substrate in ethanol.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質膜および非
水電解液電池用セパレータに関するものである。
TECHNICAL FIELD The present invention relates to a porous membrane and a separator for a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】種々のタイプの電池が実用に供されてお
り、各々に適した電池用セパレータとして、多孔質フィ
ルムや無孔質フィルム、不織布、紙等が提案されてい
る。これら電池用セパレータには、電解液との親和性
(濡れ性)および保液性、低い電気抵抗および高い通気
性、高い機械的強度、化学的安定性等の特性が要求され
る。これらの特性のうち、電解液との親和性や保液性、
電気抵抗、通気性は電池の放電特性に関係し、電池反応
におけるイオンの移動を容易にするために求められるも
のである。機械的強度は、電池の組立て工程等における
セパレータの破断等による内部短絡の発生を低減するた
めに求められる特性である。また、電池用セパレータ
は、電池内部の酸化・還元雰囲気に晒されるため、分解
・反応等を起こしにくい化学的に安定な材料を使用する
必要があり、このような観点からポリオレフィンや、フ
ッ素系ポリマーが多用されている。
2. Description of the Related Art Various types of batteries have been put to practical use, and porous films, non-porous films, nonwoven fabrics, papers, and the like have been proposed as battery separators suitable for each type. These battery separators are required to have properties such as affinity (wetting property) with the electrolyte and liquid retention, low electric resistance and high air permeability, high mechanical strength, and chemical stability. Among these properties, affinity with electrolyte and liquid retention,
Electric resistance and air permeability are related to the discharge characteristics of the battery and are required to facilitate the movement of ions in the battery reaction. Mechanical strength is a characteristic required to reduce the occurrence of an internal short circuit due to breakage of a separator or the like in a battery assembly process or the like. In addition, since the battery separator is exposed to the oxidizing / reducing atmosphere inside the battery, it is necessary to use a chemically stable material that is unlikely to cause decomposition, reaction, and the like. Is often used.

【0003】特に近年、電子機器のコードレス化等に対
応するため、小型軽量、高エネルギー密度のリチウム電
池が注目されている。このリチウム電池においては、外
部短絡や過充電等の誤使用によって電池温度が過度に上
昇する可能性があるため、安全弁、PTC素子(Positi
ve Temperature Coeficient;過大電流が流れた際に電
流を遮断する)、電流制御回路等種々の安全装置が設け
られている。そこで使用されるセパレータにも、適当な
温度において無孔化して電気抵抗を増大することにより
電池反応を停止させ、温度の過大な増大を防止する機能
(これを「シャットダウン(SD)機能」という。)が
求められる。
In particular, in recent years, attention has been paid to a small, lightweight, high energy density lithium battery in order to cope with a cordless electronic device. In this lithium battery, since there is a possibility that the battery temperature may rise excessively due to an external short circuit or overuse, etc., a safety valve, a PTC element (Positi
ve Temperature Coeficient; interrupts current when excessive current flows), and various safety devices such as current control circuit are provided. The separator used therefor also has a function of stopping the battery reaction by making it nonporous at an appropriate temperature and increasing its electrical resistance to prevent an excessive increase in temperature (this is called a "shutdown (SD) function"). ) Is required.

【0004】このようなリチウム電池に適するセパレー
タとしては、ポリプロピレン(以下、「PP」とす
る。)やポリエチレン(以下、「PE」とする。)等に
代表されるポリオレフィンの多孔質膜が多用されてお
り、中でもPPとPEといった融点の異なる2種以上の
樹脂を含む混合物、多層体または濃度勾配を有する形態
の多孔質膜が、SD特性等の特性、および環境面やコス
ト面等において優れ、実用性が高い(特開平4−181
651号公報、特開平4−206257号公報、特開平
6−55629号公報、特開平7−216118号公報
等)。
As a separator suitable for such a lithium battery, a porous film of a polyolefin represented by polypropylene (hereinafter, referred to as "PP") or polyethylene (hereinafter, referred to as "PE") is frequently used. Among them, a mixture containing two or more kinds of resins having different melting points such as PP and PE, a multilayer film or a porous film having a concentration gradient is excellent in characteristics such as SD characteristics, and environmental and cost aspects. High practicality (Japanese Patent Laid-Open No. 4-181)
651, JP-A-4-206257, JP-A-6-55629, JP-A-7-216118, and the like.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの電池
用セパレーターは、表層がポリオレフィンといった軟ら
かな材質からなるために、電池の捲回時または保存時
に、電極より剥離した導電性の粒子粉がセパレーターを
突き破ると、内部短絡が発生する場合があるという問題
があった。
However, since the surface layer of these battery separators is made of a soft material such as polyolefin, the conductive particle powder peeled off from the electrode during winding or storage of the battery is not used. , There is a problem that an internal short circuit may occur.

【0006】特開平1−304933号公報では、表面
空孔径0.05〜3μm、空孔率30〜90%であり、
微多孔性フィルムを構成するポリオレフィン10g当た
り0.1から6gのシロキサン重合体を主体とする塗布
層を有するポリオレフィン微孔性フィルムについての記
述がある。このような構成にすることによって、ポリオ
レフィン単独の多孔質膜に比べて高い機械的強度を得る
ことが期待できるが、ポリシロキサンの塗布量には「微
細孔を閉塞せず、表面を被膜している」程度であるとい
う制限があるため、十分な機械的強度を得ることが困難
であり、内部短絡不良率を低減するには至らない。ま
た、ポリシロキサンの硬化には高温または長い時間が必
要であり、高温を使用した場合は微多孔性フィルムの収
縮によって孔が閉塞し、長時間の硬化を行なう場合はコ
ストアップが問題となる。
In JP-A-1-304933, the surface vacancy diameter is 0.05 to 3 μm and the porosity is 30 to 90%.
There is a description of a polyolefin microporous film having a coating layer mainly composed of 0.1 to 6 g of a siloxane polymer per 10 g of polyolefin constituting the microporous film. By adopting such a configuration, it is expected that a higher mechanical strength can be obtained as compared with a porous film of polyolefin alone. However, it is difficult to obtain a sufficient mechanical strength, and the internal short circuit failure rate cannot be reduced. Further, a high temperature or a long time is required for curing the polysiloxane. When a high temperature is used, the pores are closed due to the contraction of the microporous film, and when the curing is performed for a long time, the cost increases.

【0007】本発明は、機械的強度、特に表面硬度に優
れ、電池製造/保管時の内部短絡不良率が小さい非水電
解液電池用セパレータ、およびそのようなセパレータを
構成するのに適した多孔質膜を提供することを目的とす
る。
The present invention relates to a separator for a non-aqueous electrolyte battery having excellent mechanical strength, particularly excellent surface hardness, and a small internal short circuit failure rate during battery production / storage, and a porous material suitable for constituting such a separator. It is intended to provide a membrane.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の多孔質膜の第1の形態は、基体となる膜の
少なくとも片面に、無機微粒子を含む通気性を有する表
面保護層を形成してなることを特徴とする。このような
構成にしたことにより、機械的強度(表面硬度)が高
く、裂けや微粒子等の貫通が起こりにくい多孔質膜とす
ることができ、非水電解液電池用セパレータとして使用
した場合、電池製造/保管時の導電性微粒子の貫通によ
る内部短絡不良率が小さい非水電解液電池を提供するこ
とができる。なお、ここで「通気性を有する」とは、J
IS K8117に記載の方法によって測定されるガー
レー秒数が10000秒/100cc以下であることを
いう。また、前記多孔質膜においては、表面保護層を形
成した面の表面硬度が鉛筆硬度で4H以上であることが
好ましく、これによればより確実に非水電解液電池の内
部短絡不良率を低減することができる。
Means for Solving the Problems In order to achieve the above object, a first embodiment of the porous membrane of the present invention is a porous membrane having a gas-permeable surface protective layer containing inorganic fine particles on at least one surface thereof. Is formed. By adopting such a configuration, a porous membrane having high mechanical strength (surface hardness) and hardly causing breakage or penetration of fine particles or the like can be obtained. When used as a separator for a non-aqueous electrolyte battery, It is possible to provide a nonaqueous electrolyte battery having a small internal short circuit failure rate due to penetration of conductive fine particles during production / storage. Here, “having air permeability” means J
Gurley seconds measured by the method described in IS K8117 is 10,000 seconds / 100 cc or less. Further, in the porous film, the surface hardness of the surface on which the surface protective layer is formed is preferably 4H or more in pencil hardness, whereby the internal short-circuit failure rate of the nonaqueous electrolyte battery is more reliably reduced. can do.

【0009】また、本発明の多孔質膜においては、熱伝
導率が0.5kW/m・K以上であることが好ましく、
このような構成の多孔質膜は温度過昇時の無孔化が迅速
に進行するため、セパレータとして使用した場合、安全
性の高い非水電解液電池を提供することができる。
Further, in the porous membrane of the present invention, the thermal conductivity is preferably 0.5 kW / m · K or more,
In the porous membrane having such a configuration, the non-aqueous electrolyte battery with high safety can be provided when used as a separator because the non-aqueous electrolyte battery rapidly progresses in nonporous formation when the temperature rises excessively.

【0010】更に、本発明の多孔質膜の第2の形態は、
基体となる膜の少なくとも片面に、メラミン樹脂、ウレ
タン樹脂、アルキド樹脂およびアクリル樹脂から選ばれ
る少なくとも1つの樹脂を含む、通気性を有する表面保
護層を形成してなることを特徴とする。このような構成
によっても、第1の形態と同様に、多孔質膜の表面硬度
を向上させることができる。なお、「通気性を有する」
とは前述と同様の意味である。
[0010] Further, a second embodiment of the porous membrane of the present invention comprises:
It is characterized in that a gas-permeable surface protective layer containing at least one resin selected from melamine resin, urethane resin, alkyd resin and acrylic resin is formed on at least one surface of a film serving as a substrate. With such a configuration, the surface hardness of the porous film can be improved as in the first embodiment. In addition, "has breathability"
Has the same meaning as described above.

【0011】また、上述したような多孔質膜を使用した
本発明の非水電解液用セパレータおよび電池非水電解液
電池によれば、電池製造/保管時の内部短絡不良率が小
さく、安全性の高い非水電解液電池とすることができ
る。
Further, according to the non-aqueous electrolyte separator and the battery non-aqueous electrolyte battery of the present invention using the porous membrane as described above, the internal short-circuit failure rate during battery production / storage is small, and safety is improved. And a nonaqueous electrolyte battery having a high

【0012】[0012]

【発明の実施の形態】本発明の多孔質膜は、基体となる
膜の片面または両面に表面保護層を設けることにより、
機械的強度に優れた多孔質膜としたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The porous film of the present invention can be obtained by providing a surface protective layer on one or both sides of a substrate film.
This is a porous film having excellent mechanical strength.

【0013】基体となる膜は多孔質構造を有するもので
あればよいが、本発明の多孔質膜を非水電解液電池用セ
パレータとして使用する場合においては、低い電気抵抗
と優れたSD機能を有する膜を用いることが好ましい。
優れたSD機能とは、例えば、SD機能発現時の電気抵
抗増大が急速である、SD開始温度および耐熱温度が適
当である等の特性を有することをいう。このような観点
から、以下に本発明において好適な基体について説明す
る。
The membrane serving as the substrate may have a porous structure. However, when the porous membrane of the present invention is used as a separator for a non-aqueous electrolyte battery, it has low electric resistance and excellent SD function. It is preferable to use a film having the same.
The excellent SD function refers to, for example, having characteristics such as a rapid increase in electric resistance when the SD function is developed, and an appropriate SD starting temperature and heat resistant temperature. From such a viewpoint, a substrate suitable in the present invention will be described below.

【0014】基体の材質としては、ポリオレフィン、ポ
リアミド、ポリエステル、フッ素樹脂等が好適に使用で
きる。中でもPPやPE等のポリオレフィンが好まし
く、SD開始温度および膜の耐熱温度が好適であるとい
う理由から、PPとPEとを含む混合物または多層体が
特に好ましい。また、これらの樹脂に、酸化防止剤、着
色剤、難燃化剤、充填剤等を添加してもよい。
As the material of the substrate, polyolefin, polyamide, polyester, fluororesin and the like can be suitably used. Among them, a polyolefin such as PP or PE is preferable, and a mixture or a multilayer containing PP and PE is particularly preferable because the SD initiation temperature and the heat-resistant temperature of the film are suitable. Further, an antioxidant, a coloring agent, a flame retardant, a filler, and the like may be added to these resins.

【0015】基体は前述したように多孔質構造を有する
ものであればよく、微多孔質膜、メッシュ、不織布、織
布または発泡体等の単層体または多層体を使用すること
ができる。空孔の孔径は0.1〜200μm程度が適当
であり、特に0.1〜1.0μmの微多孔質膜が孔の閉
塞が迅速であるため好ましい。また、通気度は、ガーレ
ー秒数で10000秒/100cc以下のものが適当で
あり、好ましくは2000秒/100cc以下、更に好
ましくは1000秒/100cc以下とする。また、基
体の膜厚は400μm以下が適当であり、好ましくは1
00μm以下、更に好ましくは30μm以下とする。
The substrate may have a porous structure as described above, and may be a single layer or a multilayer such as a microporous membrane, a mesh, a nonwoven fabric, a woven fabric or a foam. The pore size of the pores is suitably about 0.1 to 200 μm, and a microporous membrane of 0.1 to 1.0 μm is particularly preferred because the pores are quickly closed. The air permeability is suitably not more than 10,000 seconds / 100 cc in Gurley seconds, preferably not more than 2000 seconds / 100 cc, and more preferably not more than 1000 seconds / 100 cc. The thickness of the substrate is suitably 400 μm or less, preferably 1 μm or less.
The thickness is set to 00 μm or less, more preferably 30 μm or less.

【0016】基体に設ける表面保護層の材質としては、
基体よりも表面硬度が高い薄膜を形成できるものであれ
ばよい。以下、このような材料として、無機微粒子を含
む材料を採用した形態を「第1の形態」、前述の有機系
の樹脂を含む材料を採用した形態を「第2の形態」とし
て説明する。
The material of the surface protective layer provided on the substrate is as follows:
What is necessary is just to be able to form a thin film having a higher surface hardness than the substrate. Hereinafter, as such a material, an embodiment in which a material containing inorganic fine particles is used will be described as a “first embodiment”, and an embodiment in which a material containing the above-described organic resin is used will be described as a “second embodiment”.

【0017】表面保護層の厚さが薄過ぎると十分な強度
を確保することが困難であり、厚過ぎるとセパレータと
して使用したとき電池特性に悪影響を及ぼすおそれがあ
る。よって、第1、第2どちらの形態においても、表面
保護層の厚さは0.5〜100μmとすることが適当で
あり、好ましくは1〜30μm、より好ましくは1〜1
0μmとする。また、表面保護層の通気性はガーレー秒
数で10000秒/100cc以下、好ましくは200
0秒/100cc以下とする。
If the thickness of the surface protective layer is too small, it is difficult to secure sufficient strength. If the thickness is too large, the battery characteristics may be adversely affected when used as a separator. Therefore, in both of the first and second embodiments, the thickness of the surface protective layer is suitably 0.5 to 100 μm, preferably 1 to 30 μm, more preferably 1 to 1 μm.
0 μm. The air permeability of the surface protective layer is 10,000 seconds / 100 cc or less in Gurley seconds, preferably 200 seconds.
0 sec / 100 cc or less.

【0018】第1の形態において使用する無機微粒子と
しては、特に限定するものではないが、硬質、軽量であ
り、導電性に乏しいものが好適である。例としては、各
種金属酸化物、金属炭化物、金属窒化物、金属水酸化
物、金属塩等が挙げられ、より具体的には、酸化アルミ
ニウム、二酸化珪素、酸化チタン、酸化亜鉛、酸化錫、
酸化ジルコニウム、酸化マグネシウム、酸化鉄、酸化
銅、水酸化アルミニウム、炭化珪素、窒化ホウ素等が挙
げられる。
The inorganic fine particles used in the first embodiment are not particularly limited, but those which are hard, light, and poor in conductivity are preferred. Examples include various metal oxides, metal carbides, metal nitrides, metal hydroxides, metal salts, and more specifically, aluminum oxide, silicon dioxide, titanium oxide, zinc oxide, tin oxide,
Examples include zirconium oxide, magnesium oxide, iron oxide, copper oxide, aluminum hydroxide, silicon carbide, and boron nitride.

【0019】また、無機微粒子の粒径が小さ過ぎると十
分な補強効果を得ることが困難であり、粒径が大き過ぎ
ると多孔質膜の総厚みが大きくなるためセパレータとし
て使用する場合に不適である。よって、無機微粒子の平
均粒径は20μm以下が適当であり、好ましくは0.1
μm〜20μmである。なお、柱状または繊維状等の微
粒子の場合、平均粒子径を0.1〜10μm、平均粒子
長を1〜100μmとすることが好ましい。
On the other hand, if the particle size of the inorganic fine particles is too small, it is difficult to obtain a sufficient reinforcing effect. If the particle size is too large, the total thickness of the porous membrane becomes large, which is unsuitable for use as a separator. is there. Therefore, the average particle diameter of the inorganic fine particles is suitably 20 μm or less, and preferably 0.1 μm or less.
μm to 20 μm. In the case of columnar or fibrous particles, the average particle diameter is preferably 0.1 to 10 μm, and the average particle length is preferably 1 to 100 μm.

【0020】無機微粒子を含む表面保護層の形成方法の
一例としては、無機微粒子を溶媒に分散させ、基体上に
キャスティング、ディッピング、またはスプレー塗布し
た後溶媒を蒸発させる方法が挙げられる。溶媒は揮発性
で、基体および無機微粒子を溶解しないものが好まし
く、例えば、アセトン、メチルエチルケトン、メチルイ
ソブチルケトン等のケトン類、トルエン、キシレン、ス
チレン等の芳香族類、メタノール、エタノール等の各種
アルコール類や水等が使用できる。また、上記溶媒に界
面活性剤等の添加剤を加えてもよく、このとき添加剤の
割合は5重量%以下とすることが好ましい。
As an example of a method for forming a surface protective layer containing inorganic fine particles, there is a method in which inorganic fine particles are dispersed in a solvent, and the solvent is evaporated after casting, dipping or spray coating on a substrate. The solvent is preferably volatile and does not dissolve the substrate and the inorganic fine particles. Examples thereof include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, aromatics such as toluene, xylene and styrene, and various alcohols such as methanol and ethanol. Or water can be used. Further, an additive such as a surfactant may be added to the solvent, and the ratio of the additive is preferably 5% by weight or less.

【0021】また、溶媒を使用せずに無機微粒子を基体
上に散布する方法や、常法により多孔性セラミックを作
製して、これを基体に貼り合せ、または単に重ね合わせ
る方法等も採用できる。
Further, a method in which inorganic fine particles are sprayed on a substrate without using a solvent, a method in which a porous ceramic is produced by a conventional method, and this is adhered to the substrate, or a method in which the porous ceramic is simply laminated, can also be adopted.

【0022】表面保護層の基体との密着性、脆さ、亀裂
の入り易さ等を改善するため、無機微粒子はバインダー
となる樹脂と混合して使用することが好ましい。バイン
ダーとしては、従来使用されているものであれば特に制
限するものではなく、例えば、各種ポリエステル、各種
ポリオレフィン、各種ゴム類、各種アクリル樹脂等を単
独または混合して用いることができる。無機微粒子とバ
インダーとの混合重量比は、無機微粒子100部に対し
て、バインダーを500部以下、好ましくは100部以
下、より好ましくは50部以下とする。これは、バイン
ダーの比率が500部を超えると十分な補強効果を得る
ことが困難となるからである。なお、バインダーは、加
熱または紫外線照射等によって硬化を行なってもよい。
In order to improve the adhesion of the surface protective layer to the substrate, the brittleness, the ease of cracking, and the like, it is preferable to use the inorganic fine particles in a mixture with a resin serving as a binder. The binder is not particularly limited as long as it is conventionally used. For example, various polyesters, various polyolefins, various rubbers, various acrylic resins, and the like can be used alone or in combination. The mixing weight ratio of the inorganic fine particles to the binder is set to 500 parts or less, preferably 100 parts or less, and more preferably 50 parts or less with respect to 100 parts of the inorganic fine particles. This is because if the ratio of the binder exceeds 500 parts, it is difficult to obtain a sufficient reinforcing effect. The binder may be cured by heating or irradiation with ultraviolet rays.

【0023】バインダーを使用した場合の表面保護層の
形成方法としても、キャスティング、ディッピングまた
はスプレー塗布等の塗工方法を採用することができる。
このとき、必要に応じて上記のような溶媒を使用するこ
ともできる。溶媒は、無機微粒子100部に対して10
000部以下の重量比で使用することが適当である。
As a method for forming the surface protective layer when a binder is used, a coating method such as casting, dipping or spray coating can be adopted.
At this time, the above-mentioned solvent can be used if necessary. The solvent is 10 parts per 100 parts of the inorganic fine particles.
It is appropriate to use it in a weight ratio of 000 parts or less.

【0024】バインダーを使用した表面保護層を、上記
のような塗工方法で形成する場合、使用する塗布液の濃
度または塗布量を調整することによって、前述したよう
な通気度を確保することができる。しかし、通気度の向
上を図るために塗布液濃度または塗布量を減少させる
と、表面保護層中の無機微粒子の濃度が低減するため、
膜の強度向上に限界が生じる。
When the surface protective layer using a binder is formed by the above-described coating method, it is possible to secure the above-mentioned air permeability by adjusting the concentration or the amount of the coating solution used. it can. However, when the coating solution concentration or the coating amount is reduced to improve the air permeability, the concentration of the inorganic fine particles in the surface protective layer is reduced.
There is a limit in improving the strength of the film.

【0025】上記の問題を回避する方法として、表面保
護層をスクリーン印刷によってメッシュ状等のように開
孔を有するように形成する方法が挙げられる。開孔の大
きさは特に限定はしないが、電池用セパレータとして使
用する場合には内部短絡の原因となる導電性の粒子の大
きさを考慮して、0.1μm〜1mmとすることが適当
であり、好ましくは5μm〜20μmとする。また、開
孔は表面保護層の表面において全面積の40〜80%程
度を占めることが好ましい。
As a method of avoiding the above problem, there is a method of forming a surface protective layer by screen printing so as to have openings such as a mesh. The size of the opening is not particularly limited, but when used as a battery separator, it is appropriate to set the size to 0.1 μm to 1 mm in consideration of the size of conductive particles that cause an internal short circuit. And preferably 5 μm to 20 μm. Further, the openings preferably occupy about 40 to 80% of the total area on the surface of the surface protective layer.

【0026】また、表面保護層を上記の塗工方法等で形
成後、表面保護層を構成する樹脂に対する貧溶媒中で超
音波処理を行なうことによって、表面保護層に基体の有
する孔構造に準じた細孔を形成することができ、この方
法によっても前述の問題が回避できる。このような貧溶
媒としては、メタノール等の低級アルコールや水等が使
用できる。
After the surface protective layer is formed by the above-described coating method or the like, the surface protective layer is subjected to ultrasonic treatment in a poor solvent for the resin constituting the surface protective layer, so that the surface protective layer conforms to the pore structure of the substrate. The above-mentioned problem can be avoided by this method. As such a poor solvent, a lower alcohol such as methanol or water can be used.

【0027】また、予め孔構造を有する表面保護層を作
製しておき、これを基体に接合することによって前述の
問題を回避することもできる。例えば、抽出、延伸また
は発泡剤の添加等によって多孔性の表面保護層を作製
し、基体に貼合わせまたは重合わせる方法や、剥離紙上
にメッシュ状のスクリーン印刷等で表面保護層を形成し
た後基体表面に転写する方法等が使用できる。
Further, the above-mentioned problem can be avoided by preparing a surface protective layer having a pore structure in advance and bonding it to a base. For example, a method of producing a porous surface protective layer by extraction, stretching, or addition of a foaming agent, and then laminating or overlapping the substrate, or forming the surface protective layer on a release paper by mesh screen printing, etc. A method of transferring to the surface can be used.

【0028】また、第1の形態の好ましい例によれば、
本発明の目的である機械的強度の向上はもちろん、熱伝
導率の向上を図ることもできる。この熱伝導率の向上を
重視する場合、使用する無機微粒子としては、酸化アル
ミニウム、酸化ベリリウム、酸化マグネシウム、雲母等
が好ましい。また、バインダーを使用する場合は、無機
微粒子100部に対して100部以下、更には50部以
下が好ましい。
According to a preferred example of the first embodiment,
The object of the present invention is not only to improve the mechanical strength, but also to improve the thermal conductivity. When importance is attached to the improvement of the thermal conductivity, as the inorganic fine particles to be used, aluminum oxide, beryllium oxide, magnesium oxide, mica and the like are preferable. When a binder is used, the amount is preferably 100 parts or less, more preferably 50 parts or less based on 100 parts of the inorganic fine particles.

【0029】通常、電池用セパレーターに用いられるポ
リエチレンあるいはポリプロピレン等の有機材料の熱伝
導率は単体で0.1〜0.3kW/m・Kであるが、電
池用セパレーターは気孔率が10〜90%程度、通常は
40〜50%の多孔質体であるために、熱伝導率は通常
0.001〜0.1kW/m・K前後である。しかし、
この第1の形態の好ましい例によれば、0.5kW/m
・K以上の熱伝導率とすることも可能である。熱伝導率
の向上によって、セパレータとして使用したとき、過剰
な温度上昇時の細孔閉塞の迅速化が図れ、電池の安全性
を向上させることができる。
Normally, the thermal conductivity of an organic material such as polyethylene or polypropylene used for the battery separator is 0.1 to 0.3 kW / m · K alone, but the porosity of the battery separator is 10 to 90 kW / m · K. %, Usually about 40 to 50%, so that the thermal conductivity is usually about 0.001 to 0.1 kW / m · K. But,
According to a preferred example of the first embodiment, 0.5 kW / m
-It is also possible to have a thermal conductivity of K or more. By improving the thermal conductivity, when used as a separator, it is possible to rapidly close pores when an excessive temperature rise occurs, thereby improving the safety of the battery.

【0030】上記形態の他にも、A)無機繊維不織布と
多孔質膜との貼り合せや、B)無機繊維や無機微粒子を
添加したポリオレフィン類等を原料とするフィルムの多
孔化等によっても高い熱伝導率を有する多孔質膜を得る
ことができる。
In addition to the above-mentioned embodiments, it is also high due to A) bonding of an inorganic fiber non-woven fabric and a porous film, and B) porous film made of a polyolefin or the like to which inorganic fibers or inorganic fine particles are added. A porous film having thermal conductivity can be obtained.

【0031】本発明の第2の形態において、表面保護層
として使用する樹脂は、メラミン樹脂、ウレタン樹脂、
アルキド樹脂またはアクリル樹脂である。これらの樹脂
は単独で用いてもよいが、各々の特性を考慮して混合し
て用いることが好ましい。このような混合物としては、
例えば、メラミン樹脂とアルキド樹脂またはアクリル樹
脂との混合物等が挙げられる。
In the second embodiment of the present invention, the resin used as the surface protective layer is a melamine resin, a urethane resin,
Alkyd resin or acrylic resin. These resins may be used alone, but are preferably used in combination in consideration of their properties. As such a mixture,
For example, a mixture of a melamine resin and an alkyd resin or an acrylic resin may be used.

【0032】第2の形態における表面保護層の形成方法
としては、キャスティング、ディッピング、スプレー塗
布等によって塗布した後、加熱、紫外線照射等の塗膜成
分に応じた方法で硬化を行う方法が使用できる。塗工液
には、上記の樹脂の塗膜を形成する成分の他に硬化促進
剤等の添加剤を加えてもよい。また、必要に応じて溶媒
を使用してもよく、このような溶媒としては揮発性で基
体を溶解しないものを使用し、例えば、トルエン、キシ
レン、ヘキサン等の炭化水素類、メタノール、イソブチ
ルアルコール等のアルコール類、酢酸エチル、酢酸イソ
プロピル等のエステル類、エーテル類、テルペン類等が
使用できる。
As a method for forming the surface protective layer in the second embodiment, a method in which the surface is coated by casting, dipping, spray coating or the like, and then cured by a method corresponding to the coating film components such as heating, ultraviolet irradiation, or the like can be used. . An additive such as a curing accelerator may be added to the coating liquid in addition to the above-mentioned components for forming a resin coating film. In addition, a solvent may be used if necessary. As such a solvent, a solvent that is volatile and does not dissolve the substrate is used, and examples thereof include hydrocarbons such as toluene, xylene, and hexane, methanol, and isobutyl alcohol. Alcohols, esters such as ethyl acetate and isopropyl acetate, ethers, terpenes and the like can be used.

【0033】また、バインダーを使用した第1の形態と
同様に、スクリーン印刷、貧溶媒中での超音波処理等の
方法を使用することもでき、これらの方法によれば、表
面保護層形成成分の量を制限することなく十分な通気性
を確保することができるため好ましい。もちろん、予め
表面保護層を独立して作製して延伸等によって多孔化し
た後、基体に貼合せる方法等も使用できる。
As in the case of the first embodiment using a binder, methods such as screen printing and ultrasonic treatment in a poor solvent can be used. It is preferable because sufficient air permeability can be ensured without limiting the amount of the polymer. Of course, it is also possible to use a method in which a surface protective layer is independently prepared in advance, made porous by stretching or the like, and then bonded to a substrate.

【0034】以上のような多孔質膜は表面硬度が高く、
よってセパレータとして使用したとき、異物によって生
じる裂けや破断が起こりにくく、電池製造/保管時の内
部短絡不良率が小さく安全性に優れた非水電解液電池を
得ることができる。
The above porous membrane has a high surface hardness,
Therefore, when used as a separator, a non-aqueous electrolyte battery that is less likely to be torn or broken due to foreign matter, has a low internal short-circuit failure rate during battery production / storage, and is excellent in safety.

【0035】このような非水電解液電池は、帯状の負
極、正極および本発明の多孔質膜を積層捲回して得た捲
回型電極体を電解液と共に電池缶に収納し、その他の必
要な部材を市販の電池に準じて適宜配することによって
得られる。
In such a non-aqueous electrolyte battery, a wound electrode body obtained by laminating and winding a strip-shaped negative electrode, a positive electrode and the porous film of the present invention is housed in a battery can together with an electrolytic solution, and other necessary components. It can be obtained by appropriately arranging various members according to a commercially available battery.

【0036】負極材料としては、金属リチウム、リチウ
ム合金、カーボンやグラファイト等のリチウムイオンを
吸着または吸蔵する炭素材料、またはリチウムイオンを
ドーピングした導電性高分子で形成したもの等が使用で
きる。また、正極材料としては、一般に(CFXnで示
されるフッ化黒鉛、CoLiO2、MnO2、V25、C
uO、Ag2CrO4等の金属酸化物、TiO2、CuS
等の硫化物等が使用できる。また、電解液としては、エ
チレンカーボネート、プロピレンカーボネート、アセト
ニトリル、γ-ブチロラクトン、1,2-ジメトキシエタ
ン、テトラヒドロフラン等の有機溶媒にLiPF6、L
iCF3SO3、LiClO4、LiBF4等を電解質と溶
解させたものが使用できる。
As the negative electrode material, a metal material such as lithium metal, a lithium alloy, a carbon material such as carbon or graphite which adsorbs or occludes lithium ions, or a material formed of a conductive polymer doped with lithium ions can be used. As the cathode material, generally (CF X) fluorinated graphite represented by n, CoLiO 2, MnO 2, V 2 O 5, C
uO, metal oxides such as Ag 2 CrO 4 , TiO 2 , CuS
And the like can be used. Examples of the electrolytic solution include LiPF 6 , LPF in an organic solvent such as ethylene carbonate, propylene carbonate, acetonitrile, γ-butyrolactone, 1,2-dimethoxyethane, and tetrahydrofuran.
A material obtained by dissolving iCF 3 SO 3 , LiClO 4 , LiBF 4 or the like with an electrolyte can be used.

【0037】[0037]

【実施例】以下、実施例により本発明を詳細に説明す
る。ただし、以下の記載において混合割合を表す際に使
用する「部」とは「重量部」を意味する。また、試料の
特性は以下の方法で測定した。
The present invention will be described below in detail with reference to examples. However, in the following description, “parts” used when expressing the mixing ratio means “parts by weight”. The characteristics of the sample were measured by the following methods.

【0038】(通気度)JIS K−8117に準じ、
安田精機製作所製ガーレー式デンソメーターNo.32
3−Autoを用い、膜面積642mm2 を空気10c
cが透過する時間を測定し、この値を10倍して求め
た。
(Air permeability) According to JIS K-8117,
Gurley type densometer No. manufactured by Yasuda Seiki Seisakusho 32
Using 3-Auto, film area 642 mm 2
The transmission time of c was measured, and this value was obtained by multiplying by 10 times.

【0039】(表面硬度)JIS K 5400に規定
される鉛筆引っかき法により求めた。
(Surface hardness) It was determined by a pencil scratching method specified in JIS K 5400.

【0040】(熱伝導率)フィルムを2枚のヒーター板
の間に圧着し、一方のヒーター板を加熱する。温度が一
定になった後、フィルム両面間の温度差ΔT(K)およ
び伝熱量Q(cal/秒)を測定し、その測定結果並び
にフィルムの厚みL(cm)および面積A(cm2 )よ
り、下記式によって熱伝導率λを算出した。 λ(W/m・K)=(Q/A)×(L/ΔT)×41
8.6
(Thermal Conductivity) A film is pressed between two heater plates, and one of the heater plates is heated. After the temperature became constant, the temperature difference ΔT (K) and the heat transfer Q (cal / sec) between the two surfaces of the film were measured, and the measurement results were used as well as the film thickness L (cm) and area A (cm 2 ). The thermal conductivity λ was calculated by the following equation. λ (W / m · K) = (Q / A) × (L / ΔT) × 41
8.6

【0041】(収縮率)フィルムを長さ方向がその機械
方向に一致するように幅約10mm、長さ300mm程
度に切り取り、これを圧縮紙の上に無張力で設置した状
態で60℃に保った熱風循環式乾燥機中に1時間投入
し、加熱前後のフィルムの長さを測定してその減少率か
ら求めた。
(Shrinkage Ratio) A film was cut to a width of about 10 mm and a length of about 300 mm so that the length direction coincided with the machine direction, and this was kept at 60 ° C. in a state of being placed on a compressed paper without tension. The film was put into a hot air circulating dryer for one hour, the length of the film before and after heating was measured, and the length was determined from the decrease rate.

【0042】(厚み)全厚みは、1/1000mmのダ
イアルゲージにて測定した。多層フィルムの各層の厚み
は、フィルムを凍結破断し、断面を光学顕微鏡で観察す
ることによって求めた。
(Thickness) The total thickness was measured with a dial gauge of 1/1000 mm. The thickness of each layer of the multilayer film was determined by freeze-fracturing the film and observing the cross section with an optical microscope.

【0043】(実施例1)重量平均分子量(以下、「M
w」とする。)9.8×105 のPP単体と、これと同
様のPP50部とMw2.6×105 の高密度PE50
部との混合物を使用し、3層Tダイ式フィルム成形機に
よってPP層/PPとPEの混合物層/PP層という3
層構造を有するフィルムを形成した。このとき、押出し
温度は250℃、ドロー比は30であり、得られたフィ
ルムの総厚みは32μm(各層の厚み:PP層/混合物
層/PP層=10/11/11μm)であった。このフ
ィルムを25℃、相対湿度30%のクリーンルーム中
で、厚み50μmのポリエチレンテレフタレートフィル
ム2枚に挟み、表面温度150℃のロール表面上におよ
そ10秒間接触させて熱処理し、鉄芯上に巻き取った。
更にこれを125℃の乾燥機中に投入して48時間熱処
理した。続いてこの熱処理したフィルムを60℃にて、
未延伸フィルムの長さを基準に78%延伸し、更に12
0℃にて未延伸フィルムの長さを基準に178%延伸し
た(トータル延伸倍率256%=3.56倍)。更に1
20℃にて延伸後のフィルムの長さを基準に26%収縮
させ、(最終延伸倍率2.63倍)得られた多孔質膜を
基体とする。平均粒径3μmのアルミナ粒子(昭和電工
製 AL15−H)100部に対し、PEワックス(三
洋化成製 サンワックス171P)50部、界面活性剤
1部、キシレン1000部を加え、100℃で加熱攪拌
を行い混合物を得た。基体上にこの混合物を約80℃の
温度でキャスティングした。その後、メタノール中で2
分間超音波処理を行った後、80℃の乾燥機でキシレン
を蒸発させ、多孔質膜Aを得た。
Example 1 Weight average molecular weight (hereinafter referred to as "M
w ”. ) 9.8 × 10 5 PP alone, 50 parts of similar PP and high-density PE 50 with Mw of 2.6 × 10 5
And a mixture of PP layer / PP mixture layer / PP layer / PP layer using a three-layer T-die film forming machine.
A film having a layer structure was formed. At this time, the extrusion temperature was 250 ° C., the draw ratio was 30, and the total thickness of the obtained film was 32 μm (thickness of each layer: PP layer / mixture layer / PP layer = 10/11/11 μm). This film is sandwiched between two 50 μm-thick polyethylene terephthalate films in a clean room at 25 ° C. and a relative humidity of 30%, contacted on a roll surface having a surface temperature of 150 ° C. for about 10 seconds, heat-treated, and wound on an iron core. Was.
This was further placed in a dryer at 125 ° C. and heat-treated for 48 hours. Subsequently, the heat-treated film is heated at 60 ° C.
The film is stretched 78% based on the length of the unstretched film.
The film was stretched at 0 ° C. by 178% based on the length of the unstretched film (total stretching ratio: 256% = 3.56 times). One more
The resulting porous membrane is shrunk by 26% based on the length of the stretched film at 20 ° C. (final stretch ratio: 2.63 times), and used as a substrate. To 100 parts of alumina particles having an average particle diameter of 3 μm (AL15-H manufactured by Showa Denko), 50 parts of PE wax (Sunwax 171P manufactured by Sanyo Chemical Co., Ltd.), 1 part of surfactant, and 1000 parts of xylene were added, and heated and stirred at 100 ° C. Was performed to obtain a mixture. This mixture was cast on a substrate at a temperature of about 80 ° C. Then in methanol
After sonication for 2 minutes, xylene was evaporated with a dryer at 80 ° C. to obtain a porous film A.

【0044】(実施例2)平均粒径1.2μmのシリカ
微粒子100部に対してポリノルボルネンゴム(日本ゼ
オン社製 ノーソレックス)30部、キシレン1000
部を加え、60℃で加熱攪拌を行い混合物を作製した。
実施例1と同様にして作製した基体上にこの混合物のス
プレー散布を目付け量5g/m2 で行い、その後、90
℃で2時間の乾燥を行い多孔質膜Bを得た。
(Example 2) 30 parts of polynorbornene rubber (Nosorex manufactured by Zeon Corporation) and 100 parts of xylene 1000 per 100 parts of silica fine particles having an average particle diameter of 1.2 μm
The mixture was heated and stirred at 60 ° C. to prepare a mixture.
The mixture was spray-sprayed on a substrate prepared in the same manner as in Example 1 at a basis weight of 5 g / m 2 ,
Drying was performed at 2 ° C. for 2 hours to obtain a porous film B.

【0045】(実施例3)平均繊維径0.3〜0.6μ
m、平均繊維長10〜20μmの繊維状のチタン酸カリ
ウム粒子(大塚化学社製 ティスモD)100部に対し
てポリエステル樹脂(東洋紡績社製 バイロン630)
100部、トルエン250部、メチルイソブチルケトン
100部を加え、ボールミルで24時間攪拌を行い混合
物を得た。実施例1と同様にして作製した基体上に、こ
の混合物を常温でキャスティングした。その後、メタノ
ール中で2分間の超音波処理を行った後、120℃の乾
燥機中で溶媒を蒸発させ、多孔質膜Cを得た。
Example 3 Average Fiber Diameter 0.3-0.6 μm
m, 100 parts of fibrous potassium titanate particles having an average fiber length of 10 to 20 μm (Tismo D manufactured by Otsuka Chemical Co., Ltd.) and polyester resin (Byron 630 manufactured by Toyobo Co., Ltd.)
100 parts, 250 parts of toluene and 100 parts of methyl isobutyl ketone were added, and the mixture was stirred with a ball mill for 24 hours to obtain a mixture. This mixture was cast at room temperature on a substrate prepared in the same manner as in Example 1. Then, after performing ultrasonic treatment for 2 minutes in methanol, the solvent was evaporated in a dryer at 120 ° C. to obtain a porous film C.

【0046】(実施例4)Mw2.5×106 の超高分
子量PE2部と、6.8×105 のPE8部との混合物
に流動パラフィン90部を加えPE組成物の溶液を得
た。この溶液100重量部に、2,6−t−ブチル−p
−クレゾール(「BHT」、住友化学工業社製)0.1
25部とテトラキス[メチレン−3−(3,5−ジ−t
−ブチル−4−ヒドロキシルフェニル)−プロピオネー
ト]メタン(「イルガノックス1010」、チバガイギ
ー社製)0.25部とを酸化防止剤として加え、混合し
た。この混合物を攪拌機付きのオートクレーブに充填し
て均一な溶液を得た。この溶液を押出し機によりTダイ
から押出し、冷却ロールで引取りながら、ゲル上シート
を成形した。得られたシートを二軸延伸機にセットし
て、温度115℃、延伸速度0.5m/分で7×7倍に
同二軸延伸した。得られた延伸膜を塩化メチレンで洗浄
して残留する流動パラフィンを抽出除去した後、乾燥し
てPEの単層多孔質膜である基体を得た。この基体上に
実施例1と同様にして作製した混合物を約80℃の温度
でキャスティングした。その後、メタノール中で2分間
超音波処理を行った後、80℃の乾燥機でキシレンを蒸
発させ、多孔質膜Dを得た。
Example 4 90 parts of liquid paraffin was added to a mixture of 2 parts of ultrahigh molecular weight PE having an Mw of 2.5 × 10 6 and 8 parts of 6.8 × 10 5 PE to obtain a solution of a PE composition. 100 parts by weight of this solution was added to 2,6-t-butyl-p
-Cresol ("BHT", manufactured by Sumitomo Chemical Co., Ltd.) 0.1
25 parts and tetrakis [methylene-3- (3,5-di-t
-Butyl-4-hydroxyphenyl) -propionate] methane (“Irganox 1010”, manufactured by Ciba Geigy) as an antioxidant was added and mixed. This mixture was filled in an autoclave equipped with a stirrer to obtain a uniform solution. This solution was extruded from a T-die by an extruder, and a gel upper sheet was formed while being taken up by a cooling roll. The obtained sheet was set on a biaxial stretching machine and biaxially stretched 7 × 7 times at a temperature of 115 ° C. and a stretching speed of 0.5 m / min. The obtained stretched film was washed with methylene chloride to extract and remove the remaining liquid paraffin, and then dried to obtain a substrate as a PE single-layer porous film. A mixture prepared in the same manner as in Example 1 was cast on this substrate at a temperature of about 80 ° C. Then, after performing ultrasonic treatment in methanol for 2 minutes, xylene was evaporated by a dryer at 80 ° C. to obtain a porous film D.

【0047】(実施例5)実施例4と同様にして作製し
た基体を用いた以外は、実施例2と同様の方法で多孔質
膜Eを得た。
(Example 5) A porous film E was obtained in the same manner as in Example 2, except that a substrate produced in the same manner as in Example 4 was used.

【0048】(実施例6)実施例4と同様にして作製し
た基体を用いた以外は、実施例3と同様の方法で多孔質
膜Fを得た。
(Example 6) A porous film F was obtained in the same manner as in Example 3, except that a substrate prepared in the same manner as in Example 4 was used.

【0049】(実施例7)紫外線硬化型のアクリルウレ
タン系オリゴマー100部およびベンゾフェノン3部
を、酢酸エチル400部に溶かし、高速攪拌を行った。
実施例1と同様に作製した基体上に、この混合物を常温
でキャスティングした。酢酸エチルを蒸発させた後、高
圧水銀ランプで積算光量150mj/cm2 で光照射し
て硬化処理し、多孔質膜Gを得た。
Example 7 100 parts of an ultraviolet-curable acrylic urethane oligomer and 3 parts of benzophenone were dissolved in 400 parts of ethyl acetate and stirred at a high speed.
This mixture was cast at room temperature on a substrate prepared in the same manner as in Example 1. After evaporating the ethyl acetate, the film was irradiated with light at a cumulative light amount of 150 mj / cm 2 using a high-pressure mercury lamp and cured to obtain a porous film G.

【0050】(実施例8)実施例4と同様にして作製し
た基体を用いた以外は、実施例7と同様の方法で多孔質
膜Hを得た。
(Example 8) A porous film H was obtained in the same manner as in Example 7, except that a substrate produced in the same manner as in Example 4 was used.

【0051】上記の実施例で得た多孔質膜A〜Hの特性
について測定した結果を表1に示す。また、比較例とし
て、表面保護層を形成していない実施例1および4の基
体をそれぞれ試料IおよびJとして同様の測定を行った
結果を併せて記載する。
Table 1 shows the results of measuring the characteristics of the porous films A to H obtained in the above examples. Further, as a comparative example, the results of the same measurement performed using the substrates of Examples 1 and 4 on which the surface protective layer was not formed as samples I and J are also described.

【0052】[0052]

【表1】 試料 通気度 表面硬度 熱伝導率 収縮率 (秒/100cc) (鉛筆硬度) (kW/m・K) (%) A 900 4H 0.9 2.0 B 850 4H 0.8 1.9 C 1000 5H 0.7 2.0 D 800 3H 0.9 1.0 E 750 4H 0.7 1.1 F 900 5H 0.6 1.3 G 1200 2H 0.12 2.1 H 1400 3H 0.14 1.1 I 800 H 0.08 2.3 J 700 HB 0.1 1.2 Table 1 Sample Air permeability Surface hardness Thermal conductivity Shrinkage rate (sec / 100 cc) (Pencil hardness) (kW / mK) (%) A 900 4H 0.9 2.0 B 850 4H 0.8 9C10005H0.72.0D8003H0.91.0E7504H0.71.1F9005H0.61.3G12002H0.122.1H14003H0 .14 1.1 I 800 H 0.08 2.3 J 700 HB 0.1 1.2

【0053】また、多孔質膜A〜Hをセパレーターとし
て用いてリチウムイオン電池を各々1000個づつ作製
した。各電池の電極間の抵抗を測定し、2kΩ以下であ
るものの存在する割合を内部短絡不良率とした。
Using the porous membranes A to H as separators, 1,000 lithium ion batteries were manufactured for each. The resistance between the electrodes of each battery was measured, and the ratio of those having a resistance of 2 kΩ or less was defined as the internal short-circuit failure rate.

【0054】また、同じく多孔質膜A〜Hをセパレータ
ーとして用いたリチウムイオン電池を各々10個づつ用
意して、電池工業会指針SBA G 1101「リチウ
ム二次電池安全性評価基準ガイドライン」に規定される
方法に基づいて釘刺し試験を行い、破裂・発火のあった
電池の個数を釘刺しによる不良率とした。
Similarly, ten lithium ion batteries each using the porous membranes A to H as a separator were prepared and specified in the Battery Association of Japan guideline SBA G 1101 “Lithium Secondary Battery Safety Evaluation Standard Guidelines”. A nail penetration test was performed based on the method described above, and the number of batteries that had exploded or ignited was taken as the failure rate due to nail penetration.

【0055】また、比較例として、表面保護層を形成し
ていない、実施例1および4の基体をそれぞれ試料Iお
よびJとして同様の測定を行った。表2に、各試料にお
いての内部短絡不良率および釘刺しによる不良率を示
す。
Further, as a comparative example, the same measurement was performed using the substrates of Examples 1 and 4 having no surface protective layer as samples I and J, respectively. Table 2 shows the internal short-circuit defect rate and the defect rate due to nail penetration in each sample.

【0056】[0056]

【表2】 試料 内部短絡不良率 釘刺しによる不良率 (%) (個/10個) A 0.5 0 B 0.6 0 C 0.4 0 D 0.4 0 E 0.5 0 F 0.3 0 G 0.7 0 H 0.5 0 I 2.3 4 J 1.1 1 [Table 2] Sample Internal short-circuit failure rate Failure rate due to nail penetration (%) (pieces / 10 pieces) A 0.50 B 0.60 C 0.40 D 0.40 E 0.50 F 0 0.30 G 0.70 H 0.50 I 2.34 J 1.11

【0057】[0057]

【発明の効果】以上説明したように、本発明の多孔質膜
によれば、基体となる膜の少なくとも片面に、無機微粒
子、または前述したような樹脂を含む表面保護層を形成
することにより、表面硬度の高い多孔質膜とすることが
できる。このような多孔質膜をセパレータとして非水電
解液電池に使用することにより、電池の作製時または保
存時に電極材から剥離した導電性粒子がセパレートを貫
通するような不都合を低減することができ、その結果内
部短絡の発生が起こりにくい安全性に優れた非水電解液
電池とすることができる。
As described above, according to the porous film of the present invention, the surface protective layer containing the inorganic fine particles or the resin as described above is formed on at least one surface of the film serving as the substrate. A porous film having a high surface hardness can be obtained. By using such a porous membrane as a separator in a non-aqueous electrolyte battery, it is possible to reduce the inconvenience that the conductive particles peeled off from the electrode material during production or storage of the battery penetrate the separator, As a result, it is possible to provide a non-aqueous electrolyte battery which is less likely to cause an internal short circuit and has excellent safety.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 10/40 H01M 10/40 Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基体となる膜の少なくとも片面に、無機
微粒子を含む通気性を有する表面保護層を形成してなる
ことを特徴とする多孔質膜。
1. A porous film comprising a film serving as a substrate, and a gas-permeable surface protective layer containing inorganic fine particles formed on at least one surface of the film.
【請求項2】 表面保護層を形成した面の表面硬度が鉛
筆硬度で4H以上である請求項1に記載の多孔質膜。
2. The porous film according to claim 1, wherein the surface hardness of the surface on which the surface protective layer is formed is 4H or more in pencil hardness.
【請求項3】 熱伝導率が0.5kW/m・K以上であ
る請求項1または2に記載の多孔質膜。
3. The porous membrane according to claim 1, having a thermal conductivity of 0.5 kW / m · K or more.
【請求項4】 基体となる膜の少なくとも片面に、メラ
ミン樹脂、ウレタン樹脂、アルキド樹脂およびアクリル
樹脂から選ばれる少なくとも1つの樹脂を含む、通気性
を有する表面保護層を形成してなることを特徴とする多
孔質膜。
4. A gas-permeable surface protective layer containing at least one resin selected from a melamine resin, a urethane resin, an alkyd resin and an acrylic resin is formed on at least one surface of a film serving as a substrate. Porous membrane.
【請求項5】 請求項1〜4のいずれかに記載の多孔質
膜を構成要素とする非水電解液電池用セパレータ。
5. A non-aqueous electrolyte battery separator comprising the porous membrane according to claim 1 as a component.
【請求項6】 請求項5に記載の非水電解液電池用セパ
レータを構成要素とする非水電解液電池。
6. A non-aqueous electrolyte battery comprising the separator for a non-aqueous electrolyte battery according to claim 5.
JP9243917A 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery Pending JPH1180395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9243917A JPH1180395A (en) 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9243917A JPH1180395A (en) 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery

Publications (1)

Publication Number Publication Date
JPH1180395A true JPH1180395A (en) 1999-03-26

Family

ID=17110944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9243917A Pending JPH1180395A (en) 1997-09-09 1997-09-09 Porous film and separator for nonaqueous electrolyte cell or battery

Country Status (1)

Country Link
JP (1) JPH1180395A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035468A (en) * 1999-07-16 2001-02-09 Teijin Ltd Polyolefin porous film with inorganic thin film formed thereon and its manufacture
JP2001043842A (en) * 1999-07-28 2001-02-16 Teijin Ltd Separator for separating electrodes
JP2001210300A (en) * 2000-01-28 2001-08-03 Nitto Denko Corp Separator for alkaline storage battery and its production
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2006012788A (en) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
KR100544516B1 (en) * 2002-12-09 2006-01-24 주식회사 엘지화학 A separator structure with porous polymer film and a method for preparing the porous polymer film by the inorganic substance dispersed in the dispersion media
WO2006025662A1 (en) * 2004-09-02 2006-03-09 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2006269358A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Porous separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using above
JP2006310302A (en) * 2005-04-28 2006-11-09 Samsung Sdi Co Ltd Lithium secondary battery
US20070122694A1 (en) * 2005-11-14 2007-05-31 Junichi Yamaki Non-aqueous electrolyte secondary battery
JP2007188777A (en) * 2006-01-13 2007-07-26 Sony Corp Separator and nonaqueous electrolytic solution battery
KR100755644B1 (en) 2005-11-28 2007-09-04 주식회사 엘지화학 Organic/inorganic composite porous membrane and electrochemical device using the same
EP1829139A1 (en) 2004-12-22 2007-09-05 LG Chemical Co. Ltd Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
KR100770105B1 (en) * 2005-07-06 2007-10-24 삼성에스디아이 주식회사 Lithium rechargeable battery
KR100778975B1 (en) * 2007-03-08 2007-11-28 삼성에스디아이 주식회사 Lithium rechargeable battery
JP2008503049A (en) * 2004-07-07 2008-01-31 エルジー・ケム・リミテッド Organic-inorganic composite porous film and electrochemical device using the same
JP2008508391A (en) * 2004-09-02 2008-03-21 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
WO2008093575A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
JP2008210782A (en) * 2007-01-29 2008-09-11 Hitachi Maxell Ltd Separator for battery, manufacturing method of separator for battery, and lithium secondary battery
JP2008210794A (en) * 2007-01-30 2008-09-11 Asahi Kasei Chemicals Corp Multilayer porous membrane and method for producing the same
WO2008149986A1 (en) * 2007-06-06 2008-12-11 Asahi Kasei E-Materials Corporation Multilayer porous film
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
JP2009527091A (en) * 2006-02-16 2009-07-23 エルジー・ケム・リミテッド Electrochemical element with improved heat resistance
WO2009123220A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
WO2009123218A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
JP2010033968A (en) * 2008-07-30 2010-02-12 Nissan Motor Co Ltd Electrochemical device
WO2010024559A2 (en) 2008-08-25 2010-03-04 주식회사 엘지화학 Separator furnished with porous coating layer, method of manufacturing same, and electrochemical device furnished therewith
JP2010520095A (en) * 2007-03-07 2010-06-10 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
KR100979084B1 (en) 2002-08-24 2010-08-31 에보닉 데구사 게엠베하 Electric separator comprising a shut-down mechanism, method for the production thereof and its use in lithium batteries
US20100221965A1 (en) * 2008-01-29 2010-09-02 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
EP2225787A2 (en) * 2007-11-29 2010-09-08 LG Chem, Ltd. Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
WO2010104077A1 (en) 2009-03-09 2010-09-16 旭化成イーマテリアルズ株式会社 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
KR100988449B1 (en) * 2002-08-24 2010-10-18 에보닉 데구사 게엠베하 Electric separator, method for making same and use thereof in high-power lithium cells
JP2011113770A (en) * 2009-11-26 2011-06-09 Hitachi Ltd Lithium battery
KR101055536B1 (en) 2009-04-10 2011-08-08 주식회사 엘지화학 Separator comprising a porous coating layer, a method of manufacturing the same and an electrochemical device having the same
JP2011233534A (en) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp Separator for rechargeable battery with nonaqueous electrolyte and rechargeable battery with nonaqueous electrolyte
JP2012009326A (en) * 2010-06-25 2012-01-12 Toyota Motor Corp Nonaqueous electrolyte secondary battery, vehicle and apparatus using battery
JP2012072285A (en) * 2010-09-29 2012-04-12 Nitto Denko Corp Porous film, electrical insulation maintenance film, separator for non-aqueous electrolyte battery and electrochemical element
WO2013002116A1 (en) 2011-06-28 2013-01-03 日産自動車株式会社 Separator having heat-resistant insulating layer
WO2013051468A1 (en) 2011-10-04 2013-04-11 日産自動車株式会社 Separator with heat resistant insulating layer
JP2013522829A (en) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for dynamic use
JP2013137984A (en) * 2011-09-05 2013-07-11 Sony Corp Separator and nonaqueous electrolyte battery
JP2013149434A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2013129009A1 (en) 2012-02-28 2013-09-06 日産自動車株式会社 Non-aqueous electrolyte secondary battery
EP2544260A3 (en) * 2004-12-07 2013-10-09 LG Chemical Co. Ltd Surface-treated microporous membrane and electrochemical device prepared thereby
JP2014078515A (en) * 2013-11-26 2014-05-01 Asahi Kasei Chemicals Corp Porous membrane having high thermal resistance and high permeability, and manufacturing method of the same
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
KR20140070160A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Separator for secondary battery
EP2990198A4 (en) * 2013-04-22 2016-11-23 Toray Battery Separator Film Laminated porous membrane, process for manufacturing same and separator for battery
KR20160144403A (en) * 2014-04-09 2016-12-16 스미또모 가가꾸 가부시키가이샤 Porous laminate film and non-aqueous electrolyte secondary battery
US9741989B2 (en) 2004-10-01 2017-08-22 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
KR20180112927A (en) 2017-04-05 2018-10-15 에스케이이노베이션 주식회사 Microporous Polyimide Film and Process for Producing the Same
WO2018221503A1 (en) * 2017-05-30 2018-12-06 東レ株式会社 Separator
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10811651B2 (en) 2013-10-18 2020-10-20 Miltec UV International, LLC Polymer-bound ceramic particle battery separator coating
US11482759B2 (en) * 2003-02-21 2022-10-25 Celgard, Llc Oxidation resistant separator for a battery

Cited By (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563526B2 (en) * 1999-07-16 2010-10-13 帝人株式会社 Polyolefin porous membrane on which inorganic thin film is formed and method for producing the same
JP2001035468A (en) * 1999-07-16 2001-02-09 Teijin Ltd Polyolefin porous film with inorganic thin film formed thereon and its manufacture
JP2001043842A (en) * 1999-07-28 2001-02-16 Teijin Ltd Separator for separating electrodes
JP2001210300A (en) * 2000-01-28 2001-08-03 Nitto Denko Corp Separator for alkaline storage battery and its production
EP1184927A4 (en) * 2000-02-10 2006-06-28 Mitsubishi Electric Corp Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
KR100426413B1 (en) * 2000-02-10 2004-04-14 미쓰비시덴키 가부시키가이샤 Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
WO2001059871A1 (en) * 2000-02-10 2001-08-16 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte cell manufacturing method and cell manufactured thereby
JP2001319634A (en) * 2000-04-10 2001-11-16 Celgard Inc Separator for high energy charging lithium battery
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
KR100990003B1 (en) * 2000-04-10 2010-10-26 셀가드 인코포레이티드 A high energy rechargeable lithium battery
KR100988449B1 (en) * 2002-08-24 2010-10-18 에보닉 데구사 게엠베하 Electric separator, method for making same and use thereof in high-power lithium cells
KR100979084B1 (en) 2002-08-24 2010-08-31 에보닉 데구사 게엠베하 Electric separator comprising a shut-down mechanism, method for the production thereof and its use in lithium batteries
US7892673B2 (en) 2002-08-24 2011-02-22 Evonik Degussa Gmbh Electric separator, method for making same and use thereof in high-power lithium cells
KR100544516B1 (en) * 2002-12-09 2006-01-24 주식회사 엘지화학 A separator structure with porous polymer film and a method for preparing the porous polymer film by the inorganic substance dispersed in the dispersion media
US11482759B2 (en) * 2003-02-21 2022-10-25 Celgard, Llc Oxidation resistant separator for a battery
US20110281172A1 (en) * 2004-02-09 2011-11-17 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2005259639A (en) * 2004-03-15 2005-09-22 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2006012788A (en) * 2004-05-25 2006-01-12 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP4657001B2 (en) * 2004-05-25 2011-03-23 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof
JP2018063948A (en) * 2004-07-07 2018-04-19 エルジー・ケム・リミテッド Organic/inorganic composite porous film, and electrochemical element comprising the same
JP2011138780A (en) * 2004-07-07 2011-07-14 Lg Chem Ltd Organic inorganic complex porous film and electrochemical element using the same
JP2008503049A (en) * 2004-07-07 2008-01-31 エルジー・ケム・リミテッド Organic-inorganic composite porous film and electrochemical device using the same
WO2006025662A1 (en) * 2004-09-02 2006-03-09 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US20210320380A1 (en) * 2004-09-02 2021-10-14 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2008508391A (en) * 2004-09-02 2008-03-21 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
JP4846717B2 (en) * 2004-09-02 2011-12-28 エルジー・ケム・リミテッド Presence / absence composite porous film and electrochemical device using the same
JP2011190447A (en) * 2004-09-02 2011-09-29 Lg Chem Ltd Organic-inorganic composite porous film, and electrochemical element using the same
EP1784876A4 (en) * 2004-09-02 2011-05-11 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2014130819A (en) * 2004-09-02 2014-07-10 Lg Chem Ltd Organic/inorganic composite porous film and electrochemical device using the same
US20170005309A1 (en) * 2004-09-02 2017-01-05 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US10384426B2 (en) 2004-10-01 2019-08-20 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
US9741989B2 (en) 2004-10-01 2017-08-22 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
EP2544260A3 (en) * 2004-12-07 2013-10-09 LG Chemical Co. Ltd Surface-treated microporous membrane and electrochemical device prepared thereby
US8841031B2 (en) 2004-12-07 2014-09-23 Lg Chem, Ltd. Surface-treated microporous membrane and electrochemical device prepared thereby
EP2528142A2 (en) 2004-12-22 2012-11-28 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2528141A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2013014142A (en) * 2004-12-22 2013-01-24 Lg Chem Ltd Organic/inorganic composite microporous polymer film
JP2008524824A (en) * 2004-12-22 2008-07-10 エルジー・ケム・リミテッド Presence / absence composite porous separator membrane and electrochemical device using the separator membrane
EP1829139A1 (en) 2004-12-22 2007-09-05 LG Chemical Co. Ltd Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2763210A2 (en) 2004-12-22 2014-08-06 LG Chem, Ltd. Portable phone comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP2763211A2 (en) 2004-12-22 2014-08-06 LG Chem, Ltd. Notebook computer or personal computer comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP2528140A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2763211A3 (en) * 2004-12-22 2015-05-06 LG Chem, Ltd. Notebook computer or personal computer comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP3716360A1 (en) * 2004-12-22 2020-09-30 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device
EP2763210A3 (en) * 2004-12-22 2015-05-06 LG Chem, Ltd. Portable phone comprising a lithium secondary battery with an organic/inorganic composite microporous membrane
EP3863110A1 (en) * 2004-12-22 2021-08-11 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device
JP2014082216A (en) * 2004-12-22 2014-05-08 Lg Chem Ltd Organic/inorganic composite porous membrane
EP1829139B1 (en) * 2004-12-22 2014-01-01 LG Chem, Ltd Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP3567655A1 (en) * 2004-12-22 2019-11-13 Lg Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
KR100775310B1 (en) 2004-12-22 2007-11-08 주식회사 엘지화학 Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2528139A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
EP2528142A3 (en) * 2004-12-22 2013-07-10 LG Chem, Ltd. Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP2006269358A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Porous separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using above
JP2006310302A (en) * 2005-04-28 2006-11-09 Samsung Sdi Co Ltd Lithium secondary battery
JP4516544B2 (en) * 2005-04-28 2010-08-04 三星エスディアイ株式会社 Lithium secondary battery
US8062789B2 (en) 2005-04-28 2011-11-22 Samsung Sdi Co., Ltd. Lithium secondary battery
US8835059B2 (en) 2005-07-06 2014-09-16 Samsung Sdi Co., Ltd. Lithium rechargeable battery, and separator for lithium rechargeable battery
KR100770105B1 (en) * 2005-07-06 2007-10-24 삼성에스디아이 주식회사 Lithium rechargeable battery
US20070122694A1 (en) * 2005-11-14 2007-05-31 Junichi Yamaki Non-aqueous electrolyte secondary battery
KR100755644B1 (en) 2005-11-28 2007-09-04 주식회사 엘지화학 Organic/inorganic composite porous membrane and electrochemical device using the same
JP2009518809A (en) * 2005-12-06 2009-05-07 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane having morphological gradient, method for producing the same, and electrochemical device including the same
JP2007188777A (en) * 2006-01-13 2007-07-26 Sony Corp Separator and nonaqueous electrolytic solution battery
EP3460877A1 (en) * 2006-02-16 2019-03-27 LG Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
JP2009527091A (en) * 2006-02-16 2009-07-23 エルジー・ケム・リミテッド Electrochemical element with improved heat resistance
US9017878B2 (en) 2006-02-16 2015-04-28 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
US10879556B2 (en) 2006-02-16 2020-12-29 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
US10305138B2 (en) 2006-02-16 2019-05-28 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
JP2008210782A (en) * 2007-01-29 2008-09-11 Hitachi Maxell Ltd Separator for battery, manufacturing method of separator for battery, and lithium secondary battery
US9293752B2 (en) 2007-01-30 2016-03-22 Asahi Kasei E-Materials Corporation Multilayer porous membrane and production method thereof
WO2008093575A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Multilayer porous membrane and method for producing the same
JP2008210794A (en) * 2007-01-30 2008-09-11 Asahi Kasei Chemicals Corp Multilayer porous membrane and method for producing the same
JP4694641B2 (en) * 2007-03-07 2011-06-08 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
JP2010520095A (en) * 2007-03-07 2010-06-10 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
KR100778975B1 (en) * 2007-03-08 2007-11-28 삼성에스디아이 주식회사 Lithium rechargeable battery
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
JP4789274B2 (en) * 2007-06-06 2011-10-12 旭化成イーマテリアルズ株式会社 Multilayer porous membrane
WO2008149986A1 (en) * 2007-06-06 2008-12-11 Asahi Kasei E-Materials Corporation Multilayer porous film
EP2153990A1 (en) * 2007-06-06 2010-02-17 Asahi Kasei E-materials Corporation Multilayer porous film
JPWO2008149986A1 (en) * 2007-06-06 2010-08-26 旭化成イーマテリアルズ株式会社 Multilayer porous membrane
EP2153990A4 (en) * 2007-06-06 2010-09-15 Asahi Kasei E Materials Corp Multilayer porous film
US9070935B2 (en) 2007-06-06 2015-06-30 Asahi Kasei E-Materials Corporation Multilayer porous film
US9799866B2 (en) 2007-07-25 2017-10-24 Lg Chem, Ltd. Electrochemical device and its manufacturing method
WO2009014388A3 (en) * 2007-07-25 2009-03-19 Lg Chemical Ltd Electrochemical device and its manufacturing method
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
US10916754B2 (en) 2007-11-29 2021-02-09 Lg Chem, Ltd. Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
EP2225787A2 (en) * 2007-11-29 2010-09-08 LG Chem, Ltd. Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
EP2225787A4 (en) * 2007-11-29 2013-03-06 Lg Chemical Ltd Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
US20100221965A1 (en) * 2008-01-29 2010-09-02 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
US9972816B2 (en) 2008-01-29 2018-05-15 Microconnect Corp. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
JP2009266811A (en) * 2008-03-31 2009-11-12 Nitto Denko Corp Cell separator and cell using the same
CN101983445A (en) * 2008-03-31 2011-03-02 日东电工株式会社 Cell separator and cell using the same
WO2009123220A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
WO2009123218A1 (en) * 2008-03-31 2009-10-08 日東電工株式会社 Cell separator and cell using the same
JP2009266812A (en) * 2008-03-31 2009-11-12 Nitto Denko Corp Cell separator and cell using the same
US9142818B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
US9142817B2 (en) 2008-03-31 2015-09-22 Nitto Denko Corporation Battery separator and battery using the same
JP2010033968A (en) * 2008-07-30 2010-02-12 Nissan Motor Co Ltd Electrochemical device
US9005795B2 (en) 2008-08-25 2015-04-14 Lg Chem, Ltd. Separator having porous coating layer, manufacturing method of the same, and electrochemical device having the same
WO2010024559A2 (en) 2008-08-25 2010-03-04 주식회사 엘지화학 Separator furnished with porous coating layer, method of manufacturing same, and electrochemical device furnished therewith
US10680223B2 (en) 2009-03-09 2020-06-09 Asahi Kasei E-Materials Corporation Laminated separator, polyolefin microporous membrane, and separator for electricity storage device
KR20170075022A (en) 2009-03-09 2017-06-30 아사히 가세이 이-매터리얼즈 가부시키가이샤 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
WO2010104077A1 (en) 2009-03-09 2010-09-16 旭化成イーマテリアルズ株式会社 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
KR20180100729A (en) 2009-03-09 2018-09-11 아사히 가세이 이-매터리얼즈 가부시키가이샤 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
US9356275B2 (en) 2009-03-09 2016-05-31 Asahi Kasei E-Materials Corporation Laminated separator including inorganic particle and polyolefin layer for electricity storage device
US9966583B2 (en) 2009-03-09 2018-05-08 Asahi Kasei E-Materials Corporation Laminated polyolefin microporous membrane including propylene copolymer and method of producing the same
EP3376564A1 (en) 2009-03-09 2018-09-19 Asahi Kasei Kabushiki Kaisha Use of a laminated polyolefin microporous membrane as a separator for electricity storage devices
KR20160111547A (en) 2009-03-09 2016-09-26 아사히 가세이 이-매터리얼즈 가부시키가이샤 Laminated separator, polyolefin micro-porous membrane, and separator for electricity storage device
US9882190B2 (en) 2009-03-09 2018-01-30 Asahi Kasei E-Materials Corporation Laminated polymicroporous membrane including propylene copolymer and method of producing the same
US9853272B2 (en) 2009-03-09 2017-12-26 Asahi Kasei E-Materials Corporation Laminated polyolefin microporous membrane including propylene-α-olefin copolymer and method of producing the same
KR101055536B1 (en) 2009-04-10 2011-08-08 주식회사 엘지화학 Separator comprising a porous coating layer, a method of manufacturing the same and an electrochemical device having the same
JP2011113770A (en) * 2009-11-26 2011-06-09 Hitachi Ltd Lithium battery
JP2013522829A (en) * 2010-03-15 2013-06-13 リ−テック・バッテリー・ゲーエムベーハー Cathode electrode and electrochemical cell for dynamic use
JP2012009326A (en) * 2010-06-25 2012-01-12 Toyota Motor Corp Nonaqueous electrolyte secondary battery, vehicle and apparatus using battery
JP2012072285A (en) * 2010-09-29 2012-04-12 Nitto Denko Corp Porous film, electrical insulation maintenance film, separator for non-aqueous electrolyte battery and electrochemical element
JP2011233534A (en) * 2011-06-27 2011-11-17 Mitsubishi Chemicals Corp Separator for rechargeable battery with nonaqueous electrolyte and rechargeable battery with nonaqueous electrolyte
WO2013002116A1 (en) 2011-06-28 2013-01-03 日産自動車株式会社 Separator having heat-resistant insulating layer
US9728757B2 (en) 2011-06-28 2017-08-08 Nissan Motor Co., Ltd. Separator having heat-resistant insulating layer and electric device comprising the same
JP2013137984A (en) * 2011-09-05 2013-07-11 Sony Corp Separator and nonaqueous electrolyte battery
KR20140069240A (en) 2011-10-04 2014-06-09 닛산 지도우샤 가부시키가이샤 Separator with heat resistant insulating layer
US9496535B2 (en) 2011-10-04 2016-11-15 Nissan Motor Co., Ltd. Separator with heat resistant insulation layer
WO2013051468A1 (en) 2011-10-04 2013-04-11 日産自動車株式会社 Separator with heat resistant insulating layer
JP2013149434A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2013129009A1 (en) 2012-02-28 2013-09-06 日産自動車株式会社 Non-aqueous electrolyte secondary battery
EP2822080A1 (en) * 2012-02-28 2015-01-07 Nissan Motor Company, Limited Non-aqueous electrolyte secondary battery
US10224527B2 (en) 2012-02-28 2019-03-05 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery
EP2822080A4 (en) * 2012-02-28 2015-04-01 Nissan Motor Non-aqueous electrolyte secondary battery
KR20140070160A (en) * 2012-11-30 2014-06-10 주식회사 엘지화학 Separator for secondary battery
EP2990198A4 (en) * 2013-04-22 2016-11-23 Toray Battery Separator Film Laminated porous membrane, process for manufacturing same and separator for battery
US10811651B2 (en) 2013-10-18 2020-10-20 Miltec UV International, LLC Polymer-bound ceramic particle battery separator coating
JP2014078515A (en) * 2013-11-26 2014-05-01 Asahi Kasei Chemicals Corp Porous membrane having high thermal resistance and high permeability, and manufacturing method of the same
KR20160144403A (en) * 2014-04-09 2016-12-16 스미또모 가가꾸 가부시키가이샤 Porous laminate film and non-aqueous electrolyte secondary battery
JP2018130966A (en) * 2014-04-09 2018-08-23 住友化学株式会社 Laminated porous film and nonaqueous electrolyte secondary battery
US11271248B2 (en) 2015-03-27 2022-03-08 New Dominion Enterprises, Inc. All-inorganic solvents for electrolytes
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20180112927A (en) 2017-04-05 2018-10-15 에스케이이노베이션 주식회사 Microporous Polyimide Film and Process for Producing the Same
WO2018221503A1 (en) * 2017-05-30 2018-12-06 東レ株式会社 Separator
JPWO2018221503A1 (en) * 2017-05-30 2020-04-02 東レ株式会社 Separator

Similar Documents

Publication Publication Date Title
JPH1180395A (en) Porous film and separator for nonaqueous electrolyte cell or battery
JP6910382B2 (en) Microporous web with self-supporting dimensional stability
US9896555B2 (en) Freestanding, heat resistant microporous film for use in energy storage devices
TWI478420B (en) Non - water - based battery separator
JP5588964B2 (en) Polyolefin-based composite microporous membrane having a high heat-resistant porous coating layer
EP2260523B1 (en) Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
JP3939778B2 (en) Battery separator
KR102601477B1 (en) Laminable, Dimensionally-Stable Microporous Webs
JP6189011B2 (en) Separator and non-aqueous electrolyte secondary battery having the separator
GB2081604A (en) Hydrophilic polymer coated microporous membranes capable of use as a battery separator
JP2006059733A (en) Separator for electronic component and its manufacturing method
JP2007048738A (en) Separator for electronic part and its manufacturing method
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
CN111512471A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
JP6984033B2 (en) Separator for non-water-based secondary battery and non-water-based secondary battery
CN116169431A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP6249589B2 (en) Battery separator
JPH10316781A (en) Porous membrane and its production
JP6332341B2 (en) Battery separator
JP7482935B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2022059744A1 (en) Separator for power storage device, and power storage device
WO2020138293A1 (en) Polyolefin microporous membrane, and electricity storage device