Skip to main content

    Xavier Cordobes Adroher

    Epoxy nanocomposites including multi-wall carbon nanotubes (MWCNT) and carbon black (CB) were produced and investigated by means of electrical conductivity measurements and microscopical analysis. Varying the weight fraction of the... more
    Epoxy nanocomposites including multi-wall carbon nanotubes (MWCNT) and carbon black (CB) were produced and investigated by means of electrical conductivity measurements and microscopical analysis. Varying the weight fraction of the nanoparticles, electrical percolation behaviour was studied. Due to synergistic effects in network formation and in charge transport the inclusion of both MWCNT and CB in the epoxy matrix leads to an identical electrical behaviour of this ternary nanocomposite system compared to the binary MWCNT-epoxy system. For both types of nanocomposites an electrical percolation threshold of around 0.025 wt% and 0.03 wt% was observed. Conversely, the binary CB nanocomposites exhibit a three-times higher percolation threshold of about 0.085 wt%. The difference between the binary MWCNT-epoxy and the ternary CB/MWCNT-epoxy in electrical conductivity at high filler concentrations (e.g. 0.5 wt%) turns out to be less than expected. Thus, a considerable amount of MWCNTs can be replaced by CB without changing the electrical properties.
    This paper conducts a three-dimensional (3D) modeling study to investigate the hydrogen absorption process and associated mass and heat transport in a metal hydride (LaNi5) hydrogen storage tank. The 3D model is further implemented... more
    This paper conducts a three-dimensional (3D) modeling study to investigate the hydrogen absorption process and associated mass and heat transport in a metal hydride (LaNi5) hydrogen storage tank. The 3D model is further implemented numerically for validation purpose and the detailed investigation on absorption process. Results indicate that at the very initial absorption stage the bed temperature evolves almost uniformly,
    In this study, we investigate the air–water two-phase flow in a single flow channel of polymer electrolyte membrane (PEM) fuel cells. In the ex situ study, both straight and serpentine channels with various gas diffusion layer (GDL)... more
    In this study, we investigate the air–water two-phase flow in a single flow channel of polymer electrolyte membrane (PEM) fuel cells. In the ex situ study, both straight and serpentine channels with various gas diffusion layer (GDL) surfaces are studied. Focus is placed on the two-phase flow patterns, which are optically characterized using a microscope with a high-resolution camera, and the two-phase pressure amplifiers. We find that the GDL surface properties slightly affect the flow pattern and two-phase pressure amplifier in the flow field configuration. Flow pattern transition occurs at the superficial gas velocity of around 1ms−1, and the pressure amplifier can reach as high as 10. A two-fluid model is also presented together with one dimensional (1-D) analytical solution, and acceptable agreement is achieved between the model prediction and experimental data at high gas flow rates.