Skip to main content

    David Bechtold

    Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The... more
    Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The hypothalamus coordinates energy homeostasis and thermoregulation and plays a key role in directing torpor. We recently showed that mice lacking the orphan G protein-coupled receptor Gpr50 readily enter torpor in response to fasting and have now used these mice to conduct a microarray analysis of hypothalamic gene expression changes related to the torpor state. This revealed a strong induction of thioredoxin-interacting protein (Txnip) in the hypothalamus of torpid mice, which was confirmed by quantitative RT-PCR and Western blot analyses. In situ hybridization identified the ependyma lining the third ventricle as the principal site of torpor-related expression of Txnip. To characterize further the relationship between Txnip and torpor, we profiled Txnip ...
    Resistance to the intestinal parasitic helminth Trichuris muris requires T-helper 2 (T2) cellular and associated IgG1 responses, with expulsion typically taking up to 4 weeks in mice. Here, we show that the time-of-day of the initial... more
    Resistance to the intestinal parasitic helminth Trichuris muris requires T-helper 2 (T2) cellular and associated IgG1 responses, with expulsion typically taking up to 4 weeks in mice. Here, we show that the time-of-day of the initial infection affects efficiency of worm expulsion, with strong T2 bias and early expulsion in morning-infected mice. Conversely, mice infected at the start of the night show delayed resistance to infection, and this is associated with feeding-driven metabolic cues, such that feeding restriction to the day-time in normally nocturnal-feeding mice disrupts parasitic expulsion kinetics. We deleted the circadian regulator BMAL1 in antigen-presenting dendritic cells (DCs) in vivo and found a loss of time-of-day dependency of helminth expulsion. RNAseq analyses revealed that IL-12 responses to worm antigen by circadian-synchronised DCs were dependent on BMAL1. Therefore, we find that circadian machinery in DCs contributes to the T1/T2 balance, and that environmen...
    The circadian clock component REVERBα is considered a dominant regulator of lipid metabolism, with global Reverbα deletion driving dysregulation of white adipose tissue (WAT) lipogenesis and obesity. However, a similar phenotype is not... more
    The circadian clock component REVERBα is considered a dominant regulator of lipid metabolism, with global Reverbα deletion driving dysregulation of white adipose tissue (WAT) lipogenesis and obesity. However, a similar phenotype is not observed under adipocyte-selective deletion (ReverbαFlox2-6AdipoCre), and transcriptional profiling demonstrates that, under basal conditions, direct targets of REVERBα regulation are limited, and include the circadian clock and collagen dynamics. Under high-fat diet (HFD) feeding, ReverbαFlox2-6AdipoCre mice do manifest profound obesity, yet without the accompanying WAT inflammation and fibrosis exhibited by controls. Integration of the WAT REVERBα cistrome with differential gene expression reveals broad control of metabolic processes by REVERBα which is unmasked in the obese state. Adipocyte REVERBα does not drive an anticipatory daily rhythm in WAT lipogenesis, but rather modulates WAT activity in response to alterations in metabolic state. Importa...
    The circadian clock component NR1D1 (REVERBα) is considered a dominant regulator of lipid metabolism, with global Nr1d1 deletion driving dysregulation of white adipose tissue (WAT) lipogenesis and obesity. However, a similar phenotype is... more
    The circadian clock component NR1D1 (REVERBα) is considered a dominant regulator of lipid metabolism, with global Nr1d1 deletion driving dysregulation of white adipose tissue (WAT) lipogenesis and obesity. However, a similar phenotype is not observed under adipocyte-selective deletion (Nr1d1Flox2-6:AdipoqCre), and transcriptional profiling demonstrates that, under basal conditions, direct targets of NR1D1 regulation are limited, and include the circadian clock and collagen dynamics. Under high-fat diet (HFD) feeding, Nr1d1Flox2-6:AdipoqCre mice do manifest profound obesity, yet without the accompanying WAT inflammation and fibrosis exhibited by controls. Integration of the WAT NR1D1 cistrome with differential gene expression reveals broad control of metabolic processes by NR1D1 which is unmasked in the obese state. Adipocyte NR1D1 does not drive an anticipatory daily rhythm in WAT lipogenesis, but rather modulates WAT activity in response to alterations in metabolic state. Important...
    Between 6-20% of the cellular proteome is under circadian control to tune cell function with cycles of environmental change. For cell viability, and to maintain volume within narrow limits, the osmotic pressure exerted by changes in the... more
    Between 6-20% of the cellular proteome is under circadian control to tune cell function with cycles of environmental change. For cell viability, and to maintain volume within narrow limits, the osmotic pressure exerted by changes in the soluble proteome must be compensated. The mechanisms and consequences underlying compensation are not known. Here, we show in cultured mammalian cells and in vivo that compensation requires electroneutral active transport of Na+, K+, and Cl− through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes alter their electrical activity at different times of the day. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes.
    The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence... more
    The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding. We find no evidence for transcription factor tethering and DNA-binding domain-independent action. Moreover, hepatocyte-specific deletion ofReverbαdrives only modest physiological and transcriptional dysregulation, with derepressed target gene enrichment limited to circadian processes. Thus, contrary to previous reports, hepatic REVERBα does not repress lipogenesis under basal conditions. REVERBα control of a more extensive transcriptional program is only revealed under conditions of metabolic perturbation (including mistimed feeding, which is a feature of the globalReverbα−/−mouse). Rep...
    The circadian timing system governs daily biological rhythms, synchronising physiology and behaviour to the temporal world. External time cues, including the light‐dark cycle and timing of food intake, provide daily signals for... more
    The circadian timing system governs daily biological rhythms, synchronising physiology and behaviour to the temporal world. External time cues, including the light‐dark cycle and timing of food intake, provide daily signals for entrainment of the central, master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN), and of metabolic rhythms in peripheral tissues, respectively. Chrono‐nutrition is an emerging field building on the relationship between temporal eating patterns, circadian rhythms, and metabolic health. Evidence from both animal and human research demonstrates adverse metabolic consequences of circadian disruption. Conversely, a growing body of evidence indicates that aligning food intake to periods of the day when circadian rhythms in metabolic processes are optimised for nutrition may be effective for improving metabolic health. Circadian rhythms in glucose and lipid homeostasis, insulin responsiveness and sensitivity, energy expenditure, and postprandial metabolism, may favour eating patterns characterised by earlier temporal distribution of energy. This review details the molecular basis for metabolic clocks, the regulation of feeding behaviour, and the evidence for meal timing as an entraining signal for the circadian system in animal models. The epidemiology of temporal eating patterns in humans is examined, together with evidence from human intervention studies investigating the metabolic effects of morning compared to evening energy intake, and emerging chrono‐nutrition interventions such as time‐restricted feeding. Chrono‐nutrition may have therapeutic application for individuals with and at‐risk of metabolic disease and convey health benefits within the general population.
    Growing evidence indicates that disruption of our internal timing system contributes to the incidence and severity of metabolic diseases, including obesity and type 2 diabetes. This is perhaps not surprising since components of the... more
    Growing evidence indicates that disruption of our internal timing system contributes to the incidence and severity of metabolic diseases, including obesity and type 2 diabetes. This is perhaps not surprising since components of the circadian clockwork are tightly coupled to metabolic processes across the body. In the current study, we assessed the impact of obesity on the circadian system in mice at a behavioural and molecular level, and determined whether pharmacological targeting of casein kinase 1δ and ε (CK1δ/ε), key regulators of the circadian clock, can confer metabolic benefit. We demonstrate that although behavioural rhythmicity was maintained in diet-induced obesity (DIO), gene expression profiling revealed tissue-specific alteration to the phase and amplitude of the molecular clockwork. Clock function was most significantly attenuated in visceral white adipose tissue (WAT) of DIO mice, and was coincident with elevated tissue inflammation, and dysregulation of clock-coupled...
    A hormone released from the gut after a meal can reset clock gene activity in the liver.
    Qing-Jun Meng,1,6 Larisa Logunova,1,6 Elizabeth S. Maywood,2,6 Monica Gallego,3 Jake Lebiecki,1 Timothy M. Brown,1 Martin Sla´ dek,2 Andrei S. Semikhodskii,1 Nicholas RJ Glossop,1 Hugh D. Piggins,1 Johanna E. Chesham,2 David A. Bechtold,1... more
    Qing-Jun Meng,1,6 Larisa Logunova,1,6 Elizabeth S. Maywood,2,6 Monica Gallego,3 Jake Lebiecki,1 Timothy M. Brown,1 Martin Sla´ dek,2 Andrei S. Semikhodskii,1 Nicholas RJ Glossop,1 Hugh D. Piggins,1 Johanna E. Chesham,2 David A. Bechtold,1 Seung-Hee ...
    Mutualistic interactions with the commensal microbiota are enforced through a range of immune responses that confer metabolic benefits for the host and ensure tissue health and homeostasis. Immunoglobulin (Ig)A responses directly... more
    Mutualistic interactions with the commensal microbiota are enforced through a range of immune responses that confer metabolic benefits for the host and ensure tissue health and homeostasis. Immunoglobulin (Ig)A responses directly determine the composition of commensal species that colonize the intestinal tract but require significant metabolic resources to fuel antibody production by tissue-resident plasma cells. Here we demonstrate IgA responses are subject to diurnal regulation by dietary-derived metabolic cues and a cell-intrinsic circadian clock. Rhythmicity in IgA secretion conferred oscillatory patterns on the commensal microbial community and its associated metabolic activity, resulting in changes to metabolite availability over the course of the circadian day. Our findings suggest circadian networks comprising intestinal IgA, the diet and the microbiota align to ensure metabolic health.
    Excessive daytime sleepiness (EDS) affects 10-20% of the population and is associated with substantial functional deficits. We identified 42 loci for self-reported EDS in GWAS of 452,071 individuals from the UK Biobank, with enrichment... more
    Excessive daytime sleepiness (EDS) affects 10-20% of the population and is associated with substantial functional deficits. We identified 42 loci for self-reported EDS in GWAS of 452,071 individuals from the UK Biobank, with enrichment for genes expressed in brain tissues and in neuronal transmission pathways. We confirmed the aggregate effect of a genetic risk score of 42 SNPs on EDS in independent Scandinavian cohorts and on other sleep disorders (restless leg syndrome, insomnia) and sleep traits (duration, chronotype, accelerometer-derived sleep efficiency and daytime naps or inactivity). Strong genetic correlations were also seen with obesity, coronary heart disease, psychiatric diseases, cognitive traits and reproductive ageing. EDS variants clustered into two predominant composite phenotypes - sleep propensity and sleep fragmentation - with the former showing stronger evidence for enriched expression in central nervous system tissues, suggesting two unique mechanistic pathways...
    24h rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a... more
    24h rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganisation of the typical 24h sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4h during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice. Following 10 days of RF, mice were returned to ad libitum feeding. To mimic the spontaneous wakefulness associated with FAA and daytime feeding, mice were then sleep deprived between ZT3-6. While the amount of wake increased during FAA and subsequent feeding, total wake time over 24h remained stable as the loss of sleep in the light phase was compensated for by an increase in sleep in the dark phase. Interestingly, sleep which followed spontaneous wake episodes during the dark peri...
    The glucocorticoid receptor (GR) is a major drug target in inflammatory disease. However, chronic glucocorticoid (GC) treatment leads to disordered energy metabolism, including increased weight gain, adiposity, and hepatosteatosis - all... more
    The glucocorticoid receptor (GR) is a major drug target in inflammatory disease. However, chronic glucocorticoid (GC) treatment leads to disordered energy metabolism, including increased weight gain, adiposity, and hepatosteatosis - all programs modulated by the circadian clock. We demonstrated that while antiinflammatory GC actions were maintained irrespective of dosing time, the liver was significantly more GC sensitive during the day. Temporal segregation of GC action was underpinned by a physical interaction of GR with the circadian transcription factor REVERBa and co-binding with liver-specific hepatocyte nuclear transcription factors (HNFs) on chromatin. REVERBa promoted efficient GR recruitment to chromatin during the day, acting in part by maintaining histone acetylation, with REVERBa-dependent GC responses providing segregation of carbohydrate and lipid metabolism. Importantly, deletion of Reverba inverted circadian liver GC sensitivity and protected mice from hepatosteatos...
    The relationship between insomnia symptoms and cognitive performance is unclear, particularly at the population level. We conducted the largest examination of this association to date through analysis of the UK Biobank, a large... more
    The relationship between insomnia symptoms and cognitive performance is unclear, particularly at the population level. We conducted the largest examination of this association to date through analysis of the UK Biobank, a large population-based sample of adults aged 40-69 years. We also sought to determine associations between cognitive performance and self-reported chronotype, sleep medication use and sleep duration. This cross-sectional, population-based study involved 477,529 participants, comprising 133,314 patients with frequent insomnia symptoms (age: 57.4 ± 7.7 years; 62.1% female) and 344,215 controls without insomnia symptoms (age: 56.1 ± 8.2 years; 52.0% female). Cognitive performance was assessed by a touchscreen test battery probing reasoning, basic reaction time, numeric memory, visual memory, and prospective memory. Adjusted models included relevant demographic, clinical, and sleep variables. Frequent insomnia symptoms were associated with cognitive impairment in unadjusted models; however, these effects were reversed after full adjustment, leaving those with frequent insomnia symptoms showing statistically better cognitive performance over those without. Relative to intermediate chronotype, evening chronotype was associated with superior task performance, while morning chronotype was associated with the poorest performance. Sleep medication use and both long (>9 h) and short (<7 h) sleep durations were associated with impaired performance. Our results suggest that after adjustment for potential confounding variables, frequent insomnia symptoms may be associated with a small statistical advantage, which is unlikely to be clinically meaningful, on simple neurocognitive tasks. Further work is required to examine the mechanistic underpinnings of an apparent evening chronotype advantage in cognitive performance and the impairment associated with morning chronotype, sleep medication use, and sleep duration extremes.
    Chronic sleep disturbances, associated with cardiometabolic diseases, psychiatric disorders and all-cause mortality, affect 25-30% of adults worldwide. Although environmental factors contribute substantially to self-reported habitual... more
    Chronic sleep disturbances, associated with cardiometabolic diseases, psychiatric disorders and all-cause mortality, affect 25-30% of adults worldwide. Although environmental factors contribute substantially to self-reported habitual sleep duration and disruption, these traits are heritable and identification of the genes involved should improve understanding of sleep, mechanisms linking sleep to disease and development of new therapies. We report single- and multiple-trait genome-wide association analyses of self-reported sleep duration, insomnia symptoms and excessive daytime sleepiness in the UK Biobank (n = 112,586). We discover loci associated with insomnia symptoms (near MEIS1, TMEM132E, CYCL1 and TGFBI in females and WDR27 in males), excessive daytime sleepiness (near AR-OPHN1) and a composite sleep trait (near PATJ (INADL) and HCRTR2) and replicate a locus associated with sleep duration (at PAX8). We also observe genetic correlation between longer sleep duration and schizoph...
    There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human... more
    There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nigh...
    Axonal degeneration is a major cause of permanent neurological deficit in multiple sclerosis (MS), but no current therapies for the disease are known to be effective at axonal protection. Here, we examine the ability of a sodium... more
    Axonal degeneration is a major cause of permanent neurological deficit in multiple sclerosis (MS), but no current therapies for the disease are known to be effective at axonal protection. Here, we examine the ability of a sodium channel-blocking agent, flecainide, to reduce axonal degeneration in an experimental model of MS, chronic relapsing experimental autoimmune encephalomyelitis (CR-EAE). Rats with CR-EAE were treated with flecainide or vehicle from either 3 days before or 7 days after inoculation (dpi) until termination of the experiment at 28 to 30 dpi. Morphometric examination of neurofilament-labeled axons in the spinal cord of CR-EAE animals showed that both flecainide treatment regimens resulted in significantly higher numbers of axons surviving the disease (83 and 98% of normal) compared with controls (62% of normal). These findings indicate that flecainide and similar agents may provide a novel therapy aimed at axonal protection in MS and other neuroinflammatory disorders.
    Our sleep timing preference, or chronotype, is a manifestation of our internal biological clock. Variation in chronotype has been linked to sleep disorders, cognitive and physical performance, and chronic disease. Here, we perform a... more
    Our sleep timing preference, or chronotype, is a manifestation of our internal biological clock. Variation in chronotype has been linked to sleep disorders, cognitive and physical performance, and chronic disease. Here, we perform a genome-wide association study of self-reported chronotype within the UKBiobank cohort (n=100,420). We identify 12 new genetic loci that implicate known components of the circadian clock machinery and point to previously unstudied genetic variants and candidate genes that might modulate core circadian rhythms or light-sensing pathways. Pathway analyses highlight central nervous and ocular systems and fear-response related processes. Genetic correlation analysis suggests chronotype shares underlying genetic pathways with schizophrenia, educational attainment and possibly BMI. Further, Mendelian randomization suggests that evening chronotype relates to higher educational attainment. These results not only expand our knowledge of the circadian system in huma...
    An essential component of energy homeostasis lies in an organism's ability to coordinate daily patterns in activity, feeding, energy utilization and energy storage across the daily 24-h cycle. Most... more
    An essential component of energy homeostasis lies in an organism's ability to coordinate daily patterns in activity, feeding, energy utilization and energy storage across the daily 24-h cycle. Most tissues of the body contain the molecular clock machinery required for circadian oscillation and rhythmic gene expression. Under normal circumstances, behavioural and physiological rhythms are orchestrated and synchronized by the suprachiasmatic nucleus (SCN) of the hypothalamus, considered to be the master circadian clock. However, metabolic processes are easily decoupled from the primarily light-driven SCN when food intake is desynchronized from normal diurnal patterns of activity. This dissociation from SCN based timing demonstrates that the circadian system is responsive to changes in energy supply and metabolic status. There has long been evidence for the existence of an anatomically distinct and autonomous food-entrainable oscillator (FEO) that can govern behavioural rhythms, when feeding becomes the dominant entraining stimulus. But now rapidly growing evidence suggests that core circadian clock genes are involved in reciprocal transcriptional feedback with genetic regulators of metabolism, and are directly responsive to cellular energy supply. This close interaction is likely to be critical for normal circadian regulation of metabolism, and may also underlie the disruption of proper metabolic rhythms observed in metabolic disorders, such as obesity and type-II diabetes.
    Electrical activity in the heart exhibits 24-hour rhythmicity, and potentially fatal arrhythmias are more likely to occur at specific times of day. Here, we demonstrate that circadian clocks within the brain and heart set daily rhythms in... more
    Electrical activity in the heart exhibits 24-hour rhythmicity, and potentially fatal arrhythmias are more likely to occur at specific times of day. Here, we demonstrate that circadian clocks within the brain and heart set daily rhythms in sinoatrial (SA) and atrioventricular (AV) node activity, and impose a time-of–day dependent susceptibility to ventricular arrhythmia. Critically, the balance of circadian inputs from the autonomic nervous system and cardiomyocyte clock to the SA and AV nodes differ, and this renders the cardiac conduction system sensitive to decoupling during abrupt shifts in behavioural routine and sleep-wake timing. Our findings reveal a functional segregation of circadian control across the heart’s conduction system and inherent susceptibility to arrhythmia.
    Twilight is characterised by changes in both quantity ("irradiance") and quality ("colour") of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and... more
    Twilight is characterised by changes in both quantity ("irradiance") and quality ("colour") of light. Animals use the variation in irradiance to adjust their internal circadian clocks, aligning their behaviour and physiology with the solar cycle. However, it is currently unknown whether changes in colour also contribute to this entrainment process. Using environmental measurements, we show here that mammalian blue-yellow colour discrimination provides a more reliable method of tracking twilight progression than simply measuring irradiance. We next use electrophysiological recordings to demonstrate that neurons in the mouse suprachiasmatic circadian clock display the cone-dependent spectral opponency required to make use of this information. Thus, our data show that some clock neurons are highly sensitive to changes in spectral composition occurring over twilight and that this input dictates their response to changes in irradiance. Finally, using mice housed under...
    Ob/ob mice provide an animal model for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) in patients with obesity and type-2 diabetes. Low liver copper has been linked to hepatic lipid build-up (steatosis) in... more
    Ob/ob mice provide an animal model for non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH) in patients with obesity and type-2 diabetes. Low liver copper has been linked to hepatic lipid build-up (steatosis) in animals with systemic copper deficiency caused by low-copper diets. However, hepatic copper status in patients with NAFLD or NASH is uncertain, and a validated animal model useful for the study of hepatic copper regulation in common forms of metabolic liver disease is lacking. Here, we report parallel measurements of essential metal levels in whole-liver tissue and defatted-dried liver tissue from ob/ob and non-obese control mice. Measurements in whole-liver tissue from ob/ob mice at an age when they have developed NAFLD/NASH, provide compelling evidence for factitious lowering of copper and all other essential metals by steatosis, and so cannot be used to study hepatic metal regulation in this model. By marked contrast, metal measurements in defatted...
    In response to stressful stimuli, cells respond by inducing a set of heat shock (stress) proteins (hsps) that play important roles in repair and protective mechanisms. The present study investigates the expression patterns of Hsp27 and... more
    In response to stressful stimuli, cells respond by inducing a set of heat shock (stress) proteins (hsps) that play important roles in repair and protective mechanisms. The present study investigates the expression patterns of Hsp27 and Hsp32 in the adult rat hippocampus following whole body hyperthermia. A pronounced induction of these low-molecular-weight stress proteins was apparent in populations of glial cells such as astrocytes and microglia that were identified using cell-specific markers (GFAP for astrocytes and the lectin GSA I-B4 for microglia). Hyperthermia also resulted in a robust induction of the intermediate filament protein, vimentin, in glial cells in the adult rat hippocampus. Interestingly, a rapid induction of both Hsp27 and vimentin was observed in the microvasculature, suggesting that hyperthermic stress may compromise the blood-brain barrier.

    And 13 more