Skip to main content

    Chris Beaver

    The primary objective of this work was to optimize red wine phenolic prediction with models built from wine ultraviolet–visible absorbance spectra. Three major obstacles were addressed to achieve this, namely algorithm selection, spectral... more
    The primary objective of this work was to optimize red wine phenolic prediction with models built from wine ultraviolet–visible absorbance spectra. Three major obstacles were addressed to achieve this, namely algorithm selection, spectral multicollinearity, and phenolic evolution over time. For algorithm selection, support vector regression, kernel ridge regression, and kernel partial least squares regression were compared. For multicollinearity, the spectrum of malvidin chloride was used as an external standard for spectral adjustment. For phenolic evolution, spectral data were collected during fermentation as well as once a week for four weeks after fermentation had ended. Support vector regression gave the most accurate predictions among the three algorithms tested. Additionally, malvidin chloride proved a useful standard for phenolic spectral transformation and isolation. As for phenolic evolution, models needed to be calibrated and validated throughout the aging process to ensu...
    In the following study, total sugar concentrations before and during alcoholic fermentation, as well as ethanol concentrations and pH levels after fermentation, of red and white wine grapes were successfully predicted using Raman... more
    In the following study, total sugar concentrations before and during alcoholic fermentation, as well as ethanol concentrations and pH levels after fermentation, of red and white wine grapes were successfully predicted using Raman spectroscopy. Fluorescing compounds such as anthocyanins and pigmented phenolics found in red wine present one of the primary limitations of enological analysis using Raman spectroscopy. Unlike the spontaneous Raman effect, fluorescence is a highly efficient process and consequently emits a much stronger signal than spontaneous Raman scattering. For this reason, many enological applications of Raman spectroscopy are impractical as the more subtle Raman spectrum of any red wine sample is in large part masked by fluorescing compounds present in the wine. This work employs a simple extraction method to mitigate fluorescence in finished red wines. Ethanol and total sugars (fructose plus glucose) of wines made from red (Cabernet Sauvignon) and white (Chardonnay,...