www.fgks.org   »   [go: up one dir, main page]

Solar eclipse of August 2, 2046

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046, with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of August 2, 2046
Map
Type of eclipse
NatureTotal
Gamma−0.535
Magnitude1.0531
Maximum eclipse
Duration291 s (4 min 51 s)
Coordinates12°42′S 15°12′E / 12.7°S 15.2°E / -12.7; 15.2
Max. width of band206 km (128 mi)
Times (UTC)
Greatest eclipse10:21:13
References
Saros146 (29 of 76)
Catalog # (SE5000)9610

Images

edit

 
Animated path

edit

Eclipses in 2046

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 146

edit

Inex

edit

Triad

edit

Solar eclipses of 2044–2047

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

The partial solar eclipses on June 23, 2047 and December 16, 2047 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2044 to 2047
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
121 February 28, 2044
 
Annular
−0.9954 126 August 23, 2044
 
Total
0.9613
131 February 16, 2045
 
Annular
−0.3125 136 August 12, 2045
 
Total
0.2116
141 February 5, 2046
 
Annular
0.3765 146 August 2, 2046
 
Total
−0.535
151 January 26, 2047
 
Partial
1.045 156 July 22, 2047
 
Partial
−1.3477

Saros 146

edit

This eclipse is a part of Saros series 146, repeating every 18 years, 11 days, and containing 76 events. The series started with a partial solar eclipse on September 19, 1541. It contains total eclipses from May 29, 1938 through October 7, 2154; hybrid eclipses from October 17, 2172 through November 20, 2226; and annular eclipses from November 30, 2244 through August 10, 2659. The series ends at member 76 as a partial eclipse on December 29, 2893. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 26 at 5 minutes, 21 seconds on June 30, 1992, and the longest duration of annularity will be produced by member 63 at 3 minutes, 30 seconds on August 10, 2659. All eclipses in this series occur at the Moon’s descending node of orbit.[2]

Series members 16–37 occur between 1801 and 2200:
16 17 18
 
March 13, 1812
 
March 24, 1830
 
April 3, 1848
19 20 21
 
April 15, 1866
 
April 25, 1884
 
May 7, 1902
22 23 24
 
May 18, 1920
 
May 29, 1938
 
June 8, 1956
25 26 27
 
June 20, 1974
 
June 30, 1992
 
July 11, 2010
28 29 30
 
July 22, 2028
 
August 2, 2046
 
August 12, 2064
31 32 33
 
August 24, 2082
 
September 4, 2100
 
September 15, 2118
34 35 36
 
September 26, 2136
 
October 7, 2154
 
October 17, 2172
37
 
October 29, 2190

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.[3]

Octon series with 21 events between May 21, 1993 and August 2, 2065
May 20–21 March 8–9 December 25–26 October 13–14 August 1–2
98 100 102 104 106
May 21, 1955 March 9, 1959 December 26, 1962 October 14, 1966 August 2, 1970
108 110 112 114 116
May 21, 1974 March 9, 1978 December 26, 1981 October 14, 1985 August 1, 1989
118 120 122 124 126
 
May 21, 1993
 
March 9, 1997
 
December 25, 2000
 
October 14, 2004
 
August 1, 2008
128 130 132 134 136
 
May 20, 2012
 
March 9, 2016
 
December 26, 2019
 
October 14, 2023
 
August 2, 2027
138 140 142 144 146
 
May 21, 2031
 
March 9, 2035
 
December 26, 2038
 
October 14, 2042
 
August 2, 2046
148 150 152 154 156
 
May 20, 2050
 
March 9, 2054
 
December 26, 2057
 
October 13, 2061
 
August 2, 2065
158 160 162 164 166
 
May 20, 2069
March 8, 2073 December 26, 2076 October 13, 2080 August 1, 2084

References

edit
  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. ^ "NASA - Catalog of Solar Eclipses of Saros 146". eclipse.gsfc.nasa.gov.
  3. ^ Note S1: Eclipses & Predictions in Freeth, Tony (2014). "Eclipse Prediction on the Ancient Greek Astronomical Calculating Machine Known as the Antikythera Mechanism". PLOS ONE. 9 (7): e103275. Bibcode:2014PLoSO...9j3275F. doi:10.1371/journal.pone.0103275. PMC 4116162. PMID 25075747.
edit