www.fgks.org   »   [go: up one dir, main page]

Jump to content

Osmotrophy

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Axolotl21 (talk | contribs) at 06:15, 13 December 2020 (Moved edits from Sandbox). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Osmotrophy is a feeding mechanism involving the movement of dissolved organic compounds by osmosis for nutrition. Organisms that use osmotrophy are called osmotrophs. Some mixotrophic microorganisms use osmotrophy to derive some of their energy. Osmotrophy is used by a diversity of organism.[1] Organisms that use osmotrophy include bacteria, many species of protists and most fungi. Some macroscopic animals like molluscs, sponges, corals, brachiopods and echinoderms may use osmotrophic feeding as a supplemental foodsource.

Process[2]

Osmotrophy as a means of gathering nutrients in microscopic organisms relies on cellular surface area to ensure that proper diffusion of nutrients occur in the cell. In other words, an osmotroph is an organism that has their "stomach" outside of their body. Sometimes, osmotrophs may still have an internal digestive system in addition to still using osmosis as a way to gain supplemental nutrients. Additionally, when organisms increase in size, the surface area per volume ratio drops and osmotrophy becomes insufficient to meet nutrientdemands. Larger macroscopic organisms that rely on osmotrophy can compensate for a reduced surface area per volume ratio with a very flat, thin body. A tapeworm is an example of such adaptation.

In stagnant waters photoautotrophs have a relative advantage over heterotrophic osmotrophs since the flux of photons as an energy source are not hindered at low temperatures, thus it depend on diffusion for mass acquisition through Brownian diffusion. Fluid motion is important for osmotrophs because asymptotic reactions occurs in the absence of fluid motion. Movement brings cell that correspond to the highest gradients though diffusional core is safe on average concentrations.

Osmotrophy differs from other cellular feeding mechanisms, but can also be found in a a diversity of organisms. This allows for organisms to use osmosis in different environments. [2]

Fungi [1]

Fungi are a major group of osmotrophic organisms since, Fungi degrade biomass.

Fungi are the biggest osmotrophic specialist since they are major degraders in all ecosystems. For organisms like fungi, osmotrophy facilitates the decomposition process. This is a result of the Osmotrophy resulting in metabolites that continue growth.

References

  1. ^ a b Richards, Thomas A.; Talbot, Nicholas J. (2018-10-22). "Osmotrophy". Current Biology. 28 (20): R1179–R1180. doi:10.1016/j.cub.2018.07.069. ISSN 0960-9822. PMID 30352181.
  2. ^ a b Laflamme, Marc; Xiao, Shuhai; Kowalewski, Michał (2009-08-25). "Osmotrophy in modular Ediacara organisms". Proceedings of the National Academy of Sciences. 106 (34): 14438–14443. doi:10.1073/pnas.0904836106. ISSN 0027-8424. PMC 2732876. PMID 19706530.{{cite journal}}: CS1 maint: PMC format (link)

Further reading

  • Peter A. Jumars (2005). "Foraging Theory for Osmotrophs". {{cite journal}}: Cite journal requires |journal= (help)
  • P.A. Jumars; J. W. Deming; P.H. Hill; L. Karp-Boss; P. L. Yager; W. B. Dade (1993). "Physical constraints on marine osmotrophy in an optimal foraging context". Marine Microbial Food Webs. 7 (2): 121–159.
  • McMenamin, M. (1993). "Osmotrophy in fossil protoctists and early animals". Invertebr. Repro. Develop. 23 (2–3): 165–166. doi:10.1080/07924259.1993.9672308.
  • Michel Duvert; Lucienne Gourdoux & Robert Moreau (2000). "Cytochemical And Physiological Studies Of The Energetic Metabolism And Osmotrophy In Sagitta Friderici (Chaetognath)". Journal of the Marine Biological Association of the United Kingdom. 80:5 (5): 885–890. doi:10.1017/s0025315400002861.

See also