Skip to main content
Scavenger receptor cysteine-rich (SRCR) domains are evolutionally conserved modules that display complex structures stabilized by key amino acids, while some other residues have evolved with a relative independence, thus allowing the... more
Scavenger receptor cysteine-rich (SRCR) domains are evolutionally conserved modules that display complex structures stabilized by key amino acids, while some other residues have evolved with a relative independence, thus allowing the functional diversity of these receptors. CD6, a highly glycosylated membrane protein predominantly expressed on lymphocytes, contains three SRCR domains. The lack of CD6 domain crystal structure has limited the characterization of the binding sites for the interacting molecules. The interaction between CD6 and its ligand, activated leukocyte-cell adhesion molecule (ALCAM)/CD166, through the membrane-proximal SRCR3 domain, has low affinity and involves conserved sites in both molecules mediating a cross-species binding. The CD6-ALCAM interaction has been involved in cell adhesion, maturation, regulation of activation, and survival processes, suggesting the potential relevance of this target for therapeutic interventions. Several anti-CD6 monoclonal antibodies (MAb) have been described but their affinity and epitope definition remain unclear. We found the murine and humanized T1 MAb versions have similar CD6 recognition profiles and affinity constants of about 6 x 10(8). These antibodies do not block the CD6-ALCAM interaction and recognize a conformational epitope independent of the CD6 N-glycosylation. This epitope was additionally found in the chimpanzee and contains an RXE/Q consensus motif located in the membrane-distal SRCR1. These results, together with the therapeutic evidence previously obtained with these MAbs, suggest a differential contribution of CD6 domains to lymphocyte biology. Potential mechanisms for T1 MAb therapeutic effect different from CD6-CD166 interaction blocking would be dissected.
The four serotypes of dengue virus (DENV1-4) are the causal agents of the emerging disease Dengue Fever and its severe forms. DENV is inoculated into human blood through a mosquito bite. Thus, plasma is an important media for DENV... more
The four serotypes of dengue virus (DENV1-4) are the causal agents of the emerging disease Dengue Fever and its severe forms. DENV is inoculated into human blood through a mosquito bite. Thus, plasma is an important media for DENV dissemination in infected persons and several important interactions should take place for the virus with human plasma proteins that strongly influence or may determine the course of the infection. This dataset contains 239 proteins identified in the elution fractions of human plasma subjected to DE-52 anion exchange chromatography. Data on DENV2 infection of Huh 7.5 cells in presence of the human plasma fraction is also presented.
Bm95 is an antigen isolated from Boophilus microplus strains with low susceptibility to antibodies developed in cattle vaccinated with the recombinant Bm86 antigen (Gavac, HeberBiotec S.A., Cuba). It is a Bm86-like surface protein... more
Bm95 is an antigen isolated from Boophilus microplus strains with low susceptibility to antibodies developed in cattle vaccinated with the recombinant Bm86 antigen (Gavac, HeberBiotec S.A., Cuba). It is a Bm86-like surface protein (SwissProt Accession No. P20736), which by similarity contains seven EGF-like domains and a lipid-binding GPI-anchor site at the C-terminal region. The primary structure of the recombinant (rBm95)
Blood cells and plasma are important media for the four serotypes of dengue virus (DENV1-4) spreading into an infected person. Thus, interactions with human plasma proteins are expected to be decisive in the course of the viral infection.... more
Blood cells and plasma are important media for the four serotypes of dengue virus (DENV1-4) spreading into an infected person. Thus, interactions with human plasma proteins are expected to be decisive in the course of the viral infection. Affinity purification followed by MS analysis (AP/MS) was used to isolate and identify plasma-derived proteins capable to interact with a recombinant protein comprising the domain III of the envelope protein of DENV2 (DIIIE2). The elution of the AP potently inhibits DENV2 infection. Twenty-nine proteins were identified using a label-free approach as specifically captured by DIIIE2. Of these, a direct interaction with C reactive protein, thrombin and Inter-alpha-inhibitor complexes was confirmed by ELISA. Results provide further evidence of a significant representation of proteins from complement and coagulation cascades on DENV2 interactome in human plasma and stand out the domain III of the viral envelope protein as participant on these interactions. A functional clustering analysis highlights the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium-binding- and Gla domains. Early cycles of dengue virus replication take place in human blood cells. Thus, the characterization of the interactome of dengue virus proteins in human plasma can lead to the identification of pivotal interactions for the infection that can eventually constitute the target for the development of methods to control dengue virus-caused disease. In this work we identified 29 proteins from human plasma that potentially interact with the envelope protein of dengue 2 virus either directly or through co-complex formation. C reactive protein, thrombin and Inter-alpha-inhibitor complexes were validated as interactors of the domain III of the envelope protein of dengue 2. Results highlight the presence of three structural motifs among putative DIIIE2-binding proteins: hydroxylation and EGF-like calcium-binding- and Gla domains. This finding together with the participation of domain III of the envelope protein on the interactions with human plasma proteins should contribute to a better understanding of Dengue virus interactome in human plasma. Such knowledge can contribute to the development of more effective treatments to infected persons.
The invention relates to the use of chemical compounds obtained in silico for the preparation of pharmaceutical compositions for attenuating or inhibiting dengue virus infection, in particular by interference with or modulation of the... more
The invention relates to the use of chemical compounds obtained in silico for the preparation of pharmaceutical compositions for attenuating or inhibiting dengue virus infection, in particular by interference with or modulation of the multiple steps of the viral replication cycle associated with the arrival of the virus in the target cells and the assembly of the progeny virions. The invention also relates to the use of said pharmaceutical compositions for the prophylactic and/or therapeutic treatment of infection caused by the four dengue virus serotypes and by other flaviviruses.
The present invention relates to a method for blocking dengue virus infection of cells, which comprises interfering in the interaction of the virus envelope protein with a cell receptor directly or by means of a carrier protein, and to... more
The present invention relates to a method for blocking dengue virus infection of cells, which comprises interfering in the interaction of the virus envelope protein with a cell receptor directly or by means of a carrier protein, and to related uses, wherein the cell receptor is the alpha2 macroglobulin receptor, which is also known as the low-density lipoprotein receptor-related protein or CD91, and the carrier protein human alpha-2 macroglobulin.
The invention relates to chimeric peptides having a primary structure containing at least one segment which inhibits the activation of the NS3 protease of a virus of the Flaviviridae family and a cell penetrating segment which can inhibit... more
The invention relates to chimeric peptides having a primary structure containing at least one segment which inhibits the activation of the NS3 protease of a virus of the Flaviviridae family and a cell penetrating segment which can inhibit or attenuate infection by the virus. The invention also relates to pharmaceutical compounds containing said chimeric peptides and intended for the prevention and/or treatment of infections caused by a virus of the Flaviviridae family.
A simple, reliable procedure for practically quantitative (90-98%) and fast (< 30 min) elution of proteins from SDS-PA gels is described with reproducible recoveries in the range from 100 to 1 pmol per band, which does not require the... more
A simple, reliable procedure for practically quantitative (90-98%) and fast (< 30 min) elution of proteins from SDS-PA gels is described with reproducible recoveries in the range from 100 to 1 pmol per band, which does not require the inclusion of detergents in the elution buffer. It consists in the combination of (1) highly sensitive on-gel protein detection (50 mol per band) with imidazole-SDS-zinc (reverse staining), (2) crushing of the protein band to produce 32-micron gel particles, and (3) vortexing of the slurry in a solution of a zinc-complexing agent, e.g. glycine 0.5 M or EDTA 100 mM (100 microliters for a 100-pmol BSA band), at room temperature. Eluted proteins can be directly analyzed by RP-HPLC, quantitatively loaded onto a PVDF membrane, or, provided that they are previously renatured on-gel, analyzed by biological activity tests. The application of the procedure to in-solution enrichment of scarce proteins for N-terminal analysis is shown.
ABSTRACT The invention relates to the pharmaceutical industry and describes a conserved area of the surface of the E protein, which can be used in the development of broad spectrum molecules which can be used in the prevention and/or... more
ABSTRACT The invention relates to the pharmaceutical industry and describes a conserved area of the surface of the E protein, which can be used in the development of broad spectrum molecules which can be used in the prevention and/or treatment of infections caused by dengue virus 1-4 and other flaviviruses. The invention also relates to chimeric proteins which are intended for use as vaccines and for the prophylactic and/or therapeutic treatment of the four serotypes of dengue virus and other flaviviruses.
Based on the hypothesis that interactions between virions and serum components may influence the outcome of dengue virus (DENV) infections, we decided to use affinity chromatography with domain III from the envelope (E) protein of DENV2... more
Based on the hypothesis that interactions between virions and serum components may influence the outcome of dengue virus (DENV) infections, we decided to use affinity chromatography with domain III from the envelope (E) protein of DENV2 (DIIIE2) as a ligand to isolate virus-binding proteins from human plasma. This approach yielded serum amyloid P (SAP) and α2-macroglobulin (α2M) as novel viral interactors. After confirming the specific binding of both SAP and α2M to DIIIE2 by ELISA, the latter interaction was examined in greater detail. We obtain evidence suggesting that the binding species was actually the receptor-activated form of α2M (α2M*), that α2M* could bind monovalently to recombinant domain III from all four DENV serotypes with affinities in the micromolar range ranking as DENV4>DENV1~DENV2>DENV3 and that this interaction exhibited a strong avidity effect when multivalent binding was favoured (KD 8 × 10(-8) M for DIIIE2). We also showed that α2M* bound to DENV virion...
A procedure is described for in-gel tryptic digestion of proteins that allows the direct analysis of eluted peptides in electrospray ionization (ESI) mass spectrometers without the need of a postdigestion desalting step. It is based on... more
A procedure is described for in-gel tryptic digestion of proteins that allows the direct analysis of eluted peptides in electrospray ionization (ESI) mass spectrometers without the need of a postdigestion desalting step. It is based on the following principles: (a) a thorough desalting of the protein in-gel before digestion that takes advantage of the excellent properties of acrylamide polymers for size exclusion separations, (b) exploiting the activity of trypsin in water, in the absence of inorganic buffers, and (c) a procedure for peptide extraction using solvents of proven efficacy with highly hydrophobic peptides. Quality of spectra and sequence coverage are equivalent to those obtained after digestion in ammonium bicarbonate for hydrophilic proteins detected with Coomassie blue, mass spectrometry-compatible silver or imidazole-zinc but are significantly superior for highly hydrophobic proteins, such as membrane proteins with several transmembrane domains. ATPase subunit 9 (GRAVY 1.446) is a membrane protein channel, lipid-binding protein for which both the conventional in-gel digestion protocol and in solution digestion failed. It was identified with very high sequence coverage. Sample handling after digestion is notably simplified as peptides are directly loaded into the ESI source without postdigestion processing, increasing the chances for the identification of hydrophobic peptides.
Human transferrin (hTf) is an 80 kDa glycoprotein involved in iron transport from the absorption sites to the sites of storage and utilization. Additionally, transferrin also plays a relevant role as a bacteriostatic agent preventing... more
Human transferrin (hTf) is an 80 kDa glycoprotein involved in iron transport from the absorption sites to the sites of storage and utilization. Additionally, transferrin also plays a relevant role as a bacteriostatic agent preventing uncontrolled bacterial growth in the host. In this work we describe a well-characterized Mabs panel in terms of precise epitope localization and estimate affinity for the two major hTf isoforms. We found at least four antigenic regions in the hTf molecule, narrowed down the interacting antigen residues within three of such regions, and located them on a molecular model of hTf. Two of the antigenic regions partially overlap with previously described transferrin-binding sites for both human receptor (antigenic region I: containing amino acid residues from Asp-69 to Asn-76 at the N-lobe) and bacterial receptors from two pathogenic species (antigenic region III: amino acid residues from Leu-665 to Ser-672 at the C-lobe). Hence, such monoclonal antibodies (Mabs) could be used as an additional tool for conformational studies and/or the characterization of the interaction between hTf and both types of receptor molecules.
Scavenger receptor cysteine-rich (SRCR) domains are evolutionally conserved modules that display complex structures stabilized by key amino acids, while some other residues have evolved with a relative independence, thus allowing the... more
Scavenger receptor cysteine-rich (SRCR) domains are evolutionally conserved modules that display complex structures stabilized by key amino acids, while some other residues have evolved with a relative independence, thus allowing the functional diversity of these receptors. CD6, a highly glycosylated membrane protein predominantly expressed on lymphocytes, contains three SRCR domains. The lack of CD6 domain crystal structure has limited the characterization of the binding sites for the interacting molecules. The interaction between CD6 and its ligand, activated leukocyte-cell adhesion molecule (ALCAM)/CD166, through the membrane-proximal SRCR3 domain, has low affinity and involves conserved sites in both molecules mediating a cross-species binding. The CD6-ALCAM interaction has been involved in cell adhesion, maturation, regulation of activation, and survival processes, suggesting the potential relevance of this target for therapeutic interventions. Several anti-CD6 monoclonal antibodies (MAb) have been described but their affinity and epitope definition remain unclear. We found the murine and humanized T1 MAb versions have similar CD6 recognition profiles and affinity constants of about 6 x 10(8). These antibodies do not block the CD6-ALCAM interaction and recognize a conformational epitope independent of the CD6 N-glycosylation. This epitope was additionally found in the chimpanzee and contains an RXE/Q consensus motif located in the membrane-distal SRCR1. These results, together with the therapeutic evidence previously obtained with these MAbs, suggest a differential contribution of CD6 domains to lymphocyte biology. Potential mechanisms for T1 MAb therapeutic effect different from CD6-CD166 interaction blocking would be dissected.