Skip to main content

    Brandon Ally

    Priming reflects an important means of learning that is mediated by implicit memory. Importantly, priming occurs for previously viewed objects (item-specific priming) and their category relatives (category-wide priming). Two distinct... more
    Priming reflects an important means of learning that is mediated by implicit memory. Importantly, priming occurs for previously viewed objects (item-specific priming) and their category relatives (category-wide priming). Two distinct neural mechanisms are known to mediate priming, including the sharpening of a neural object representation and the retrieval of stimulus-response mappings. Here, we investigated whether the relationship between these neural mechanisms could help explain why item-specific priming generates faster responses than category-wide priming. Participants studied pictures of everyday objects, and then performed a difficult picture identification task while we recorded event-related potentials (ERP). The identification task gradually revealed random line segments of previously viewed items (Studied), category exemplars of previously viewed items (Exemplar), and items that were not previously viewed (Unstudied). Studied items were identified sooner than Unstudied i...
    A growing body of literature has investigated changes in eye movements as a result of Alzheimer's disease (AD). When compared to healthy, age-matched controls, patients display a number of remarkable alterations to oculomotor function... more
    A growing body of literature has investigated changes in eye movements as a result of Alzheimer's disease (AD). When compared to healthy, age-matched controls, patients display a number of remarkable alterations to oculomotor function and viewing behavior. In this article, we review AD-related changes to fundamental eye movements, such as saccades and smooth pursuit motion, in addition to changes to eye movement patterns during more complex tasks like visual search and scene exploration. We discuss the cognitive mechanisms that underlie these changes and consider the clinical significance of eye movement behavior, with a focus on eye movements in mild cognitive impairment. We conclude with directions for future research.
    Our laboratory uses event-related EEG potentials (ERPs) to understand and support behavioral investigations of episodic memory in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease... more
    Our laboratory uses event-related EEG potentials (ERPs) to understand and support behavioral investigations of episodic memory in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). Whereas behavioral data inform us about the patients' performance, ERPs allow us to record discrete changes in brain activity. Further, ERPs can give us insight into the onset, duration, and interaction of independent cognitive processes associated with memory retrieval. In patient populations, these types of studies are used to examine which aspects of memory are impaired and which remain relatively intact compared to a control population. The methodology for collecting ERP data from a vulnerable patient population while these participants perform a recognition memory task is reviewed. This protocol includes participant preparation, quality assurance, data acquisition, and data analysis. In addition to basic setup and acquisition, we will also demonstrate localization techniques to obtain greater spatial resolution and source localization using high-density (128 channel) electrode arrays.
    The influence of implicit memory representations on explicit recognition may help to explain cases of accurate recognition decisions made with high uncertainty. During a recognition task, implicit memory may enhance the fluency of a test... more
    The influence of implicit memory representations on explicit recognition may help to explain cases of accurate recognition decisions made with high uncertainty. During a recognition task, implicit memory may enhance the fluency of a test item, biasing decision processes to endorse it as "old". This model may help explain recognition-without-identification, a remarkable phenomenon in which participants make highly accurate recognition decisions despite the inability to identify the test item. The current study investigated whether recognition-without-identification for pictures elicits a similar pattern of neural activity as other types of accurate recognition decisions made with uncertainty. Further, this study also examined whether recognition-without-identification for pictures could be attained by the use of perceptual and conceptual information from memory. To accomplish this, participants studied pictures and then performed a recognition task under difficult viewing conditions while event-related potentials (ERPs) were recorded. Behavioral results showed that recognition was highly accurate even when test items could not be identified, demonstrating recognition-without-identification. The behavioral performance also indicated that recognition-without-identification was mediated by both perceptual and conceptual information, independently of one another. The ERP results showed dramatically different memory related activity during the early 300 to 500ms epoch for identified items that were studied compared to unidentified items that were studied. Similar to previous work highlighting accurate recognition without retrieval awareness, test items that were not identified, but correctly endorsed as "old," elicited a negative posterior old/new effect (i.e., N300). In contrast, test items that were identified and correctly endorsed as "old," elicited the classic positive frontal old/new effect (i.e., FN400). Importantly, both of these effects were elicited under conditions when participants used perceptual information to make recognition decisions. Conceptual information elicited very different ERPs than perceptual information, showing that the informational wealth of pictures can evoke multiple routes to recognition even without awareness of memory retrieval. These results are discussed within the context of current theories regarding the N300 and the FN400.
    The purpose of this study was to examine whether acute relaxation training, conducted on two separate occasions, would be associated with reliable reductions in subjective and physiological indices of stress. Forty-six experimental... more
    The purpose of this study was to examine whether acute relaxation training, conducted on two separate occasions, would be associated with reliable reductions in subjective and physiological indices of stress. Forty-six experimental subjects were led through Abbreviated Progressive Relaxation Training (APRT) exercises during two laboratory sessions spaced exactly 1 week apart. Fifteen control subjects experienced two laboratory sessions where they sat quietly for an equal amount of time. Results indicated that a brief relaxation exercise led to experimental subjects having significantly lower levels of post-intervention heart rate, state anxiety, perceived stress, and salivary cortisol than control subjects, as well as increased levels of self-report levels of relaxation. The results of this study may have implications for the use of relaxation training in enhancing immune function.
    Research has shown that sensory gating is largely modualted by acetylcholine. Diminished levels of acetylcholine and sensory gating deficits have been reported in research involving... more
    Research has shown that sensory gating is largely modualted by acetylcholine. Diminished levels of acetylcholine and sensory gating deficits have been reported in research involving Alzheimer's disease (AD) patients. However, there has been little investigation into those with a family history (FH+) of AD. The rationale of this study was to determine whether sensory gating impairments could distinguish those with early AD from individuals with increased risk for the disease while replicating previous findings of gating abnormalities in AD patients. Using the paried-click paradigm, evoked potentials were recorded from 4 groups of 20 subjects per group (AD, older controls, FH+, FH-). The results showed that while the AD group demonstrated sensory gating abnormalities, the FH+ group did not when compared to their peers with no family history of the disease (FH-). These results are discussed in relation to previous findings reporting P300 abnormalities in the FH+ group.