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I. DEVICE DESIGN AND ARCHITECTURE

The Sycamore device was designed with both the quan-
tum supremacy experiment and small noisy intermediate
scale quantum (NISQ) applications in mind. The archi-
tecture is also suitable for initial experiments with quan-
tum error correction based on the surface code. While
we are targeting 0.1% error two-qubit gates for error
correction, a quantum supremacy demonstration can be
achieved with 0.3-0.6% error rates.

For decoherence-dominated errors, a 0.1% error means
a factor of about 1000 between coherence and gate times.
For example, a 25 µs coherence time implies a 25 ns gate.
A key design objective in our architecture is achieving
short two-qubit gate time, leading to the choice of tun-
able transmon qubits with direct, tunable coupling.

A difficult challenge for achieving a high-performance
two-qubit gate is designing a sufficiently strong coupling
when the gate is active, which is needed for fast gates,
while minimizing the coupling otherwise for low resid-
ual control errors. These two competing requirements
are difficult to satisfy with a fixed-coupling architecture:
our prior processors [1] used large qubit-qubit detuning
(∼1 GHz) to turn off the effective interaction, requir-
ing relatively high-amplitude precise flux pulses to tune
the qubit frequencies to implement a CZ gate. In the
Sycamore device, we use adjustable couplers [2] as a nat-
ural solution to this control problem, albeit at the cost
of more wiring and control signals. This means that the
qubits can idle at much smaller relative detuning. We
chose a capacitor-coupled design [2, 3], which is simpler
to layout and scale, over the inductor-based coupler of
previous gmon devices [4, 5]. In Sycamore, the coupling
g is tunable from 5 MHz to −40 MHz. The experiment
uses ‘on’ coupling of about −20 MHz.

By needing only small frequency excursions to perform
a two-qubit gate, the tunable qubit can be operated much
closer to its maximum frequency, thus greatly reducing
flux sensitivity and dephasing from 1/f flux noise. Ad-
ditionally, the coupling can be turned off during mea-
surement, reducing the effect of measurement crosstalk,
a phenomenon that has shown to be somewhat difficult
to understand and minimize [6].

The interaction Hamiltonian of a system of on-
resonance transmons with adjustable coupling (truncated

to the qubit levels) has the following approximate form,

Hint(t) ≈
∑
〈i,j〉

gij(t) (σ+
i σ
−
j + σ−i σ

+
j ) +

g2
ij(t)

|η|
σzi σ

z
j , (1)

where gij is the nearest neighbor coupling, η is the non-
linearity of the qubits (roughly constant), i and j index
nearest-neighbor qubit pairs, and σ± = (σx±iσy)/2. We
pulse the coupling in time to create coupling gates.

Our two-qubit gate can be understood using Car-
tan decomposition [7], which enables an arbitrary two-
qubit gate to be decomposed into four single-qubit gates
around a central two-qubit gate that can be described by
a unitary matrix describing only XX, YY and ZZ interac-
tions, with 3 parameters indicating their strengths. For
the physical interaction describing our hardware, we see
a swapping interaction between the |01〉 and |10〉 qubits
states, corresponding to an XX+YY interaction. Inter-
action of the qubit |11〉 state with the |2〉 states of the
data transmons produce a phase shift of that state, cor-
responding to a ZZ interaction. By changing the qubit
frequencies and coupling strength we can vary the mag-
nitude of these interactions, giving net control of 2 out
of the 3 possible parameters for an arbitrary gate.

II. FABRICATION AND LAYOUT

Our Sycamore quantum processor is configured as a
diagonal array of qubits as seen in the schematic of Fig. 1
in the main text. The processor contains 142 transmon
qubits, of which 54 qubits have individual microwave and
frequency controls and are individually read out (referred
to as qubits). The remaining 88 transmons are operated
as adjustable couplers remaining in their ground state
during the algorithms (referred to as couplers).

The qubits consist of a DC SQUID sandwiched be-
tween two metal islands, operating in the transmon
regime. An on-chip bias line is inductively coupled to the
DC SQUID, which allows us to tune qubit frequency by
applying control fluxes into the SQUID loop. For regu-
lar operations, we tune qubits through a small frequency
range (< 100 MHz). This corresponds to a relatively
small control signal and makes qubit operation less sen-
sitive to flux crosstalk.

Each pair of nearest-neighbor qubits are coupled
through two parallel channels: direct capacitive coupling
and indirect coupling mediated by coupler [2, 3, 8]. Both
channels result in qubit-qubit coupling in the form of
σxi σ

x
j + σyi σ

y
j in the rotating frame, although with dif-

ferent signs. The indirect coupling is negative, given it
is a second-order virtual process. The strength of the
indirect coupling is adjusted by changing the coupler fre-
quency with an additional on-chip bias line, giving a net
zero qubit-qubit coupling at a specific flux bias.

The Sycamore processor consists of two die that we
fabricated on separate high resistivity silicon wafers. The
fabrication process, using aluminum on silicon, requires
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FIG. S1. A photograph of a packaged Sycamore pro-
cessor. The processor is shielded from the electromagnetic
environment by a mu-metal shield (middle) and a supercon-
ducting Aluminum cap, inside the mu-metal shield. The pro-
cessor control wires are routed, through PCB circuit board,
to coaxial connectors shown around the edge.

a total of 14 lithography layers utilizing both optical and
electron beam lithography. Crosstalk and dissipation are
mitigated through ground plane shielding [9]. After fabri-
cation and die singulation, we use indium bump bonding
[10, 11] of the two separate dies to form the Sycamore
processor.

The Sycamore processor is connected to a 3-layer Al-
plated circuit board with Al wirebonds [12]. Each line
is routed through a microwave connector to an individ-
ual coax cable. We shield the processor from stray light
using a superconducting Al lid with black coating, and
from magnetic fields using a mu-metal shield as shown in
Fig. S1.

III. QUBIT CONTROL AND READOUT

A. Control

Operating the device requires simultaneous synchro-
nized control waveforms for each of the qubits and cou-
plers. We use 54 coherent microwave control signals
for qubit XY rotations, 54 fast flux bias lines for qubit
frequency tuning, and 88 fast flux biases for the ad-
justable couplers. Dispersive readout requires an addi-
tional 9 microwave signals and phase sensitive receivers.
A schematic of the room temperature electronics is shown
in Fig. S2, and the cryogenic wiring is shown in Fig. S3.

Waveform generation is based on a custom-built multi-
channel digital to analog converter (DAC) module. Each
DAC module provides 8 DACs with 14-bit resolution and
1 GS/s sample rate. Each DAC sample clock is synchro-
nized to a global 10 MHz reference oscillator, and their
trigger is connected by a daisy chain to synchronize all
modules used in the experiment. This set of DAC mod-

ules forms a >250-channel, phase-synchronous waveform
generator. We have measured 20 ps of jitter between
channels. The modules are mounted in 14-slot 6U rack-
mount chassis. A single chassis, shown in FIG. S4, can
control approximately 15 qubits including their associ-
ated couplers and readout signals. A total of 4 chassis
are used to control the entire Sycamore chip.

The DAC outputs are used directly for fast flux bias-
ing the qubits and couplers required for two-qubit gates.
Microwave control for single-qubit XY rotations and dis-
persive readout combine two DAC channels and a mixer
module to form a microwave arbitrary waveform genera-
tor (Microwave AWG) via single-sideband upconversion
in an IQ mixer as shown in Figure S2 a. The microwave
AWG provides signals with arbitrary spectral content
within ±350 MHz of the local oscillator (LO). A single
LO signal is distributed to all IQ mixers so that all qubits’
XY controls are phase coherent. The mixer modules are
mounted in the same chassis as the DAC modules. Each
mixer’s I and Q port DC offsets are calibrated for min-
imum carrier leakage and the I and Q amplitudes and
phases are calibrated to maximize image rejection.

Each DAC module contains an FPGA that provides
a gigabit ethernet interface, SRAM to store waveform
patterns, and sends the waveform data to the DAC mod-
ule’s 8 DACs. To optimize the use of SRAM, the FPGA
implements a simple jump table to allow reusing or re-
peating waveform segments. A computer loads the de-
sired waveforms and jump table onto each FPGA using a
UDP-based protocol and then requests the first (master)
FPGA to start. The start pulse is passed down the daisy
chain causing the remainder (slave) DACs and ADCs to
start.

B. Readout

Qubit state measurement and readout (hereafter
“readout”) are done via the dispersive interaction be-
tween the qubit and a far-detuned harmonic resonator
[13–15]. A change in the qubit state from |0〉 to |1〉
causes a frequency shift of the resonator from ω|0〉 to
ω|1〉. A readout probe signal applied to the resonator
at a frequency in between ω|0〉 and ω|1〉 reflects with a
phase shift φ|0〉 or φ|1〉 that depends on the resonator
frequency and therefore on the qubit state. By detect-
ing the phase of the reflected probe signal we infer the
qubit state. The readout probe signal is generated with
the same microwave AWG as the XY control signals, but
with a separate local oscillator, and is received and de-
modulated by the circuit shown in Figure S2 b.

The readout probe intensity is typically set to populate
the readout resonator with only a few photons to avoid
readout-induced transitions in the qubit [16]. Detecting
this weak signal at room temperature with conventional
electronics requires 100 dB of amplification. To limit the
integration time to a small fraction of the qubit coher-
ence time, the amplification chain must operate near the
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quantum noise limit [17, 18].
Inside the cryostat the signal is amplified by an

impedance matched lumped element Josephson paramet-
ric amplifier (IMPA) [19] on the mixing chamber stage
followed by a Low Noise Factory cryogenic HEMT am-
plifier at 3 K. At room temperature the signal is fur-
ther amplified before it is mixed down with an IQ mixer
producing a pair of intermediate frequency (IF) signals
I(t) and Q(t). The IF signals are amplified by a pair of
variable gain amplifiers to fine-tune their level, and then
digitized by a pair of custom 1 GS/s, 8-bit analog to dig-
ital converters (ADC). The digitized samples In and Qn
are processed in an FPGA which combines them into a
complex phasor

zn = In + iQn = En exp(i(ωndt+ φ))

where dt is the sample spacing, ω is the IF frequency,
φ is the phase that depends on the qubit state, and En
is the envelope of the reflected readout signal. The en-
velope is measured experimentally once and then used
by the FPGA in subsequent experiments as the optimal
demodulation window wn to extract the phase of the re-
flected readout signal [20, 21]. The FPGA multiplies zn
by wn exp(−iωndt), and then sums over time to produce
a final complex value exp(iφ)

N−1∑
n=0

znwn exp(−iωndt) ∝ exp(iφ)

In the absence of noise, the final complex value would
always be one of two possible values corresponding to
the qubit states |0〉 and |1〉. However, the noise leads to
Gaussian distributions centered at those two points. The
size of the clouds is determined mostly by the noise of the
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IMPA and cryogenic HEMT amplifier, while the separa-
tion between the clouds’ centers is determined by the
resonator probe power and duration. The signal to noise
ratio of the measurement is determined by the clouds’
separation and width [21, 22].

The 54 qubits are divided into nine frequency multi-
plexed readout groups of six qubits each. Within a group,
each qubit is coupled to its own readout resonator, but all
six resonators are coupled to a shared bandpass Purcell
filter [21, 23, 24]. All qubits in a group can be read-out
simultaneously by frequency-domain multiplexing [1, 25]
in which the total probe signal is a superposition of probe
signals at each of the readout resonators’ frequencies.
The phase shifts of these superposed signals are inde-
pendently recovered in the FPGA by demodulating the
complex IQ phasor with each intermediate frequency. In
other words, we know what frequencies are in the su-
perposed readout signal and we compute the Fourier co-
efficients at those frequencies to find the phase of each
reflected frequency component.

IV. XEB THEORY

We use cross entropy benchmarking (XEB) [5, 26] to
calibrate general single- and two-qubit gates, and also to
estimate the fidelity of random quantum circuits with a
large number of qubits. XEB is based on the observation
that the measurement probabilities of a random quantum
state have a similar pattern to laser “speckles”, with some
bitstrings more probable than others [27, 28]. The same
holds for the output state of random quantum circuits.
As errors destroy the speckle pattern, this is enough to
estimate the rate of errors and fidelity in an experiment.
Crucially, XEB does not require the reconstruction of
experimental output probabilities, which would need an
exponential number of measurements for increasing num-
ber of qubits. Rather, we use numerical simulations to
calculate the likelihood of a set of bitstrings obtained in
an experiment according to the ideal expected probabili-
ties. Below we describe the theory behind this technique
in more detail.

A. XEB of a small number of qubits

We first consider the use of XEB to obtain the er-
ror rate for single- and two-qubit gates. As explained
above, for a two-qubit XEB estimation we use sequences
of cycles, each cycle consisting of two sufficiently random
single-qubit gates followed by the same two-qubit gate.

The density operator of the system after application
of a random circuit U with m cycles can be written as a
sum of two parts

ρU = εm |ψU 〉 〈ψU |+ (1− εm)χU , D = 2n . (2)

Here |ψU 〉 = U |ψ0〉 is the ideal output state and χU is
an operator with unit trace that along with εm describes

the effect of errors. For a depolarizing channel model
χU = I/D and εm has the meaning of the depolarization
fidelity after m cycles. Nevertheless, in the case of small
number of qubits, the part of the operator χU has nonzero
matrix elements between the states with no error and the
states with the error. However, if we undo the evolution
of each random circuit and average over an ensemble of
circuits such cross-terms are averaged out and we expect

U†χUU =
I

D
. (3)

Here and below we use the horizontal bar on the top to
denote averaging over the ensemble of random circuits.
Because of this property it is possible to establish the
connection between the quantity εm and the depolariza-
tion fidelity after m cycles.

From Eqs. (2) and (3) we get

U†ρUU = εm |ψ0〉 〈ψ0|+ (1− εm)
I

D
. (4)

This is a depolarizing channel. From this and the expo-
nential decay of fidelity we get

εm = pmc , (5)

connecting εm to the depolarization fidelity pc per cycle.
The noise model (2) is very general in the context of

random circuits. To provide some insight about the ori-
gin of this model we consider a specific case with pure
systematic error in the two-qubit gate. In this case the
resulting pure state after the application of the random
circuit Ũ with the error can be expanded into the direc-
tion of the ideal state vector and the orthogonal direction

Ũ |ψ0〉 = ξm |ψU 〉+
√

1− |ξm|2 |ϕŨ 〉 , (6)

where

〈ψU |ϕŨ 〉 = 0, 〈ϕŨ |ϕŨ 〉 = 1 . (7)

For the ensemble of random circuits U the error vector
is distributed completely randomly in the plane orthogo-
nal to the ideal vector U |ψ0〉 (see Fig. S5). This condition
of orthogonality is the only constraint on the vector |ϕŨ 〉
that involves |ψU 〉. Therefore we expect

U† |ϕŨ 〉 〈ϕŨ |U =
1

D − 1
(I − |ψ0〉 〈ψ0|) . (8)

Also

U†
(
ξm
√

1− |ξm|2 |ψU 〉 〈ϕŨ |+ h.c
)
U = 0 . (9)

This gives the connection between the error vector |ϕŨ 〉
and the operator χU

(1− εm)χU −
1− εm
D

|ψU 〉 〈ψU | = (1−|ξm|2) |ϕŨ 〉 〈ϕŨ |

+
(
ξm
√

1− |ξm|2 |ψU 〉 〈ϕŨ |+ h.c
)
. (10)
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FIG. S5. Cartoon: decomposition of the quantum
state into the vector aligned with the ideal quantum
state and its orthogonal complement

The resulting equation

|ξm|2 = εm +
1− εm
D

(11)

is to be expected, because |ξm|2 is the average state fi-
delity while εm is the depolarization fidelity (see Sec. V).
Note that Eqs. (8)–(11) lead to Eq. (4). This result can
also be derived assuming that single qubit gates form a
2-design in the Hilbert space of each qubit.

We demonstrate the above findings by numerically sim-
ulating the random circuits for 2 qubits that contains
single qubit gates randomly sampled from Haar measure
and ISWAP-like gate

V (θ) =

 1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 1

 . (12)

The systematic error ∆θ = θ − π/2 corresponds to the
deviation of the swap angle from π/2. Then assuming
that the single qubit gates are error free the depolarizing
channel model gives the prediction for the depolarizing
fidelity per cycle

pc =
|tr(V (θ)V †(π/2))|2 − 1

D2 − 1

=
1

15
(8 cos(∆θ) + 2 cos(2∆θ) + 5) . (13)

As shown in Fig. S6 the depolarizing fidelity pmc for the
circuit of depth m based on Eq. (13) closely matches the
corresponding quantity obtained by the averaging of the
squared overlap over the ensemble of random circuits (cf.
(11)

εm =
D |ξm|2 − 1

D − 1
. (14)
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FIG. S6. Plots of the circuit depolarizing fidelity vs the
circuit depth. Solid lines corresponds to the predictions
from the depolarizing channel model (13) and points corre-
spond to εm (14) obtained by the averaging of the squared
overlap over the ensemble of random circuits. Different col-
ored pots correspond to different values of the swap error
∆θ = 0.01(red), 0.02(blue), 0.03 (green), 0.04 (pink), 0.05
(black).

Returning to the generic case, property (3) can be ex-
tended so that for any smooth function f(u) the following
relation holds∑

q∈{0,1}n
f(ps(q)) 〈q|χU |q〉 =

∑
q∈{0,1}n

f(ps(q))

D
+ ε ,

(15)

where |q〉 is a computational basis state corresponding
to bitstring q, and ps(q) = 〈q|Uρ0U

† |q〉 is the simulated
(computed) ideal probability of q. If the average is per-
formed over a sample of random circuits of size S then
the correction is ε ∈ O(1/

√
S). We tested numerically for

the case of n = 2 that relation (15) holds even for purely
systematic errors in the case of a sufficiently random set
of single qubit gates.

We now make the critical step of estimating the param-
eter pmc from a set of experimental realizations of random
circuits with m cycles. We map each measured bitstring
q with a function f(ps(q)) and then average this function
over the measured bitstrings. The standard XEB [5, 26]
uses the natural logarithm, f(ps(q)) = log(ps(q)). In the
main text we use the linear version of XEB, for which
f(ps(q)) = Dps(q)− 1. Both these functions give higher
values to bitstrings with higher simulated probabilities.
Another closely related choice is the Heavy Output Gen-
eration test [29], for which f is a step-function.

Under the model (2), in an experiment with ideal state
preparation and measurement, we obtain the bitstring q
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with probability

pmc ps(q) + (1− pmc ) 〈q|χU |q〉 , (16)

For the linear XEB, the average value of Dps(q)−1 when
sampling with probabilities given by Eq. (16) is

〈Dps(q)− 1〉 = pmc

(
D
∑
q

ps(q)2 − 1

)
. (17)

Similarly to Eq. (15), the horizontal bar denotes averag-
ing over the random circuits.

The sum on the right hand side of (17) goes over all bit-
strings in the computational basis, and can be obtained
with numerical simulations. It can also be found analyti-
cally assuming that the random circuit ensemble approxi-
mates the Haar measure where for a given q the quantity
ps(q) is distributed with the beta distribution function
(D − 1)(1 − ps)D−2. In this case the right hand side in
(17) equals pmc (2D/(D + 1)− 1).

The experimental average on the left hand side of (17)
can be estimated with accuracy 1/

√
SNs using S random

circuit realizations with Ns samples each

1

SNs

S∑
j=1

Ns∑
i=1

(
Dpjs(qi,j)− 1

)
= 〈Dps(q)− 1〉+O

(
1√
SNs

)
. (18)

This gives an estimate of pmc .
This estimate can be justified using Bayes rule. The

log-likelihood for a set of experimental measurements
{qi,j} assuming that the experimental probabilities are
given by Eq. (16) is proportional to

S∑
j=1

Ns∑
i=1

log
(
1 + pmc (Dpjs(qi,j)− 1)

)
, (19)

where pjs(q) is a simulated probability corresponding to
the j-th circuit realization. We want to maximize the
log-likelihood as a function of pmc . Taking the derivative
with respect to pmc and equating to 0 we obtain

S∑
j=1

Ns∑
i=1

Dpjs(qi,j)− 1

1 + pmc (Dpjs(qi,j)− 1)
= 0 , (20)

For pmc � 1 it is easy to solve this equation and obtain
the estimate

pmc '
∑S
j=1

∑Ns

i=1

(
Dpjs(qi,j)− 1

)
∑S
j=1

∑Ns

i=1

(
Dpjs(qi,j)− 1

)2 '
〈Dps(q)− 1〉

D
∑
q ps(q)

2 − 1
.

(21)

In the spirit of the XEB method, we can use other
functions f(ps(q)) to estimate pmc . One alternative is

derived from the log-likelihood of a sample {qi,j} with
respect to the simulated (computed) ideal probabilities

log ΠS
j=1ΠNs

i=1p
j
s(qi,j) =

S∑
j=1

Ns∑
i=1

log pjs(qi,j) , (22)

which converges to the cross entropy between experimen-
tal probabilities and simulated probabilities. The experi-
mental average of the function f(ps(q)) = log ps(q) under
the probabilities from Eq. (16) with additional averaging
over random circuits is

〈log ps(q)〉 ' pmc

(∑
q

(ps(q)− 1/D) log ps(q)

)

+
1

D

∑
q

log ps(q) . (23)

As before, the sums on the right hand side can be ob-
tained with numerical simulations and the average value
on the left hand side can be estimated experimentally.
This also gives an estimate of pmc .

Both Eq. (17) and Eq. (23) give a linear equation, from
which we can obtain an estimate of the total polarization
pmc for an experimental implementation of one quantum
circuit with m cycles. We normally use mutiple circuits
with the same number of cycles m to estimate pmc , which
we can do using the least squares method. Finally, we ob-
tain an estimate of pc from a fit of the estimates pmc as an
exponential decay in m. This is standard in randomized
benchmarking [30, 31]. One advantage of this method
is that it allows us to estimate the cycle polarization pc
independently of the state preparation and measurement
errors (SPAM). See also below.

B. XEB of a large number of qubits

We now consider the case of a large number of qubits
n � 1. We are typically interested in estimating the
fidelity F of each of a set of circuits with a given number
of qubits and depth. As above, we write the output of
an approximate implementation of the random quantum
circuit U as

ρU = F |ψU 〉 〈ψU |+ (1− F )χU , (24)

where |ψU 〉 is the ideal output and F = 〈ψU | ρU |ψU 〉 is
the fidelity. We do not necessarily assume χU = I/D,
and we will ignore the small difference, of order 2−n,
n � 1, between the fidelity F and the depolarization
fidelity p.

As for the case of small number of qubits n, we map
each output bitstring q with a function f(ps(q)). Given
that the values 〈q|χU |q〉 resulting from errors are typ-
ically uncorrelated with the chaotic “speckles” of ps(q),
we make our main assumption∑

q

〈q|χU |q〉 f(ps(q)) =
1

D

∑
q

f(ps(q)) + ε . (25)
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FIG. S7. Absolute value of the XEB fidelity between a ran-
dom quantum circuit and the same circuit with a single Pauli
error. Markers show the median over all possible positions in
the circuit for both bit-flip and phase-flip errors. Error bars
correspond to the first and third quartile. The dashed lines
are the 1/

√
D theory prediction.

This equation is trivial if we assume a depolarizing model,
χU = I/D. More generally, it can be understood in the
geometric context of concentration of measure [32–35] for
high dimensional spaces, and from Levy’s lemma [36] we

expect a typical statistical fluctuation ε ∈ O(1/
√
D) with

D = 2n. We will only require ε� F . We check Eq. (25)
numerically for the output ρe = |ψe〉 〈ψe| where |ψe〉 is
the wave function obtained after a single phase-flip or bit-
flip error is added somewhere in the circuit, see Fig. S7
and Ref. [26]. We have also tested this assumption nu-
merically comparing the fidelity with the XEB estimate
for a pure state

√
F |ψU 〉+

√
1− F |ψ⊥〉, see also Ref. [37]

and Section X.
From Eqs. (24) and (25) we obtain Eq. (17) for linear

XEB, f(ps(q)) = Dps(q) − 1 (FXEB in the main text).
We also obtain Eq. (23) for XEB, f(ps(q)) = log ps(q),
with pmc replaced by fidelity F . As before, the sums on
the right hand side can be obtained with numerical sim-
ulations and the average value on the left hand side can
be estimated experimentally with accuracy 1/

√
Ns using

Ns samples. This gives an estimate of F .
In practice, circuits of enough depth (as in the exper-

iments reported here) exhibit the Porter-Thomas distri-
bution for the measurement probabilities p = {ps(q)},
that is

Pr(p) = De−Dp . (26)

In this case the linear cross entropy Eq. (17) gives

F = 〈Dps(q)− 1〉 . (27)

The standard deviation of the estimate of F with
Ns samples from the central limit theorem is
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FIG. S8. Comparison of fidelity estimates obtained using
linear XEB, Eq. (27) and logarithmic XEB, Eq. (28) from
bitstrings observed in our quantum supremacy experiment.
Standard deviation smaller than markers.

√
(1 + 2F − F 2)/Ns. The cross entropy Eq. (23) gives

F = 〈logDps(q)〉+ γ , (28)

where γ is the Euler-Mascheroni constant ≈ 0.577. The
standard deviation of the estimate of F with Ns sam-
ples is

√
(π2/6− F 2)/Ns. The logarithmic XEB has a

smaller standard deviation for F > 0.32 (it is the best
estimate when F ≈ 1), while for F < 0.32 the linear XEB
has a smaller standard deviation (it is the best estimate
for F � 1, where it relates to the maximum likelihood
estimator). See Fig. S8 for comparison of the fidelity
estimates produced by the linear and logarithmic XEB.

We note in passing another example for an estima-
tor of F related to the HOG test [29] which counts the
number of measured bitstrings with probabilities ps(q)
greater than the median of the probabilities. The func-
tion f(ps(q)) in this case returns 1 for Dps(q) ≥ log(2),
and 0 in the other case. The fidelity estimator uses the
following normalization

F =
1

log(2)
〈2ns(q)− 1〉 , (29)

where ns(q) is defined to be 1 if Dps(q) ≥ log(2), and
0 otherwise. The standard deviation of this estimator

is
√

[log−2(2)− F 2]/Ns, which is always larger than for

the XEB. See Fig. S9 for comparison of the fidelity es-
timates produced by linear XEB and the HOG-based fi-
delity estimator. HOG test is also related to a definition
of quantum volume [38].

C. Two limiting cases

Here, we consider two special cases of equation (27)
and the formula (1) in the main paper. First, suppose
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FIG. S9. Comparison of fidelity estimates obtained using lin-
ear XEB, Eq. (27) and normalized HOG score, Eq. (29) from
bitstrings observed in our quantum supremacy experiment.
Standard deviation smaller than markers.

bitstrings qi are sampled from the uniform distribution.
In this case P (qi) = 1/D for every i and FXEB = 0.
Therefore, if the qubits are in the maximally mixed state,
the estimator yields zero fidelity, as expected.

Second, suppose that bitstrings are sampled from the
theoretical output distribution of a random quantum cir-
cuit. Assume that the distribution has Porter-Thomas
shape. By equation (26), the fraction of bitstrings with
theoretical probability in [p, p+ dp] is

Pr(p) dp = De−Dpdp (30)

and the total number of such bitstrings is

N(p) dp = D2e−Dp dp. (31)

Therefore, the probability that a bitstring with probabil-
ity in [p, p+ dp] is sampled equals

p ·N(p) dp = pD2e−Dp dp = f(p) dp (32)

where f(p) is the probability density function of the ran-
dom variable defined as the ideal probability of a sampled
bitstring, i.e. the random variable which is being aver-
aged in the formula (1) of the main paper. Thus, the
average probability of a sampled bitstring is

〈P (qi)〉 =

∫ 1

0

pf(p) dp =

∫ 1

0

p2D2e−Dp dp

=
2

D

(
1− e−D

(
D2

2
+D + 1

))
≈ 2

D
.

(33)

Substituting into equation (1) in the main paper yields
FXEB = 1. The general case of a depolarizing error can
be obtained from the two limiting cases by convex com-
bination.

D. Measurement errors

We now consider how measurement errors affect the
estimation of fidelity. Let us assume uncorrelated clas-
sical measurement errors, so that if the “actual” mea-
surement result of a qubit is 0, we can get 1 with prob-
ability em0, and similarly with probability em1 we get 0
for actual result 1, i.e., p(1|0) = em0, p(0|0) = 1 − em0,
p(0|1) = em1, p(1|1) = 1 − em1. In this case the proba-
bility to get measurement result q = k1k2..kn for actual
result q′ = k′1k

′
2..k
′
n is the product of the corresponding

factors. The probability of correct measurement result is
then

pm(q′) = (1− em0)n−|q
′|(1− em1)|q

′|

≈ (1− em0)n/2(1− em1)n/2, (34)

where |q′| is the number of 1s (Hamming distance from
00..0) in the initial bitstring q′, and in the second expres-
sion we approximated |q′| with n/2 for large n.

Now let us make a natural assumption that if there
was one or more measurement errors, q′ → q, then the
resulting ideal probability ps(q) is uncorrelated with the
actual ideal probability ps(q

′). Using this assumption we
can write

F = FUpm (35)

where FU is the circuit fidelity and F is the complete
(effective) fidelity. The complete fidelity F is estimated
as before. The measurement fidelity pm can be obtained
independently. For instance, we can prepare a bistring
q and measure immediately to obtain the probability of
a correct measurement result for q. We obtain pm by
repeating this for a set of random bitstrings. We can
therefore obtain FU from Eq. (35). As explained above,
fitting the depolarization fidelity per cycle pc for different
circuit depths m is also a method to separate measure-
ment errors.

The state preparation errors can be treated similarly,
assuming that a single error leads to uncorrelated result-
ing distribution ps(q), so that the measurement fidelity
pm in Eq. (35) is combined with a similar factor describ-
ing the state preparation fidelity.

V. QUANTIFYING ERRORS

An important test for this experiment is predicting
XEB fidelity FXEB based on simpler measurements of
single- and two-qubit errors. Here we review how this is
calculated, illustrating important principles with the ex-
ample of a single qubit. The general theory is described
at the end of this section.

First, we assume Pauli errors describe decoherence us-
ing a depolarizing model. This model is used, for ex-
ample, to compute thresholds and logical error rates for
error correction. The parameter describing decoherence



10

in a single qubit is the Pauli error eP , giving a probabil-
ity eP /3 for applying an erroneous X, Y, or Z gate to the
qubit after the gate, corresponding to a bit and/or phase
flip.

Second, the depolarization model is assumed to de-
scribe the system state using simple classical probability.
The probability of no error for many qubits and many op-
erations, corresponding to no change to the system state,
is then found by simply multiplying the probability of no
error for each qubit gate. This is a good assumption for
RB and XEB since a bit- or phase-flip error effectively
decorrelates the state. The depolarization model assumes
that when there is an error with probability ed, the sys-
tem state randomly splits to all qubits states, which has
Hilbert space dimension D = 2n. This is described by
a change in density matrix ρ → (1 − ed)ρ + ed × 11/D.
Note the depolarization term has a small possibility of
the state resetting back to its original state. For a single
qubit where D = 2, this can be described using a Pauli-
error type model as a probability ed/4 applying a I, X, Y,
or Z gate. Comparing to the Pauli model, the error prob-
ability thus needs to be rescaled by ed = eP /(1− 1/D2).
This gives a net polarization p of the qubit state due to
many Pauli errors as

p =
∏
i

[
1− eP (i)/

(
1− 1/D2

)]
. (36)

Third, the effect of this depolarization has to be ac-
counted for considering the measured signal. The mea-
sured signal for randomized benchmarking is given by
RB = p(1 − 1/D) + 1/D, which can be understood
in a physical argument that a complete randomization
of the state has a 1/D chance to give the correct final
state. A cross-entropy benchmarking measurement gives
FXEB = p. A measurement of p, which can have offsets
and prefactors in these formulas, also includes other scal-
ing factors coming from state preparation and measure-
ment errors. All of these scaling issues are circumvented
by applying gates in a repeated number of cycles m such
that p = pmc . A measurement of the signal versus m can
then directly pull out the fractional polarization change
per cycle, pc, independent of these scale factors.

Fourth, from this polarization change we can then com-
pute the Pauli error, which is the metric that should be
reported since it is the fundamental error rate that is in-
dependent of D. Unfortunately, a fidelity 1 − eP /(1 +
1/D) for RB is commonly reported, which has a D-
dependent correction. We recommend this practice be
changed, but note that removing the 1/(1 + 1/D) factor
decreases the reported fidelity value. We also recommend
reporting Pauli error, eP instead of entanglement fidelity
(1−eP ), since it is more intuitive to understand how close
some quantity is to 0 than to 1. Table I summarizes the
different error metrics and their relations.

This general model can also account for non-
depolarizing errors such as energy decay, since quantum
states in an algorithm typically average over the entire
Bloch sphere (as in XEB), or for example when the al-

gorithm purposely inserts spin-echoes. Thus the average
effect of energy decay effectively randomizes the state in
a way compatible with Pauli errors. For a gate of length
tg with a qubit decay time T1, averaging over the Bloch
sphere (2 poles and 4 equator positions) gives (to first
order) an average error probability ea = tg/3T1. Using
Table I, this converts to a Pauli error eP = tg/2T1.

A detailed theory of the D scaling factor is as follows.
In order to arrive at a first order estimate on how error
rates accumulate on random quantum circuits, the errors
can be modeled via the set of Kraus operators. The den-
sity matrix of the system ρ after application of a gate
is connected to the density matrix ρ0 before the gate as
follows:

ρ = Λ(ρ0) =

K∑
k=0

Akρ0A
†
k,

∑
k

A†kAk = 11. (37)

For the closed-system quantum evolution with unitary
U (no dephasing nor decay) the sum on the right hand
side contains only one term with k=0 and A0 = U . In
general, Kraus operators describe the physical effects of
many types of errors (control error, decoherence, etc.)
that can explicitly depend on the gate. Knowing the
Kraus operators allows us to calculate the total error
budget as well as its individual components.

Conventionally, circuit fidelities are reported as a met-
ric of its quality. To make a connection to physically ob-
servable quantities, the average fidelity can be expressed
in terms of Kraus operators. In the absence of leakage
errors and cross-talk the average fidelity equals

F = 1− eP
1 + 1/D

, eP = 1− 1

D2

K∑
k=0

| tr(UA†k)|2 (38)

where D = 2n is the dimension of the Hilbert space and
the quantity eP plays a role of a Pauli error probability
in the depolarizing channel model (see below).

For random circuits the effects of errors can be de-
scribed by a depolarizing channel model, with Kraus op-
erators of the form

Ak =

√
eP

D2 − 1
PkU, k 6= 0, (39)

A0 =
√

1− eP P0U,

Pk = σk1 ⊗ σk2 . . .⊗ σkn
where Pk are strings of Pauli operators σkj for individual
qubits for kj = 1, 2, 3 and also identity matrices σ0 in the
qubit subspace for kj = 0. This form assumes that indi-
vidual Pauli errors all happen with the same probability
eP .

To make a connection to experimental measurements
of the cross-entropy we substitute (39) into (37) and ob-
tain

Λ(ρ0) = (1− eP )Uρ0U
−1

+
eP

D − 1/D

(
11− Uρ0U

−1

D

)
. (40)
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TABLE I. A “Rosetta stone” translation between error metrics. In single- and two-qubit RB or XEB experiments, we measure
the per-gate (or per-cycle) depolarization decay constant p. The second column shows conversions from this rate to the various
error metrics. The last two columns are representative comparisons for 0.1% Pauli error.

Error metric Relation to depolarization decay constant p n=1 (D=2) n=2 (D=4)
Pauli error (ep, rP ) a (1− p)(1− 1/D2) 0.1% 0.1%
Average error (ea, r) (1− p)(1− 1/D) 0.067% 0.08%
Depolarization error (ed) 1− p 0.133% 0.107%

a 1− process fidelity, or 1− entanglement fidelity

We compare this expression with the standard form of
the depolarizing channel model

Λ(ρ0) = pUρ0U
−1 + (1− p) 11

D
, (41)

expressed in terms of the depolarization fidelity param-
eter p. Note the difference between the expressions. On
the one hand, in (41) the second term corresponds to full
depolarization in all directions. On the other hand, in
(40) the second term describes full depolarization in all
directions except for the direction corresponding to the
ideal quantum state.

From (40), (41) one can establish the connection be-
tween the Pauli error rate and depolarizing fidelity pa-
rameter p

eP = (1− p)(1− 1/D2) (42)

We note that the explicit assumption of connecting
Pauli errors to depolarization is needed for the small D
case, typically for single- and two-qubit error measure-
ments. Once we have measured the Pauli errors, then
only a simple probabilistic calculation is needed to com-
pute FXEB in the large D case.

VI. METROLOGY AND CALIBRATION

A. Calibration overview

Quantum computations are physically realized through
the time-evolution of quantum systems steered by ana-
log control signals. As quantum information is stored in
continuous amplitudes and phases, these control signals
must be carefully chosen to achieve the desired result.
Calibration is the process of performing a series of exper-
iments on the quantum system to learn optimal control
parameters.

Calibration is challenging for a number of reasons.
Analog control requires careful control-pulse shaping as
any deviation from the ideal will introduce error. Qubits
require individual calibration as variations in the control
system and qubits necessitate different control parame-
ters to hit target fidelities. Optimal control parameters
can also drift in time, requiring calibrations to be re-
visited to maintain performance. Additionally, the full

calibration procedure requires bootstrapping: using a se-
ries of control sequences with increasing complexity to
determine circuit and control parameters to increasingly
higher degrees of precision. Lastly, each qubit needs to
perform a number of independent operations which are
independently calibrated: single-qubit gates, two-qubit
gates, and readout.

Our Sycamore processor offers a high degree of pro-
grammability: we can dynamically change the frequency
of each qubit, as well as the effective qubit-qubit coupling
between nearest neighbor qubits. This tunability gives us
the freedom to enact many different control strategies, as
well as account for non-uniformities in the processor’s pa-
rameters. However, these extra degrees of freedom are a
double-edged sword. Additional control knobs always in-
troduce a source of decoherence and control errors as well
as an added burden on calibration.

Our approach is to systematize and automate our cal-
ibration procedure as much as possible, thus abstract-
ing complexity away. This automation allows us to turn
calibration into a science, where we can compare cali-
bration procedures to determine optimal strategies for
time, performance, and reliability. By employing cal-
ibration science to study full-system performance with
different control strategies, we have been able to improve
full-system fidelities by over an order of magnitude from
initial attempts while decreasing the calibration time and
improving reliability. Lastly, we design our calibration to
be done almost entirely at the single- or two-qubit level,
rather than at the system level, in order to be as scalable
as possible.

1. Device registry

The device registry is a database of control variables
and configuration information we use to control our quan-
tum processors. The registry stores information such
as operating frequencies, control biases, gate parameters
such as duration, amplitude, parameterization of circuit
models, etc. The goal of calibration is to experimen-
tally determine and populate the registry with optimal
control parameters. We typically store >100 parame-
ters per qubit to achieve high fidelity across all of the
various qubit operations. The large number of param-
eters and subtle interdependencies between them high-
lights the need for automated calibration.
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FIG. S10. Optimus calibration graph for Sycamore.
Calibration of physical qubits is a bootstrapping procedure
between different pulse sequences or “experiments” to extract
control and system parameters. Initial experiments are coarse
and have interplay between fundamental operations and ele-
ments such as single-qubit gates, readout, and the coupler. Fi-
nal experiments involve precise metrology for each of the qubit
operations: single-qubit gates, two-qubit gates, and readout.

2. Scheduling calibrations: “Optimus”

We seek a strategy for identifying and maintaining op-
timal control parameters for a system of physical qubits
given incomplete system information. To perform these
tasks, we use the “Optimus” formulation as in Ref [39],
where each calibration is a node in a directed acyclic
graph that updates one or more registry parameters,
and the bootstrapping nature of calibration sequences
is represented as directed edges between nodes. Now,
calibrating a system of physical qubits becomes a well-
defined graph traversal problem. The calibration graph
used for the Sycamore device can be see in Figure S10.
This strategy is particularly useful for maintaining cal-
ibrations in the presence of drift, where we want to do
the minimal amount of work to bring the system back
in spec, and when extending the calibration procedure,
as interdependencies are explicit. Typical timescales for
bringup of a new Sycamore processor are approximately
36 hours upon first cooldown, and 4 hours per day there-
after for maintaining calibrations. These times are spe-
cific to current available technology, and can be signifi-
cantly improved.

B. Calibration procedure

1. Device configuration

Throughout the calibration procedure, the device reg-
istry may be configured in different states in order to cal-
ibrate certain parameters. We call these different states
“device configurations”, and different kinds of configu-

Root Single qubits Grid

a b c
Active Inactive

FIG. S11. Configurations of the device over the course
of calibration. (a) In the root configuration, we start with
no knowledge of the system and measure basic device param-
eters. (b) We create a single qubit configuration for each
qubit, where all qubits except the qubit of interest are biased
to near zero frequency. (c) Using knowledge learned in the
single qubit configurations, we build a grid of qubits.

rations reflect our knowledge of the system at different
points in the full calibration procedure. As illustrated in
Figure S11, the primary difference between the different
configurations is the set of “active” qubits, where ac-
tive qubits are biased to an operating frequency between
5-7 GHz, and “inactive” qubits are biased near zero fre-
quency. Following the outline above, we have three device
configurations of interest:

a. Root config. The root configuration is the start-
ing state of the system immediately after cool down and
basic system verification. In this configuration, we cal-
ibrate coarse frequency vs bias curves for each readout
resonator, qubit, and coupler.

b. Single qubit config. After completing root cali-
brations, we now know how to bias each qubit to its
minimum and maximum frequencies. We create one con-
figuration of the device registry for each qubit, where the
qubit of interest is biased in a useful region (5-7 GHz)
and the remaining qubits are biased to their minimum
frequencies in order to isolate the qubit of interest. In
each of these configurations, we fine tune the bias vs fre-
quency curves for the qubit and its associated couplers
and resonators, and also measure T1 as a function of fre-
quency, necessary due to background TLS defects and
modes.

c. Grid config. After completing calibrations in
each isolated qubit configuration, we feed the informa-
tion we learned into a frequency optimization procedure.
The optimizer places the biases for each qubit and cou-
pler in a user defined grid of any desired size up to the
entire chip. We then proceed to calibrate high fidelity
single qubit gates, two qubit gates, and readout.

2. Root config: procedure

We begin calibration with simple frequency-domain ex-
periments to understand how each qubit and coupler re-
sponds to its flux bias line.
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• Calibrate each parametric amplifier (flux bias,
pump frequency, pump power).

• For each qubit, identify its readout resonator and
measure the readout signal versus qubit bias (“Res-
onator Spectroscopy”) [40]. Estimate the resonator
and qubit frequency as a function of qubit bias.

• For each coupler, place one of its qubits near max-
imum frequency and the other near minimum fre-
quency, then measure the readout signal of the first
qubit as a function of coupler bias. The readout sig-
nal changes significantly as the coupler frequency
passes near the qubit frequency. Identify where
the coupler is near its maximum frequency, so the
qubit-qubit coupling is small (a few MHz) and rel-
atively insensitive to coupler bias.

3. Single-qubit config: procedure

After setting the biases to isolate a single qubit, we
follow the procedure outlined in [41] which we will sum-
marize here:

• Perform fixed microwave drive qubit spectroscopy
while sweeping the qubit bias and detecting shifts
in the resonator response, to find the bias that
places the qubit at the desired resonant frequency.

• Using the avoided level crossing identified in the
root config, determine the operating bias to bring
the qubit on resonance with its readout resonator
to perform active ground state preparation. We use
a 10 µs pulse consistent with the readout resonator
ringdown time.

• Perform power Rabi oscillations to find the drive
power that gives a π pulse to populate the |1〉 state.

• Optimize the readout frequency and power to max-
imize readout fidelity.

• Fine tune parameters (qubit resonant frequency,
drive power, drive detuning [42]) for π and π/2
pulses.

• Calibrate the timing between the qubit microwave
drive, qubit bias, and coupler bias.

• Perform qubit spectroscopy as a function of qubit
bias to fine tune the qubit bias vs frequency curves.

• Measure T1 vs. frequency by preparing the qubit in
|1〉 then biasing the qubit to a variable frequency
for a variable amount of time, and measuring the
final population [43].

• Measure the response of a qubit to a detuning pulse
to calibrate the frequency-control transfer function
[5, 41, 44].

With the single-qubits calibrated in isolation, we have
a wealth of information on circuits parameters and coher-
ence information for each qubit. We use this information
as input to a frequency placement algorithm to identify
optimal operating frequencies for when the full processor
is in operation.

4. Optimizing qubit operating frequencies

In our quantum processor architecture, we can inde-
pendently tune each qubit’s operating frequency. Since
qubit performance varies strongly with frequency, select-
ing good operating frequencies is necessary to achieve
high fidelity gates. In arbitrary quantum algorithms,
each qubit operates at three distinct types of frequen-
cies: idle, interaction, and readout frequencies. Qubits
idle and execute single-qubit gates at their respective idle
frequencies. Qubit pairs execute two-qubit gates near
their respective interaction frequencies. Finally, qubits
are measured at their respective readout frequencies. In
selecting operating frequencies, it is necessary to mitigate
and make nontrivial tradeoffs between energy-relaxation,
dephasing, leakage, and control imperfections. We solve
and automate the frequency selection problem by ab-
stracting it into an optimization problem.

We construct a quantum-algorithm-dependent and
gate-dependent optimization objective that maps oper-
ating frequencies onto a metric correlated with system
error. The error mechanisms embedded within the ob-
jective function are parasitic coupling between nearest-
neighbor and next-nearest-neighbor qubits, spectrally-
diffusing two-level-system (TLS) defects [43], spurious
microwave modes, coupling to control lines and the
readout resonator, frequency-control electronics noise,
frequency-control pulse distortions, microwave-control
pulse distortions, and microwave-carrier bleedthrough.
Additional considerations in selecting readout frequen-
cies are covered in Section VI D. The objective is con-
structed from experimental data and numerics, and
the individual error mechanisms are weighted by coef-
ficients determined either heuristically or through statis-
tical learning.

Minimizing the objective function is a complex com-
binatorial optimization problem. We characterize the
complexity of the problem by the optimization dimen-
sion and search space. For a processor with N qubits
on a square lattice with nearest-neighbor coupling, there
are N idle, N readout, and ∼ 2N interaction frequen-
cies to optimize. In an arbitrary quantum algorithm, all
frequencies are potentially intertwined due to coupling
between qubits. Therefore, the optimization dimension
is ∼ 4N . The optimization search-space is constrained
by qubits’ circuit parameters and control-hardware spec-
ifications. Discretizing each qubit’s operational range to
100 frequencies results in an optimization search space of
∼ 1004N . This is much larger than the dimension of the
Hilbert space of an N qubit processor, which is 2N .
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FIG. S12. Idle frequency solutions found by our Snake optimizer with different error mechanisms enabled.
The optimizer makes increasingly complex tradeoffs as more error mechanisms are enabled. These tradeoffs manifest as a
transition from a structured frequency configuration into an unstructured one. Similar tradeoffs are simultaneously made in
optimizing interaction and readout frequencies. Optimized idle and interaction operating frequencies are shown in Figure S13
and optimized readout frequencies are shown in Figure S20. Color scales are chosen to maximize contrast. Grey indicates that
there is no preference for any frequency.

Given the problem complexity, it is assumed that find-
ing globally optimal operating frequencies is intractable.
However, we have empirically verified that locally op-
timal solutions are sufficient for state-of-the-art system
performance. To find local optima, we developed the
“Snake” homebrew optimizer that combines quantum al-
gorithm structure with physics intuition to exponentially
reduce optimization complexity and take intelligent op-
timization steps. For the circuits used here, the opti-
mizer exploits the time-interleaved structure of single-
qubit gates, two-qubit gates, and readout. For our 53
qubit processor, it returns local optima in ∼ 10 seconds
on a desktop. Because of its favorable scaling in runtime
versus number of qubits, we believe the Snake optimizer
is a viable long-term solution to the frequency selection
problem.

To illustrate how the Snake optimizer makes trade-
offs between error mechanisms, we plot idle frequency
solutions with different error mechanisms enabled (Fig-
ure S12). Starting with an ideal processor with no
error mechanisms enabled, there is no preference for
any frequency configuration. Enabling frequency-control
electronics noise, the optimizer pushes qubits towards
their respective maximum frequencies, to minimize flux-
noise susceptibility. Note that each qubit has a dif-
ferent maximum frequency due to fabrication variabil-
ity. Enabling frequency-control pulse distortions forces
a gradual transition between qubit frequencies to min-
imize two-qubit-gate frequency-sweep amplitudes. En-
abling nearest-neighbor (NN) and next-nearest neighbor
(NNN) parasitic coupling further lowers the degeneracy
between qubit frequencies into a structure that resem-
bles a multi-tiered checkerboard. Finally, enabling er-
rors from TLS defects, spurious microwave modes, and
all other known error mechanisms removes any obvious
structure. A set of optimized idle and interaction fre-
quencies is shown in Figure S13, and readout frequencies
are shown in Figure S20.

5. Grid config: procedure

Calibrating a grid of qubits follows the same procedure
as calibrating an isolated qubit with additional calibra-
tions to turn off the qubit-qubit coupling.

• Achieve basic state discrimination for each qubit at
its desired frequency.

• For each coupler, minimize the qubit-qubit cou-
pling (note changing coupler biases affects qubit
frequencies). For each case below, we choose the
coupler bias minimizing the interaction.

– For qubit pairs idling within 60 MHz of each
other, use a resonant swapping experiment.
We excite one qubit and apply flux pulses to
nominally put the qubits on resonance and let
the qubits interact over time [8].

– For qubit pair idling further apart, use a con-
ditional phase experiment. We perform two
Ramsey experiments on one qubit, where the
other qubit is in the ground state and the ex-
cited state, to identify the state-dependent fre-
quency shift of the first qubit.

• Adjust the qubit biases to restore the desired qubit
frequencies and proceed with qubit calibration as
in the single-qubit configurations.

• Calibrate the entangling gate.

– Estimate the qubit pulse amplitudes to reach
the desired interaction frequency with their
frequency versus bias calibration.

– Fine-tune the qubit pulse amplitudes to reach
resonance, compensating for pulse under-
shoot.

– Tune the coupler pulse amplitude to achieve a
complete photon exchange.
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FIG. S13. Optimized idle and interaction frequencies
found by our Snake optimizer. a, Idle frequencies, b,
interaction frequencies. Readout frequencies are shown in
Figure S20. These solutions are sufficient for state-of-the-art
system performance. See Figure S12 to understand some of
the tradeoffs that are made during optimization. Color scales
are chosen to maximize contrast.

In the next two sections, we describe in more detail
the fine tuning required to achieve high fidelity two qubit
gates and multiqubit readout.

C. Two-qubit gate metrology

High-fidelity two-qubit gates are very hard to achieve.
In an effort to make this easier, we design qubits with
tunable frequencies and tunable interactions. This
added control allows for immense flexibility when imple-
menting gates. In the following subsections, we discuss
a simple high-fidelity control and metrology strategy for
two-qubit gates in our system.

1. The natural two-qubit gate for transmon qubits

Consider two transmon qubits at different frequencies
(say 6.0 and 6.1 GHz). Here are two potential ways
of generating a multi-qubit gate in this system. If the
qubits are tuned into resonance, then excitations swap
back-and-forth and this interaction can be modeled as
a partial-iSWAP gate [45]. If the qubits are detuned
by an amount close to their nonlinearity, then the 11-
state undergoes an evolution that can be modeled as a
controlled-phase gate (assuming the population does not
leak) [46, 47]. In fact, any two-qubit control sequence
that does not leak can be modeled as a partial-iSWAP
followed by a controlled-phase gate.

A typical control sequence is shown Fig. S14a. Gate
times of 12 ns are chosen to trade off decoherence (too
slow) and leakage to higher states of the qubit (too fast).
Figure S14b depicts how this operation can be decom-
posed as a quantum circuit. This circuit contains Z-
rotations that result from the frequency excursions of the
qubits, and can be expressed by the unitary:

1 0 0 0
0 ei(∆++∆−) cos θ −iei(∆+−∆−,off ) sin θ 0
0 −iei(∆++∆−,off ) sin θ ei(∆+−∆−) cos θ 0
0 0 0 ei(2∆+−φ)

 .
(43)

These gates have an efficient mapping to interacting
fermions and have been coined ‘fSim’ gates, short for
fermionic simulation [48]. The long-term goal is to im-
plement the entire space of gates (shown in Fig. S14c).

For quantum supremacy, the two-qubit gate of choice is
the iSWAP gate. For example, CZ is less computationally
expensive to simulate on a classical computer by a factor
of two [37, 49]. A dominant error-mechanism when try-
ing to implement an iSWAP is a small conditional-phase
that is generated by an interaction of the |11〉-state with
higher states of the transmons (|02〉 and |20〉). For this
reason, the fSim gate with swap-angle θ u 90◦ and con-
ditional phase φ u 30◦ has become the gate of choice in
our supremacy experiment. Note that small deviations
from these angles are also viable quantum supremacy
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FIG. S14. Two-qubit gate strategy. a, Control waveforms
for two qubits and a coupler. Each curve represents the con-
trol flux applied to the qubit’s and coupler’s SQUID loops as
a function of time. b, Generic circuit representation for an ar-
bitrary two-qubit gate using flux pulses. This family of gates
have been named “fSim” gates, short for fermionic-simulation
gates. Our definition of the fSim gate uses θ with the sign op-
posite to the common convention for the iSWAP gate. c, Con-
trol landscape for fSim gates as a function of the swap angle
and conditional phase, up to single qubit rotations. The co-
ordinates of common entangling gates are marked along with
the Sycamore gate fSim(θ = 90◦, φ = 30◦).

gates. These gates result from the natural evolution of
two qubits making them easy to calibrate, high intrinsic
fidelity gates for quantum supremacy.

2. Using cross entropy to learn a unitary model

We have recently introduced cross-entropy as a fidelity
metric for quantum supremacy experiments. Cross-
entropy benchmarking (XEB) was introduced as an ana-
log to randomized benchmarking (RB) that can be used
with any number of qubits and is independent of state-
preparation and measurement errors [5, 26].

A distinct advantage of XEB is that the resulting data
can be analyzed to find an optimal representation of a

unitary; this process is outlined in Fig. S15. The gate
sequence for a two-qubit XEB experiment is shown in
Fig. S15a. The sequence alternates between single-qubit
gates on both qubits and a two-qubit gate between them.
At the end of the sequence, both qubits are measured and
the probabilities of bitstrings (00, 01, 10, 11) are esti-
mated. This procedure is repeated for ∼10-20 instances
of randomly selected single-qubit gates. The measured
probabilities can then be compared to the ideal probabil-
ities using the expression for fidelity Eq. (3) in Ref. [5].

The data from a two-qubit XEB experiment is shown
in Fig. S15b (green dots). By performing additional
sequences with tomography rotations prior to measure-
ment, we can infer the decay of purity with increasing
circuit depth (blue dots). For two qubits, the decay of fi-
delity tells us the total error of our gates while the purity
decay tells us the contribution from decoherence —the
difference is control error. Based on the data in green
and blue, it appears that the total error is about half
control and half decoherence.

So far, we have established a generic unitary model
(Fig. S14b), a training dataset (Fig. S15a), and a cost-
function (Fig. S15b). These three ingredients form the
foundation for using optimization techniques to improve
fidelity. Using a simple Nelder-Mead optimization proto-
col, we can maximize the XEB fidelity by varying the pa-
rameters of the unitary model. The fidelity decay curve
for the optimal unitary model are shown in Fig. S15b (or-
ange dots). The optimized results are nearly coherence
limited.

The optimal control-model parameters for all pairs are
shown as integrated histograms in Fig. S16a,b. Panel
(a) shows the histograms for partial-iSWAP angles (∼90
degrees) and conditional phases (∼30 degrees). Panel (b)
shows histograms for the various flavors of Z-rotations.
While conceptually there are four possible Z-rotations
(see Fig. S14b), only three of these rotations are needed
to uniquely define the operation. These three rotations
can be thought of as the detuning of the qubits before
the iSWAP, the detuning after the iSWAP, and an overall
frequency shift of both qubits which commutes with the
iSWAP.

3. Comparison with randomized benchmarking

In Fig. S17 we show that two-qubit gate fidelity ex-
tracted using XEB agrees well with the fidelity as mea-
sured with RB, an important sanity check in validating
XEB as a gate metrology tool. In two-qubit XEB, we ex-
tract the error per cycle which consists of a single-qubit
gate on each qubit and a two-qubit gate between them.
In Fig. S17a we show the individual RB decay curves for
single-qubit gates. In panel b, we show the RB decay
curve for benchmarking a CZ gate. Adding up the three
errors from RB, we would expect an XEB cycle error
of 0.57%. In panel c, we show the measured XEB de-
cay curve which indicates a cycle error of 0.59% —nearly
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FIG. S15. Using XEB to learn a unitary model. a, Pro-
cess flow diagram for using XEB to learn a unitary model. Af-
ter running basic calibrations, we have an approximate model
for our two-qubit gate. Using this gate, we construct a ran-
dom circuit that is fed into both the quantum computer and
a classical computer. The results of both outputs can be com-
pared using cross-entropy. Optimizing over the parameters in
the two qubit model provide a high-fidelity representation of
the two-qubit unitary. b, Data from a two-qubit XEB experi-
ment. The two-qubit purity (blue) was measured tomograph-
ically and provides the coherence-limit of the operations. The
decay of the XEB fidelity is shown in green and orange. In
orange, the parameters of a generic unitary model were op-
timized to determine a higher-fidelity representation of the
unitary. All errors are quoted as Pauli errors.
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FIG. S16. Parameters of the control model. A generic
model for two-qubit gates using flux-control has five free pa-
rameters. Using XEB we can measure these parameters with
high fidelity. a, Integrated histogram (cumulative distribu-
tion) of the control parameters that determine the interac-
tion between the qubits. b, An integrated histogram of the
remaining three parameters that represent different flavors
of single-qubit Z-rotations. While the first two parameters
(panel a) define the entangling gate, the final three parame-
ters (panel b) are simply measured and then kept track of dur-
ing an algorithm. Intuitively, these three angles correspond
to a detuning before the swap, a detuning after the swap,
and an overall frequency shift which commutes through the
swap; these correspond to ∆−+∆−,off , ∆−−∆−,off , and 2∆+

respectively in Eq. (43). Note that θ and φ angles are 360 de-
grees periodic and Z-rotation angles are 720 degree periodic.

identical to the value predicted by RB.

For single-qubit gate benchmarking on the Sycamore
device used in this work (see Table II), we find that π
pulse fidelities are somewhat worse than π/2 pulse fideli-
ties, which we attribute to reflections from the imper-
fect microwave environment. Because the XEB gateset
we have used consists only of π/2 pulses, we find that
the single-qubit gate errors extracted from conventional
RB, which contains π pulses, are somewhat higher than
those extracted from single-qubit XEB. Using only π/2
pulses instead of π pulses in single-qubit RB brings the
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FIG. S17. Sanity check: XEB agrees with RB. a, Single-
qubit randomized benchmarking (RB) data taken separately
on two qubits. b, Two-qubit randomized benchmarking data
for a CZ on the same pair of qubits. c, Two-qubit cross-
entropy benchmarking (XEB) on the same pair of qubits. The
measured XEB error (0.59% / cycle) agrees well with the
prediction from single- and two-qubit RB (0.57%). All errors
are quoted as Pauli errors.

extracted error close to that measured via XEB.

4. Speckle purity benchmarking (SPB)

It is experimentally useful to be able to extract state
purity from XEB experiments in order to error-budget
the contribution of decoherence. Conventionally, purity
estimation can be done with state tomography, where the
full density matrix ρ is reconstructed and used to quan-
tify the state purity. This involves expanding a single se-
quence into a collection of sequences each appended with
single-qubit gates. Unfortunately, full tomographic re-
construction scales exponentially in the number of qubits,
both for the number of sequences needed as well as the
number of measurements needed per sequence. Here, we
introduce an exponentially more efficient method to ex-
tract the state purity without additional sequences.

We use a re-scaled purity definition such that a fully-
decohered state has a purity of 0, and a pure state has a
purity of 1. We define

Purity =
D

D − 1

(
Tr(ρ2)− 1

D

)
, (44)

which is consistent with what is defined in Ref. [50]. This
can be understood as the squared length of the general-
ized Bloch vector in D dimensions (for a qubit, D = 2,
this definition gives 〈X〉2 + 〈Y 〉2 + 〈Z〉2).

“Speckle” Purity Benchmarking (SPB) is the method
of measuring the state purity from raw XEB data. As-
suming the depolarizing-channel model with polarization
parameter p, we can model the quantum state as

ρ = p |ψ〉 〈ψ|+ (1− p) 11

D
. (45)

Here, p is the probability of a pure state |ψ〉 (which in
this case is not necessarily known to us), while 1 − p is
the probability of being in the fully-decohered state (11
is the identity operator). For the state (45), from the
definition (44) it is easy to find the relation

Purity = p2. (46)

We will now work out how to obtain p2 from a distri-
bution of measured probabilities Pm of various bitstrings
for a sequence, collected over many XEB sequences (Figs.
S18a and S18b).

First, we note that for p = 0 the probabilities of all
bitstrings are 1/D, and the distribution is the δ-function
located at 1/D (the integrated histogram is then the step-
function – see Fig. S18b). In contrast, if p = 1, then
the measured probabilities Pm follow the D-dimensional
Porter-Thomas distribution [26]

PPT(Pm) = (D − 1)(1− Pm)D−2, (47)

which has the same average 1/D and variance

VarPT(Pm) =
D − 1

D2(D + 1)
. (48)
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For the fully-decohered state all bitstrings have the
same probability 1/D, so in this case the variance of the
distribution of probabilities is zero. For the state (45)
with an arbitrary p, the histogram of probabilities Pm
will be described by the distribution (47) shrunk towards
the average 1/D by the factor p. Consequently, the vari-
ance of the experimental probabilities will be p2 times
the Porter-Thomas variance (48).

Thus, we can find p2 by dividing the variance of ex-
perimentally measured probabilities Pm by the Porter-
Thomas variance (48). Finally, using the relation (46)
for the depolarization model (45), we can relate the vari-
ance of the experimental probabilities Pm to the average
state purity

Purity = Var(Pm)
D2(D + 1)

D − 1
. (49)

With these convenient relations, we can directly com-
pare the XEB fidelity FXEB = p to

√
Purity from SPB

on the same scale, and check their dependence p = pmc
on the number of cycles m. Without systematic control
errors, the XEB and SPB results should coincide. Ex-
perimentally, we always have control errors which lead
us to incorrectly predict |ψ〉, so control errors give XEB
a higher error than SPB. Thus, with a single XEB dataset
we can extract the XEB error per-cycle, and the purity
loss per-cycle with SPB. By subtracting these, we are
left with the control error per-cycle. Thus, with a single
experiment we can error budget total error into control
error and decoherence error.

These relationships can be seen experimentally in Fig-
ure S18. Amazingly, computing the speckle purity can
be done with no knowledge of the specific gate sequence
performed; as long as the experiment introduces suffi-
cient randomization of the Hilbert Space, Porter-Thomas
statistics apply. Practically, SPB allows us to measure
the state purity from raw XEB data with exponentially
fewer number of pulse sequences as compared to full state
tomography. This favorable scaling allows one to ex-
tend purity measurements to larger numbers of qubits.
It is important to note that an exponential number of
measurements are still required to fully characterize the
probability distribution for a given sequence, as in to-
mography, so purity measurements of the full processor
are impractical.

5. “Per-layer” parallel XEB

To execute quantum circuits efficiently, it is helpful
to run as many gates as possible in parallel. We wish
to benchmark our entangling gates operating simultane-
ously. Resulting fidelities and optimized unitaries may
differ from the isolated case, where we benchmark each
pair individually, due to imperfections such as control
crosstalk and stray qubit-qubit interactions. In the quan-
tum supremacy algorithm, we partition the set of two-
qubit gates into four layers, each of which can be ex-
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FIG. S18. “Speckle” purity extracted from XEB. a,
Measured probabilities from XEB for a two-qubit system and
30 random circuits. Raw probabilities show a speckle pat-
tern at low cycles (orange dashed) over circuit instance and
probabilities (|00〉, |01〉, |10〉, |11〉). The speckle contrast de-
creases with cycles and thus decoherence (green dashed). b,
Integrated histogram (cumulative distribution) of probabili-
ties. The x-axis is scaled by the dimension D = 22, so the
uniform distribution is a step function at 1.0. At low cycles,
the distribution is well-described by Porter-Thomas, and at
high cycles, the distribution approaches the uniform distribu-
tion. c, We can directly relate the variance of the distribu-
tion to the average state purity. We fit an exponential to the
square root of Purity. We compare this purity-derived num-
ber per-cycle= 0.00276 to a similar number per-cycle=0.00282
derived from tomographic measure of purity, and see good
agreement. The error of XEB, which also includes control
errors, is slightly higher at error per-cycle=0.00349.
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ecuted in parallel. We then cycle through these layers
interleaved with randomly chosen single-qubit gates (see
Fig. 3a). However, it is intractable to directly use full-
system XEB to benchmark our entangling gates for two
reasons: we would simultaneously optimize over the uni-
tary model parameters of every entangling gate, and the
classical simulation would be exponentially expensive in
system size.

We solve this problem with “per-layer” parallel XEB
(see Ref. [51] for a related technique in the context of
RB). Instead of alternating among the four layers of en-
tanglers, where each qubit becomes entangled with each
of its neighbors, we perform four separate experiments,
one for each layer. The experiment sequences are illus-
trated in Fig. S19a. For each layer, we construct parallel
sequences where the layer is repeated with interleaved
single-qubit gates; nominally, each qubit only interacts
with one other. Following each parallel XEB sequence,
we measure all the qubits and extract the equivalent XEB
data for each pair. Every two-qubit gate can be charac-
terized in these four experiments, regardless of system
size. The optimization and classical simulation are also
efficient, as each pair can be analyzed individually.

We present experimental results of “per-layer” paral-
lel XEB in Fig. S19b-c. In Fig. S19b, we compare the
performance in the isolated and simultaneous (parallel)
experiments. In both cases, the optimized XEB error
is close to purity-limited. Simultaneous operation mod-
estly increases the error, by roughly 0.003. This increase
is primarily from purity error, which would arise from un-
intended interactions with other qubits, where coherent
errors at the system scale manifest as incoherent errors
when we focus on individual pairs. The unitaries we ob-
tain in the simultaneous case differ slightly from the iso-
lated case, which would arise from control crosstalk and
unintended interactions. To quantify how these differ-
ences affect the gate error, we recalculate the error with
the unitaries from the isolated optimization and the data
from the simultaneous experiment, which increases the
error. We also plot the distributions of the differences in
unitary model parameters in Fig. S19c. The dominant
change is in ∆+, a single-qubit phase.

D. Grid readout calibration

1. Choosing qubit frequencies for readout

The algorithm described in Section VI B 4 generally
chooses qubit idling frequencies which are far detuned
from the resonator to optimize for dephasing. However,
these idling frequencies are not optimal for performing
readout. To address this problem, we dynamically bias
each qubit to a different frequency during the readout
phase of the experiment. The qubit frequencies during
readout are shown in Fig. S20 (compare to Fig. S13).

To choose the qubit frequencies for readout, we first
measure readout fidelity as a function of qubit frequency

and resonator drive frequency at a fixed resonator drive
power, in each of the isolated single qubit configurations.
This scan captures errors due to both non-optimal detun-
ing between the qubit and resonator, as well as regions
with low T1 values due to TLSs. We then use the data for
each qubit and a few constraints to optimize the place-
ment of the qubit frequencies during readout, using the
same optimization technique that was described in Sec-
tion VI B 4. We describe two of the important constraints
and related error reduction techniques below.

First, because the coupling between qubits relies on
a dispersive interaction with the coupler, the coupling
would no longer be off when the qubits were detuned by
a significant amount from their idling positions. Thus,
we impose a constraint that qubits should not be placed
near resonance during readout. Nevertheless, we found
that for some pairs of qubits, we had to dynamically bias
the coupler during readout to avoid any swapping tran-
sitions between the qubits during readout. This readout
coupler bias is found by sweeping the coupler bias and
maximizing the two-qubit readout fidelity.

Second, the pattern of the bare resonator frequencies
on the chip as shown in Fig. S20 led to an unexpected
problem. Pairs of readout resonators which were coupled
to neighboring qubits and were also within a few MHz in
frequency space were found to have non-negligible cou-
pling. This coupling was strong enough to mediate swap-
ping of photons from one resonator to the other. The
pairs of qubits with similar resonator frequencies were
all located in a diagonal chain bisecting the qubit grid,
as shown by the red outline in Fig. S20. To mitigate
this problem, we arrange the qubit frequencies for these
qubits so that the resonator eigenfrequencies are as far
apart as possible. The resulting spectral separation is
not quite enough to eliminate all deleterious effects, so in
addition, we use correlated discrimination on the eight of
the qubits in this chain. In other words, we use the re-
sults of all eight detector values to determine which one
of 28 = 256 states the eight qubits were in. All other
qubits in the grid are discriminated as isolated qubits.

2. Single qubit calibration

After placing the qubit frequencies for readout, we cal-
ibrate and fine tune the readout parameters for each
qubit. For each qubit, we use a 1 µs drive pulse and
a 1 µs demodulation window. We summarize the proce-
dure for choosing the remaining parameters as follows:

• Choose the resonator drive frequency to maximize
the separation between measurements performed
with the qubit in either |0〉 and |1〉 [15].

• Choose the resonator drive power to hit a target
separation between |0〉 and |1〉, so that the error
due to this separation is below a 0.3% threshold.
We do not choose the readout power to maximize
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FIG. S19. Parallel XEB. a, Schematics of four device-wide sequences, one for each entangler layer. Black points are active
qubits, colored circles are single-qubit gates, and colored lines are two-qubit gates. We cycle between single- and two-qubit
gates m times. Compare to Fig. 3a, main text, where the layers are interleaved. b, Integrated histograms of Pauli error e2c (see
Fig. 2a, main text). These include isolated results, where each entangler is measured in its own experiment, and simultaneous
(parallel) results. Purity is “speckle” purity. c, Difference, δ, in unitary model parameters (Eq. 43) between the unitaries
obtained in the isolated and simultaneous experiments. δ∆− is not plotted because it has a negligible effect on the unitary
when θ ≈ 90 degrees.

the separation as doing so would saturate our am-
plifiers, and cause unwanted transitions of the qubit
state [16, 21, 52, 53].

• Find the optimal demodulation weight function by
measuring the average detector voltage as a func-
tion of time during the course of the readout pulse
[15, 20].

• Finally, choose the discrimination line between the
measurement results for |0〉 and |1〉, except as noted
in the previous section where we need to apply cor-
related discrimination.

After completing these calibrations, we check each
qubit’s readout fidelity by preparing either |0〉 or |1〉 and
reading the qubit out. We define the identification error
to be the probability that the qubit was not measured
in the state we intended to prepare. We achieve 0.97%
median identification error for the |0〉 state, and 4.5% for
|1〉, when each qubit is measured in isolation. The full
distribution is shown in dashed lines in Fig. S21a. We
conjecture that the error in |0〉 is due to thermal exci-
tation during preparation or measurement, and that the
error in |1〉 is due to energy relaxation during readout.

3. Characterizing multi-qubit readout

To assess the fidelity of multi-qubit readout, we pre-
pare and measure 150 random classical bitstring states
with 53 qubits, with 3000 trials per state. We find that
13.6% of all trials successfully identified the prepared
state. We can decompose this overall fidelity in two ways.
First, we plot in solid lines in Fig. S21 the errors for each
qubit during simultaneous readout, averaged over the 150
random bitstrings. We find that the median errors in-
crease from 0.97% for |0〉 and 4.5% for |1〉 in isolation,
to 1.8% and 5.1% for simultaneous readout. We do not
yet understand the root causes of this increase in error.
In addition, we show in Fig. S21 the distribution of er-
rors among the multiqubit results. We see that the most
likely error is one lost excitation in the measured state.

E. Summary of system parameters

Table II reports aggregate values for qubit and pair
parameters in our processor. A complete table of single-
qubit parameter values by qubit is available in supporting
online materials, Ref. [54], and illustrated in Figs. S22
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TABLE II. Aggregate system parameters

Parameter Median Mean Stdev. Units Figure
Qubit maximum frequency 6.924 6.933 0.114 GHz S22
Qubit idle frequency 6.661 6.660 0.057 GHz S13
Qubit frequency at readout 5.750 5.766 0.360 GHz S20
Readout drive frequency 4.618 4.588 0.076 GHz S20
Qubit anharmonicity -208.0 -208.0 4.7 MHz S22
Resonator linewidth κ/2π 0.64 0.69 0.23 MHz S22
Qubit-resonator coupling g/2π 72.3 72.1 2.8 MHz S22
T1 at Idle Frequency 15.54 16.04 4.00 µs S22
Readout error |0〉 isolated / simultaneous 0.97 / 1.8 1.2 / 2.3 0.8 / 2.1 % S21
Readout error |1〉 isolated / simultaneous 4.5 / 5.1 5.0 / 5.5 1.8 / 2.2 % S21
1Q RBa e1 0.19 0.22 0.10 % S23
1Q RBa e1 (π/2 gateset) 0.15 0.16 0.06 % S23
1Q RBa tomographic e1 purity 0.14 0.15 0.04 % S23
1Q XEB e1 isolated / simultaneous 0.13 / 0.14 0.15 / 0.16 0.05 / 0.05 % 3a (main) S23
1Q XEB e1 purity isolated / simultaneous 0.11 / 0.11 0.11 / 0.12 0.03 / 0.03 % S23
2Q XEB e2 isolated / simultaneous 0.30 / 0.60 0.36 / 0.62 0.17 / 0.24 % 3a (main)
2Q XEB e2c isolated / simultaneous 0.64 / 0.89 0.65 / 0.93 0.20 / 0.26 % 3a (main)
2Q XEB e2c purity isolated / simultaneous 0.59 / 0.86 0.62 / 0.89 0.20 / 0.24 % S19
Measurement em isolated / simultaneous 2.83 / 3.50 3.05 / 3.77 1.09 / 1.61 % 3a (main)

a RB data taken at a later date

through S24. Single-qubit metrics represent a sample
size of 53. Two-qubit metrics represent 86 pairs.
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FIG. S20. a, Drive frequencies for the readout resonators for
each qubit. The red outline shows the area where we had to
perform correlated discrimination because of unwanted cross-
couplings between the resonators. b, Qubit frequencies dur-
ing readout, found using a frequency optimization procedure.
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FIG. S21. Readout errors. a, Histogram of readout errors
for each qubit when prepared in |0〉 or |1〉, and readout in
isolation or simultaneously. b, Distribution of errors in multi-
qubit readout. The x-axis Hamming distance is the number of
bits that are different between measured and prepared states,
while the y-axis is the difference in the number of 1’s in the
states. For example, if we prepare |011〉 and measure |101〉,
the Hamming distance is 2 and the difference in the number
of excitations is 0.



24

FIG. S22. Typical distribution of single-qubit parameters over the Sycamore processor.



25

FIG. S23. Typical distribution of single-qubit gate benchmarking errors over the Sycamore processor, for both isolated and
simultaneous operation.
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FIG. S24. Typical distribution of readout errors over the Sycamore processor, for both isolated and simultaneous operation.
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VII. QUANTUM CIRCUITS

A. Background

We sample the output of random quantum circuits
(RQCs) with two use cases in mind: performing a com-
putational task beyond the reach of state-of-the-art su-
percomputers (quantum supremacy); and estimating the
experimental fidelity (performance evaluation).

In order for the RQCs to cover both use cases, we de-
fine a circuit family with a varying number of qubits n
and cycles m. Our quantum supremacy demonstration
uses RQCs with a large number of qubits n = 53 and
high depth m = 20. Large number of qubits hinders
wave function (Schrödinger) simulation and high depth
impedes tensor network (Feynman) simulation (see Sec.
X B). We find that the most competitive classical simu-
lator for our hardest RQCs is the Schrödinger-Feynman
algorithm (SFA, see Sec. X A) which copes well with high
depth circuits on many qubits.

SFA takes as input an n-qubit quantum circuit and a
cut which divides n = n1 +n2 qubits into two contiguous
partitions with n1 and n2 qubits. The algorithm com-
putes the output state as the sum over simulation paths
formed as the product of the terms of the Schmidt de-
composition of all cross-partition gates. By the distribu-
tive law there are rg such simulation paths for a circuit
with g cross-partition gates of Schmidt rank r. Conse-
quently, the algorithm achieves runtime proportional to
(2n1 + 2n2)rg. Circuit cuts with n1, n2 and g that make
the simulation task tractable are called promising cuts.
The most promising cut for our largest RQCs runs paral-
lel to the shorter axis of the device starting in the vicinity
of the broken qubit. The sum over the simulation paths
can be interpreted as tensor contraction. In this view, the
rg factor can be thought of as the bond dimension associ-
ated with the circuit partitioning, i.e. the cardinality of
the index set ranged over in the contraction correspond-
ing to all cross-partition gates. SFA is described in more
detail in [37] and section X.

B. Overview and technical requirements

The two use cases for our RQCs give rise to a ten-
sion in technical requirements at the heart of quantum
supremacy. On the one hand, supremacy RQC sam-
pling should by definition be prohibitively hard to simu-
late classically. On the other hand, performance evalua-
tion entails classical simulation of the RQCs. To resolve
the conflict, we note that the fidelity of a RQC experi-
ment depends primarily on the number and quality of the
gates. By contrast, the simulation cost is highly sensi-
tive to minor perturbations in the circuit. Consequently,
experiment fidelity for RQCs that cannot be simulated
directly may be approximated from the experiment fi-
delity of similar RQCs obtained as the result of transfor-
mations that reduce simulation cost without significantly

affecting experiment fidelity (see Section VII G).
Performance evaluation using XEB provides another

design consideration. The procedure requires knowledge
of the cross-entropy of the theoretical output distribution
of the circuit. An analytical expression for this quantity
has been derived in [26] for circuits whose measurement
probabilities approach the Porter-Thomas distribution.
We find that our RQCs satisfy this assumption when the
circuit depth is larger than 12, see Fig. S35a. Note that
high circuit depth also increases the cost of classical sim-
ulation.

C. Circuit structure

A RQC with n qubits generally utilizes qubits 1
through n in the qubit order shown in Fig. S27 with
small deviations from this default qubit ordering in some
circuits. The qubit order has been chosen to ensure that
for most RQCs with fewer than 51 qubits, there is a par-
titioning of the qubits into two similarly sized blocks con-
nected by only five couplers. The next larger RQC, with
51 qubits, has seven couplers along the most promising
circuit cut. Since the cost of SFA grows exponentially in
the number of gates across the partitions our circuit ge-
ometry leads to a steep increase in the simulation cost of
51-qubit RQCs relative to the circuits with fewer qubits.
This creates a sizeable gap in the computational hardness
between most of our evaluation circuits and the quantum
supremacy circuits (n = 53).

In the time dimension, each RQC is a series of m full
cycles and one half cycle followed by measurement of all
qubits. Every full cycle consists of two steps. In the first
step, a single-qubit gate is applied to every qubit. In
the second step, two-qubit gates are applied to pairs of
qubits. Different qubit pairs are allowed to interact in
different cycles. Specifically, in the supremacy RQCs we
loop through the direct neighbors of every qubit over the
eight-cycle sequence ABCDCDAB and in the evaluation
RQCs we use the four-cycle sequence EFGH where A, B,
..., H are coupler activation patterns shown in Fig. S25.
The sequence is repeated in subsequent cycles. The cost
of SFA simulation is highly sensitive to the specific se-
quence employed in a circuit, see VII G 2. Border qubits
have fewer than four neighbors and no gate is applied
to them in some cycles. The half cycle preceding the
measurement consists of the single-qubit gates only. The
overall structure of our RQCs is shown in Fig. 3 of the
main paper.

D. Randomness

Single-qubit gates in every cycle are chosen randomly
using a pseudo-random number generator (PRNG). The
generator is initialized with a seed s which is the third
parameter for our family of RQCs. The single-qubit gate
applied to a particular qubit in a given cycle depends only
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Pattern A Pattern B Pattern C Pattern D

Pattern E Pattern F Pattern G Pattern H

FIG. S25. Coupler activation patterns. Coupler activation pattern determines which qubits are allowed to interact
simultaneously in a cycle. Quantum supremacy RQCs utilize the staggered patterns shown in the top row in the sequence
ABCDCDAB, repeated in subsequent cycles. Performance evaluation RQCs employ the patterns shown in the bottom row in
the sequence EFGH, likewise repeated in subsequent cycles. The former sequence makes SFA simulation harder by facilitating
prompt transfer of entanglement created at promising circuit cuts into the bulk of each circuit partition.

on s. Consequently, two RQCs with the same s apply the
same single-qubit gate to a given qubit in a given cycle
as long as the qubit and the cycle belong in both RQCs
as determined by their size n and depth m parameters.

Conversely, the choice of single-qubit gates is the sole
property of our RQCs that depends on s. In particular,
the same two-qubit gate is applied to a given qubit pair
in a given cycle by all RQCs that contain the pair and
the cycle.

E. Quantum gates

In our experiment, we configure three single-qubit
gates. Each one is a π/2-rotation around an axis lying
on the equator of the Bloch sphere. Up to global phase,
the gates are

X1/2 ≡ RX(π/2) =
1√
2

[
1 −i
−i 1

]
, (50)

Y 1/2 ≡ RY (π/2) =
1√
2

[
1 −1
1 1

]
, (51)

W 1/2 ≡ RX+Y (π/2) =
1√
2

[
1 −

√
i√

−i 1

]
(52)

where W = (X + Y )/
√

2 and
√
±i denotes the princi-

pal value of the square root. The first two belong to the
single-qubit Clifford group, while W 1/2 is a non-Clifford
gate. Single-qubit gates in the first cycle are chosen in-
dependently and uniformly at random from the set of the

three gates above. In subsequent cycles, each single-qubit
gate is chosen independently and uniformly at random
from among the gates above except the gate applied to
the qubit in the preceding cycle. This prevents simplifi-
cations of some simulation paths in SFA. Consequently,
there are 3n2nm possible random choices for a RQC with
n qubits and m cycles.

Two-qubit gates in our RQCs are not randomized, but
are determined by qubit pair and cycle number. The
gates preserve the number of ground and excited states
of the qubits which gives their matrices block diagonal
structure with 1×1, 2×2 and 1×1 blocks. Therefore, up
to global phase they belong to U(1)⊕U(2)⊕U(1)/U(1)
and thus can be described by five real parameters (see
Fig. S16, and Eq. 43). Each gate in this family can be
decomposed into four Z-rotations described by three free
parameters and the two-parameter fermionic simulation
gate

fSim(θ, φ) =

1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 e−iφ

 (53)

which is the product of a fractional iSWAP and controlled
phase gate (see Fig. S14b).

In our experiment, we tune up the two-qubit gates
close to θ ≈ π/2 and φ ≈ π/6 radians and then in-
fer more accurate values of all five parameters for each
qubit pair using XEB. Consequently, all five parameters
of the two-qubit gate depend on the qubit pair. While
inferred unitaries are suitable for RQC sampling, future
applications of the Sycamore processor, for example, in
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quantum chemistry, will require precise targeting of the
entangling parameters [48, 55]. The three parameters
which control the Z-rotations implicit in the two-qubit
gates can be canceled out with active Z-rotations turning
an arbitrary five-parameter gate into pure fSim(θ, φ). In
our RQCs, we have decided not to apply such correction
gates. This choice affords us greater number of interac-
tions within the available circuit depth budget and intro-
duces additional implicit non-Clifford single-qubit gates
into the RQCs.

The Z-rotations have two origins. First, they capture
the phase shifts due to qubit frequency excursions dur-
ing the two-qubit gate. Second, they account for phase
changes due to different idle frequencies of the interact-
ing qubits. The latter introduces dependency of the three
parameters defining the Z-rotations on the time at which
the gate is applied. By contrast, for a given qubit pair θ
and φ do not depend on the cycle.

The fSim(π/2, π/6) gate is the product of a non-
Clifford controlled phase gate and an iSWAP which is
a two-qubit Clifford gate.

F. Programmability and universality

Programmability of Sycamore rests on our ability to
tune up a variety of gate sets including sets that are uni-
versal for quantum computation. For example, the set of
gates employed in our quantum supremacy demonstra-
tion is universal, as we show in this section.

The proof consists of two parts. First, we show that
the CZ gate can be obtained as a composition of two
fSim gates and single-qubit rotations. Second, we outline
how the well-known proof that the H and T gates are
universal for SU(2) [56] can be adapted for X1/2 and
W 1/2. The conclusion follows from the fact that the gate
set consisting of the CZ gate and SU(2) is universal [57].

1. Decomposition of CZ into fSim gates

Here, we show how to decompose a controlled-phase
gate into two fSim gates and several single-qubit gates.
The fSim gate is native to our hardware and can be de-
composed into

fSim(θ, φ) = e−iθ(X⊗X+Y⊗Y )/2 e−iφ(I−Z)⊗(I−Z)/4 ,
(54)

where the iSWAP angle θ ' π/2 and the controlled-phase
angle φ ' π/6. The controlled-phase part can be further
decomposed into

e−iφ(I−Z)⊗(I−Z)/4

= e−iφ/4 eiφ(Z⊗I+I⊗Z)/4 e−iφZ⊗Z/4 . (55)

To simplify notations, we introduce the two-qubit gate

Υ(θ, φ) = e−iθ(X⊗X+Y⊗Y )/2 e−iφZ⊗Z/4

= eiφ/4 e−iφ(Z⊗I+I⊗Z)/4 fSim(θ, φ) , (56)

which is equivalent to the fSim gate up to single-qubit Z
rotations. The sign of θ in Υ(θ, φ) can be changed by the
single-qubit transformation,

Z1 Υ(θ, φ)Z1 = Υ(−θ, φ) , (57)

where Z1 = Z ⊗ I (Z2 = I ⊗ Z works equally well).
Multiplying two Υ gates with opposite values of θ on

both sides the operator X1 = X ⊗ I, we have

Υ(−θ, φ)X1 Υ(θ, φ) = eiθY⊗Y/2X1 e
−iθY⊗Y/2

= cos θ X1 + sin θ Z ⊗ Y . (58)

With the identity (58), we have

Υ(−θ, φ) eiαX1 Υ(θ, φ) = cosα
(

cos
φ

2
I ⊗ I − i sin

φ

2
Z ⊗ Z

)
+ i sinα

(
cos θX ⊗ I + sin θ Z ⊗ Y

)
=
(

cosα cos
φ

2
I + i sinα cos θX

)
⊗ I − iZ ⊗

(
cosα sin

φ

2
Z − sinα sin θ Y

)
, (59)

where 0 ≤ α ≤ π/2 is to be determined. We introduce
the Schmidt operators

Γ1(α) = cosα cos(φ/2) I + i sinα cos θX , (60)

Γ2(α) = cosα sin(φ/2)Z − sinα sin θ Y , (61)

and the unitary (59) takes the simple form

Υ(−θ, φ) eiαX1 Υ(θ, φ) = Γ1 ⊗ I − iZ ⊗ Γ2 . (62)

The Schmidt rank of this unitary is two. Therefore, it is
equivalent to a controlled-phase gate (also with Schmidt

rank two) up to some single-qubit unitaries. The two
non-zero Schmidt coefficients of the unitary (59) are
equal to the operator norms of Γ1, 2.

The target controlled-phase gate that we want to de-
compose into the fSim gate is

diag
(
1, 1, 1, e−iδ

)
= e−iδ(I−Z)⊗(I−Z)/4 , (63)

where 0 ≤ δ ≤ 2π. It has two non-zero Schmidt coef-
ficients cos(δ/4) and sin(δ/4). For example, we set the
operator norm of Γ2 to be equal to the second Schmidt
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coefficient of the target unitary

∣∣Γ2(α)
∣∣ =

√(
cosα sin(φ/2)

)2
+
(

sinα sin θ
)2

= sin(δ/4) , (64)

and the parameter α can be determined

sinα =

√
sin(δ/4)2 − sin(φ/2)2

sin(θ)2 − sin(φ/2)2
. (65)

This equation has a solution if and only if one of the
following two conditions is satisfied

|sin θ| ≤ sin(δ/4) ≤ |sin(φ/2)| , (66)

|sin(φ/2)| ≤ sin(δ/4) ≤ |sin θ| . (67)

A large set of controlled-phase gates can be implemented
with the typical values of θ and φ of the fSim gate, except
for those that are very close to the identity.

To fix the local basis of the first qubit in Eq. (59), we
introduce two X rotations of the same angle

e−iξX/2 Γ1(α) e−iξX/2 = cos(δ/4) I , (68)

e−iξX/2 Z e−iξX/2 = Z , (69)

where the angle ξ is

ξ = arctan

(
tanα cos θ

cos(φ/2)

)
+
π

2

(
1− sgn

(
cos(φ/2)

))
.

(70)

To fix the local basis of the second qubit in Eq. (59), we
introduce two X rotations of opposite angles

eiηX/2 Γ2(α) e−iηX/2 = sin(δ/4)Z , (71)

where the angle η is

η = arctan

(
tanα sin θ

sin(φ/2)

)
+
π

2

(
1− sgn

(
sin(φ/2)

))
.

(72)

Applying these local X rotations before and after the
gate sequence in Eq. (59), we have

e−i(ξX1−ηX2)/2 Υ(−θ, φ) eiαX1 Υ(θ, φ) e−i(ξX1+ηX2)/2

= cos(δ/4) I ⊗ I − i sin(δ/4)Z ⊗ Z , (73)

which is the desired controlled-phase gate up to some
single-qubit Z rotations.

The target controlled-phase gate equals to the CZ gate
for δ = π. We numerically checked that the decomposi-
tion (73) yields the CZ gate for all 86 fSim gates (with
different values of θ and φ) in our device.

2. Universality for SU(2)

Here, we show how the argument for the well-known
result that the H and T gates are universal for SU(2)
[56] can be adapted for the X1/2 and W 1/2 gates. At
the core of the argument lies the observation that T ≡
RZ(π/4) followed by HTH ≡ RX(π/4) is a single-qubit
rotation by angle α which is an irrational multiple of π.
Specifically, α is such that

cos
α

2
= cos2 π

8
=

1

2

(
1 +

1√
2

)
. (74)

By Theorem B.1 in Appendix B of [56], α/π is irrational
because the monic minimal polynomial with rational co-
efficients of eiα

x4 + x3 +
1

4
x2 + x+ 1 (75)

is not cyclotomic (since not all its coefficients are inte-
gers).

Similarly, W 1/2 ≡ RX+Y (π/2) followed by X1/2 ≡
RX(π/2) is a single-qubit rotation by angle β such that

cos
β

2
= cos2 π

4
− 1√

2
sin2 π

4
=

1

2

(
1− 1√

2

)
. (76)

The monic minimal polynomial with rational coefficients
of eiβ is (75), the same as that of eiα. Therefore, β is also
an irrational multiple of π. The rest of the universality
argument for H and T also applies in the case of X1/2

and W 1/2.

G. Circuit variants

Since XEB entails classical simulation, it is hard or im-
possible to use it to estimate experimental fidelity of cir-
cuits which are hard or impossible to simulate classically.
As described above, we designed our RQCs to ensure
that an effective partitioning for SFA exists for circuits
with fewer than 51 qubits. This gives rise to a significant
gap in the cost of classical simulation between quantum
supremacy circuits and most of our performance evalua-
tion circuits. This gap facilitates performance evaluation
of the Sycamore processor near the quantum supremacy
frontier. In practice, however, we would like greater con-
trol over the simulation hardness, for two reasons. First,
performance evaluation is still very costly for large n ap-
proaching the supremacy frontier. Second, we would like
to be able to estimate the fidelity of supremacy RQCs
more directly, even though classical simulation of this
case is unfeasible by definition.

In order to achieve more fine-grained control over the
cost of classical simulation of our RQCs, we exploit the
fact that the experimental fidelity depends primarily on
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Circuit variant Gates elided Sequence of patterns

non-simplifiable full none ABCDCDAB
non-simplifiable elided some ABCDCDAB
non-simplifiable patch all ABCDCDAB

simplifiable full none EFGH
simplifiable elided some EFGH
simplifiable patch all EFGH

TABLE III. Circuit variants. Six variants of RQCs
employed in quantum supremacy demonstration (non-
simplifiable full) and performance evaluation (remaining five
variants) classified by transformations applied in order to con-
trol the cost of classical simulation. The eight coupler activa-
tion patterns A, B, ..., H are shown in Fig. S25.

the number and quality of the gates while the simulation
cost is highly sensitive to the structure of the quantum
circuit. Therefore, we approximate the experimental fi-
delity of RQCs which are hard or impossible to simulate
from the fidelity of similar RQCs obtained as the result
of transformations that reduce simulation cost without
significantly affecting experimental fidelity.

We employ two such transformations. Each decreases
simulation cost by reducing the bond dimension of
promising circuit cuts. The first one removes some or
all cross-partition gates. We say that the removed gates
have been elided and term the transformation gate eli-
sion. The second transformation changes the sequence of
coupler activation patterns shown in Fig. S25 to enable
the formation of wedges which reduce the bond dimen-
sion by slowing the spread of entanglement generated at
the circuit cut.

The two transformations complete the description of
RQCs used in our experiment. Consequently, each RQC
is uniquely determined by five parameters: number of
qubits n, number of cycles m, PRNG seed s, number
of elided gates and the sequence of coupler activation
patterns.

1. Gate elision

The most straightforward way to reduce the cost of
classical simulation of a RQC is to remove a number of
cross-partition gates across the most promising circuit
cut. In order to enable independent propagation by the
SFA of the wave function of each circuit partition for the
first few cycles, the gates are elided beginning with the
initial cycle. Each elided gate reduces the bond dimen-
sion of the partitioning by a factor of two or four, see
Section X.

We refer to RQCs with a small number of elided gates
as elided circuits. A particularly dramatic speedup is
possible when all two-qubit gates across the partitions
are elided leading to two disconnected circuits running
in parallel. We refer to such disconnected RQCs as patch
circuits. Base RQCs in which no gates have been elided
are referred to as full circuits.

If the error probability of the elided two-qubit gate is
similar to the error probability of the two-qubit identity
gate which it is replaced with, the circuit resulting from
gate elision exhibits fidelity that is similar to the fidelity
of the original circuit. This assumption holds when the
two-qubit gate errors are dominated by the same deco-
herence processes that govern the single-qubit gate er-
rors such as finite T1 and T2. Indeed, for circuit sizes
where XEB on full circuits is possible, we have observed
good agreement between fidelity estimates produced for
patch, elided and full circuits. For harder circuits, we
have observed good agreement between fidelity estimates
for patch and elided circuits. See Section VIII for detailed
discussion of these results.

2. Wedge formation

The most competitive algorithm for our hardest cir-
cuits, SFA (see Sec. X A) scales proportionally to the
bond dimension of the circuit partitioning which is equal
to the product of Schmidt rank of all cross-partition
gates (see Sec. X D). The Schmidt decomposition of
most two-qubit gates in our RQCs consists of four terms
(a few gates can be replaced with simpler gates with
Schmidt rank of two, see Section X). Therefore most
cross-partition gates contribute a factor of four to the
bond dimension of the partitioning. However, when two
consecutive cross-partition gates share a qubit forming
a wedge as shown in Fig. S26, the Schmidt decomposi-
tion of the resulting three-qubit unitary also has only
four terms. In other words, the second cross-partition
gate does not generally produce substantial new entan-
glement (as quantified by the Schmidt rank) among the
partitions in excess of the entanglement produced by the
first gate. Consequently, every wedge reduces the bond
dimension of the partitioning by a factor of four.

The eight-cycle sequence ABCDCDAB and the four
constituent coupler activation patterns A, B, C and D
shown in Fig. S25 have been designed to prevent forma-
tion of wedges across promising circuit cuts. In other
words, the sequence ensures that entanglement created
in a given cycle by cross-partition gates is transferred
into the bulk of each partition in the following cycle.

On the other hand, the four-cycle sequence EFGH en-
ables formation of wedges and thus efficient simulation
of RQCs using SFA. We employ the latter sequence in
most evaluation circuits and use the former eight-cycle
sequence for the quantum supremacy circuits and largest
evaluation circuits, see Table III.

VIII. LARGE SCALE XEB RESULTS

In Section VI, we have detailed the device calibration
processes used for individual components such as qubits,
couplers, and coupled pairs of qubits. We have also intro-
duced cross-entropy benchmarking (XEB) as a method
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Circuit variant n m Single-qubit gates All two-qubit gates Cross-partition two-qubit gates

non-simplifiable full 53 20 1113 430 35
non-simplifiable elided 53 20 1113 408 13
non-simplifiable patch 53 20 1113 395 0

simplifiable full 38 14 570 210 18
simplifiable elided 38 14 570 204 12
simplifiable patch 38 14 570 192 0

TABLE IV. Gate counts. Number of gates in selected random quantum circuits employed for quantum supremacy demon-
stration and performance evaluation of the Sycamore processor.

FIG. S26. Cross-partition wedge. Two consecutive cross-
partition gates which share a qubit form a wedge, as illus-
trated here with gates highlighted in turquoise and magenta.
Schmidt rank of a single two-qubit gate is at most four.
Schmidt rank of a wedge is also at most four. Therefore,
generally wedges are not efficient at increasing entanglement
across partitions and can be simulated efficiently by the SFA.

that allows us to evaluate the performance of a quantum
system. In this section, we describe how we use a few cir-
cuit variations to benchmark our Sycamore processor at a
larger scale. In particular, we present a modular version
of XEB with “patch circuits” that does not require ex-
ponential classical computation resources for estimating
XEB fidelities FXEB of larger systems. We also describe
the effect of choice of unitary model on large-scale FXEB,
as well as how we use patch circuits to monitor the sta-
bility of the full system.

A. Limitations of full circuits

We first discuss what we refer to as “full circuits”,
where for a given set of qubits, all possible two-qubit
gates participate in the circuit. With full circuits, we
benchmarked the system as a function of size, where as
discussed below the classical resources and techniques
used to compute the FXEB is a function of the number
of qubits. The order in which each qubit was added is
labeled in Fig. S27. The rationale behind this ordering
is explained in Section VII. At each system size, we ex-
ecuted 10 randomly generated circuit instances on the

FIG. S27. Qubit ordering for large-scale XEB exper-
iments. Illustration of the order in which qubits are added
for large-scale experiments. The partition between left (black)
and right (blue) qubits along the boundary (dashed red lines)
is used in patch and elided circuits, as explained below.

processor and sampled output bitstrings 500k times for
each circuit (unless otherwise specified). To minimize
potential instance-to-instance fluctuations, we chose the
gate sequences in a persistent, “stable” manner: using
a known seed for a random number generator, for each
circuit, each time a new qubit is added, we maintain the
same gateset for all the “existing” qubits and new gates
are only introduced to qubits and pairs associated with
the added qubit (see Section VII for details).

Once a sufficient number of bitstrings are collected,
FXEB can be calculated for each system size, following
the method described in Section IV. As the system size
increases, the computational complexity of XEB analysis
grows exponentially, which can be qualitatively divided
into three regimes. For system size from 12 to 37 qubits,
XEB analysis was carried out by evolving the full quan-
tum state (Schrödinger method) on a high-performance
server (88 hyper-threads, 1.5TB memory in our case) us-
ing the “qsim” program. At 38 qubits we used a n1-
ultramem-160 VM in Google’s cloud (160 hyperthreads,
3.8TB memory). Above 38 qubits, Google’s large-scale
cluster computing became necessary, and in addition a
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FIG. S28. Comparison between XEB with patch cir-
cuits and full circuits. Full vs. patch circuit benchmarking
up to 38 qubits with 14 cycles, showing close agreement to
within the intrinsic fluctuations of the system. We plot the
results for patch circuits out to 53 qubits.

hybrid Schrödinger-Feynman approach, the “qsimh” pro-
gram, was used to improve the efficiency: in this case,
we break the system up into two patches, where each
patch can be efficiently computed via the Schrödinger
method and then connected by a Feynman path-integral
approach (see Section X for more details). Finally we
used a Schrödinger algorithm in the Jülich supercom-
puter for some circuits up to 43 qubits.

In order to reduce the computational cost, we intro-
duce two modified circuit types in the following sections.
By using slightly simplified gate sequences, these two
methods can provide good approximate predictions of
system performance all the way out to the “quantum
supremacy” regime.

B. Patch circuits: a quick performance indicator
for large systems

The simplest approach to large-scale performance es-
timation is referred to as “patch circuits,” which pre-
dicts the performance of the full system by multiplying
together the fidelities of non-interacting subsystems, or
“patches”. In this work, we use two such subsystems,
where each patch is roughly half the size of the full sys-
tem. The two subsystems are run simultaneously, so that
effects such as gate and measurement crosstalk between
patches are included, but the two patches are analyzed
separately when computing the fidelity. The two patches
are defined by the gates removed along their boundary,
as illustrated in Fig. S27. For sufficiently large systems,
these removed two-qubit gates represent a small portion
of the whole circuit. As a consequence, FXEB of the full
system can be estimated as the product of the fidelities

of the two subsystems; compared with full circuits, the
main missing factor is the absence of entanglement be-
tween the two patches.

We evaluate the efficacy of using patch circuits by com-
paring it against full circuits with the same set of qubits.
The experimental results can be seen in Fig. 4a (main
text), where we show fidelities measured by these two
methods for systems from 12 qubits to 53 qubits, in an in-
terleaved fashion. We re-plot this data here in Fig. S28 as
well. As expected, the fidelities obtained via patch XEB
show a consistent exponential decay (up to fluctuations
arising from qubit-dependent gate fidelities and a small
amount of system fluctuations) as a function of system
size. For every system size investigated, we found that
patch and full XEB provide fidelities that are in good
agreement with each other, with a typical deviation of
∼5% of the fidelity itself (we attribute the worst-case
disagreement of 10% at 34 qubits due to a temporary
system fluctuation in between the two datasets, which
was also seen in interleaved measurement fidelity data).
Theoretically, one would expect patch circuits to result in
∼ 10% higher fidelity than full circuits due to the slightly
reduced gate count. We find that patch circuits perform
slightly worse than expected, which we believe is due to
the fact that the two-qubit gate unitaries are optimized
for full operation and not patch operation. In any case,
agreement between patch and full circuits shows that
patch circuits can be a good estimator for full circuits,
which is quite remarkable given the drastic difference in
entanglement generated by the two methods. These re-
sults give us a good preview of the system performance
in all three regimes discussed earlier.

The advantage of using patch circuits lies in its ex-
ponentially reduced computational cost, as it only re-
quires calculating FXEB of subsystems at half the full
size (or less if a larger number of smaller patches is used).
This allows for quick estimates of large-scale system per-
formance on a day-to-day basis, including for system
and circuit sizes in the “quantum supremacy” regime.
As a consequence, we typically use patch circuits as a
quick system performance indicator, which we use for
rapid turnarounds between system calibration and per-
formance evaluation, as well as for monitoring full system
stability (see Section VIII H). We also note that patch cir-
cuits can be used well beyond 50 qubits, and in fact can
be extended to arbitrary numbers of qubits while keep-
ing the analysis time at most linear in the number of
qubits (or even constant if the patches can be analyzed
in parallel), assuming that the patch size stays roughly
constant and more non-interacting patches are added as
the number of qubits grows.

C. Elided circuits: a more rigorous performance
estimator for large systems

For a more rigorous prediction of full FXEB, we intro-
duce a more sophisticated approach referred to as “elided
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FIG. S29. Comparison between XEB with elided cir-
cuits and full circuits. Full vs. elided circuit benchmark-
ing up to 38 qubits at 14 cycles, showing close agreement to
within the intrinsic fluctuations of the system.

circuits”. Similar to patch circuits, we partition a given
set of qubits into two subsets separated by a boundary,
but elide (remove) only a fraction of the two-qubit gates
along this boundary during a few early cycles of the se-
quence (more specifically, we elide the earliest gates in
time, meaning early layers will have none of their gates
along the boundary while later layers will have all of their
usual gates across the boundary). Accordingly, the two
subsets of qubits are no longer isolated from each other
and we cannot simply compute their fidelities separately
and multiply. Rather, we must still compute the evolu-
tion of the full system. Given that a sufficient number
of gates are elided, we can take advantage of the “weak
link” between patches with a hybrid analysis technique:
we compute each patch via the Schrödinger method and
then connect them with a Feynman path-integral ap-
proach (see Section X for more details on this “qsimh”
program).

Compared with patch circuits, elided circuits more
closely approach a description of the full system perfor-
mance under a full circuit: in addition to capturing is-
sues such as control and readout crosstalk, elided circuits
allow entanglement to form between the two weakly con-
nected subsystems. It covers essentially all the possible
processes that occur in the full circuit, and therefore can
be used to predict system performance at a dramatically
reduced computational cost, albeit significantly costlier
than patch circuits.

In order to validate the use of elided circuits as a sys-
tem performance estimator, we evaluated its accuracy
via a direct comparison with full circuits. In Fig. S29
we show two sets of fidelities from interleaved full and
elided circuit experiments. For every system size investi-
gated, using elided circuits yields a fidelity value that is
in good agreement with the one obtained with the corre-

sponding full circuits. The average ratio of elided circuit
fidelity to full circuit fidelity over all verification circuits
was found to be 1.01, with a standard deviation of 5%,
dominated by system fluctuations. It is this agreement
that certifies elided circuits as a precise predictor for full
circuits (within a systematic relative uncertainty of 5%),
which we rely on to extrapolate the system performance
in the regimes where full circuit analysis is too expensive
to perform (i.e., Fig. 4b of the main text).

Compared with full circuits, elided circuits can result
in a reduced amount of quantum entanglement in the
system. The amount of reduced entanglement can be
bounded from above by counting the number of iSWAP
gates across the boundary: one iSWAP gate generates at
most two units of bipartite entanglements (ebits). This
upper bound translates directly into the exponential cost
of a Schrödinger-Feynman simulation. For elided circuits
with 50 qubits and 14 cycles, the full circuit has approxi-
mately 25 ebits of entanglement, while with 6 elisions the
elided circuit has at most 12 ebits entanglement between
the two patches. For the 53-qubit elided circuits used
in the main paper, there were enough iSWAPs across
the boundary that the amount of entanglement between
patches for full vs. elided circuits should be close, giv-
ing us even more confidence in using elided circuits to
predict the fidelity of the circuit used to claim quantum
supremacy.

D. Choice of unitary model for two-qubit
entangling gates

In Section VI, we discussed how the two-qubit gate
unitaries can be measured by two different approaches:
isolated two-qubit XEB and per-layer simultaneous two-
qubit XEB. These two methods resulted in two different
unitary models when deducing the best-fit unitary. Since
we must specify the two-qubit gate unitary matrices in
order to compute FXEB of the larger system, a natural
question is which unitary model should be used. To ad-
dress this question, we point out that full XEB on the
large system occurs in repeated cycles, where during each
two-qubit gate layer, all the two-qubit gates in the same
orientation take place at the same time (see Fig. 3 in
the main text). As a consequence, the two-qubit gate
layers during simultaneous pair XEB in Fig. S19 emu-
late the corresponding layer when running full XEB on a
large system. Accordingly, learning the unitaries in par-
allel operation captures any small coherent modifications
induced by the simultaneous application of the other two-
qubit gates, such as flux control crosstalk and dispersive
shifts from stray interactions. This is evident from the
fact that by re-learning the two-qubit unitary parame-
ters, the errors extracted from simultaneous pair XEB
become purity-limited (see Fig. S19). This correspon-
dence assures us that unitary parameters extracted from
simultaneous pair XEB provides a more accurate descrip-
tion of the full system when full XEB is performed.
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FIG. S30. Effect of unitary model on full system fi-
delity. a, Patch circuit fidelity versus number of qubits and
choice of unitary model. b, Same but versus number of cycles
and for the non-simplifiable supremacy circuits. Blue: patch
XEB fidelities using the unitaries deduced from the best-fit
fSim unitary from isolated pair XEB. Green: patch XEB fi-
delities using the unitaries deduced from the best-fit fSim uni-
tary from per-layer simultaneous pair XEB. Orange: patch
XEB fidelities using the unitaries deduced from the best-fit
“Sycamore unitary” (θ = π/2, φ = π/6) from per-layer si-
multaneous pair XEB. As expected, the best fidelities arise
from fitting to the most general unitary in parallel operation,
although the fidelities are high enough to achieve quantum
supremacy with the Sycamore unitary model as well.

In Fig. S30, we show patch circuit fidelities at different
system sizes, where the fidelity is evaluated using three
different unitary models: the best-fit unitaries from iso-
lated pair XEB, the best-fit unitaries from simultaneous
pair XEB, and the best-fit “Sycamore” unitaries from si-
multaneous pair XEB. The Sycamore unitaries are the
unitaries obtained when keeping the swap angle fixed at
θ = π/2 and conditional phase fixed at φ = π/6 for all

qubits, and then fitting only for two single-qubit phase
terms. For the purpose of benchmarking the system fi-
delity for the operations we performed, we have focused
on using unitaries learned from simultaneous pair XEB,
which provide the most accurate description of the sys-
tem. The validity of this approach is experimentally veri-
fied—for the same gate sequences, using the simultaneous
pair XEB unitaries leads to the best full-system fidelity
values at every system size. This is direct evidence that
the unitaries learned from simultaneous pair XEB form a
more accurate description of the system than those from
isolated pair XEB.

On the other hand, in order to be useful for generic
quantum algorithms, it will be desirable to use calibrated
gatesets that are independent of the specific gate se-
quences used. For this purpose, it is important to check
the circuit fidelity under the other two unitary models,
where the two-qubit gate unitaries were calibrated in
more generic settings. One can see that fidelities cal-
culated from these two unitary models still demonstrate
nearly as good performance despite the addition of small
coherent control errors. They differ from the fidelities
using the simultaneous pair XEB unitaries by less than
a factor of 2 at 50 qubits (fidelity goes from 9 × 10−3

to 5 × 10−3 at 50 qubits). This is remarkable since it
suggests going from a 2-qubit setting to 50-qubit setting,
our full system calibration precision degrades only by a
factor of < 2 despite the system size increasing by a fac-
tor of 25. This high precision in gate calibration gives us
confidence to use our processors in NISQ algorithms.

E. Understanding system performance: error
model prediction

In this section, we perform additional analysis to com-
pare the measured fidelities to that predicted from the
constituent gate and measurement errors.

The most commonly used error model in quantum
computing theory is the digital error model. Analogous
to the independent noise model in classical information
theory, the digital error model is based on the assumption
that there are no space and time correlations between er-
rors of quantum gates [26, 58, 59]. If this assumption is
valid, it should be possible to construct the fidelity of a
large quantum system from the fidelities of its constituent
parts: single- and two-qubit gates, and measurement. It
is important to point out that the gate fidelity metric that
should be used here is the entanglement fidelity, 1 − eP
(see Section V for more details). This is the correct quan-
tity to describe the fidelity of quantum operations since,
in contrast to other metrics such as the commonly used
average fidelity, it is independent of the dimension of the
Hilbert space.

In Fig. S31, we show fidelities as a function of both
system size and number of cycles (circuit depth), mea-
sured with patch circuits. In each plot, we compare
the measured fidelities to the predicted fidelities, which
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FIG. S31. Predicted vs. measured large-scale XEB fi-
delity. a, Data and two predictions for 14-cycle patch circuits
vs. number of qubits. Predictions are based on the product
of single- and two-qubit gate entanglement fidelities under
simultaneous operation. Blue curve contains measured fideli-
ties. Orange is the prediction based only on gate errors during
parallel operation, but without taking measurement error into
account. Green is the same but multiplied by the measured
readout fidelities. b, Same as the first panel, but vs. num-
ber of cycles at a fixed number of qubits n = 51. Again, the
prediction from simultaneous gate fidelities and measurement
fidelity is a good prediction of the actual system performance.

are calculated from a simple multiplication of individual
gate entanglement fidelities as measured during simulta-
neous operation, along with the measurement fidelities
obtained during simultaneous measurement. We note
that the measured readout fidelities actually also auto-
matically include the effect of state preparation errors
as well. More explicitly, if a circuit contains the set of
single-qubit gates G1, the set of two-qubit gates G2, and

the set of qubits Q, then we approximate the fidelity F
as

F =
∏
g∈G1

(1− eg)
∏
g∈G2

(1− eg)
∏
q∈Q

(1− eq), (77)

where eg are the individual gate Pauli errors and eq are
the state preparation and measurement errors of individ-
ual qubits. It is evident that there is a good agreement
between the measured and predicted fidelities, with de-
viations of up to only 10-20%. Given that the sequence
here involves tens of qubits and ∼ 1000 quantum gates,
this level of agreement provides strong evidence to the
validity of the digital error model.

This conclusion can be further strengthened by the
close agreement between the fidelities of full circuits,
patch circuits, and elided circuits. Even though these
three methods differ only slightly in the gate sequence,
they can result in systems with drastically different levels
of computational complexity and entanglement between
subsystems. The agreement between the fidelities mea-
sured by these different methods, as well as the agreement
with the predicted fidelity from individual gates, gives
compelling evidence confirming the assumptions made
by the digital error model. Moreover, these assumptions
remain valid even in the presence of quantum entangle-
ment.

The validation of the digital error model has crucial
consequences, in particular for quantum error correction.
The absence of space or time correlations in quantum
noise has been a commonly assumed property in quan-
tum error correction since the very first paper on the
topic [58]. Our data is evidence that such a property is
achievable with existing quantum processors.

F. Distribution of bitstring probabilities

In Section IV, we motivate two different estimates for
fidelity F , one based on the cross entropy, Eq. (28), and
the other based on linear cross entropy, Eq. (27). In
this section, we examine the probabilities of sampled bit-
strings and compare them against theoretical distribu-
tions. We use bitstring samples from non-supremacy re-
gion to demonstrate the analysis methodology, then ap-
ply it to the sample in the supremacy region.

The theoretical PDF for the bitstring probability p
with linear XEB is

Pl(x|F ) = (Fx+ (1− F ))e−x

where x ≡ Dp is the probability p scaled by the Hilbert
space dimension D, and F is the linear cross entropy
fidelity. The PDF for log p is

Pc(x|F ) = (1 + F (ex − 1))ex−e
x

where x ≡ log(Dp) and F is the cross entropy fidelity.
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FIG. S32. Histograms of ideal probabilities. The ideal
probability p is calculated from the final state amplitudes of
a (20-qubit 14-cycle) random circuit. The blue, orange, and
green histogram is the ideal probabilities of bitstrings sampled
uniformly at random, from the experiment, and ideal output,
respectively. a, The distribution of Dp and theoretical curves
Pl(x|Fl) normalized to histogram counts for Fl = 0, F̂l, 1, re-
spectively. b, The distribution of log(Dp) and theoretical

curves Pc(x|Fc) for Fc = 0, F̂c, 1, respectively.

From a set of bitstrings {qi}, the fidelity is estimated
from the ideal probabilities {pi = ps(qi)} as

F̂l = 〈Dp〉 − 1, (78)

F̂c = 〈log(Dp)〉+ γ, (79)

where γ is the Euler-Mascheroni constant, see Sec. IV B.
Figure S32 shows the distribution of {pi} from 0.5 mil-

lion bitstrings obtained in an experiment with a 20-qubit
14-cycle random quantum circuit. For comparison, we
produce 0.5 million bitstrings sampled uniformly at ran-
dom and 0.5 million bitstrings sampled from the output
distribution of the ideal circuit and show them in the
same figure. The theoretical distribution curves are also
shown, where the fidelity estimated from data is fed into
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FIG. S33. The Kolmogorov distribution function. This
function is used to compute p-value from a given DKS and
number of samples Ns.

the curve Pl(x|F̂ ) and Pc(x|F̂ ).
We see good agreements between experiment and the-

ory. To quantify the agreements, we use the Kolmogorov-
Smirnov test [60] to characterize the goodness of fit of
data {pi} to theoretical PDFs. First we compute the
Kolmogorov-Smirnov statisticsDKS , that is, the distance
between data and theory as the supremum of point-wise
distances between the empirical cumulative distribution
function of data ECDF(p) and the theoretical cumulative
distribution function CDF(p):

DKS = sup
i
|ECDF(pi)− CDF(pi)|.

We then convert the distance DKS to a p-value using the
Kolmogorov distribution shown in Fig. S33. The p-value
is used for rejecting the null hypothesis that the data
{pi} is consistent with the theoretical distribution. The
whole Kolmogorov-Smirnov test is done using the scipy
package [61] and checked against R package ks.test [62].
Both packages produce consistent results.

We test the ideal probabilities of bitstrings observed in
the experiment {pi} against 2 theoretical distributions,

one with estimated fidelity F = F̂ and one with fidelity
F = 0. The Kolmogorov-Smirnov statistics DKS and the
p-value of every circuit are shown in figure S34. Note that
the p-values for F = 0 are not shown because they are
� 10−20 due to the large DKS ≈ 0.07 with Ns = 5× 105

points in the sample. That is evident from reading off
Fig. S33.

We reject the null hypothesis that the experimental
bitstrings are consistent with the uniform random distri-
bution with very high confidence for this (20-qubit 14-
cycle) random circuit.

Now we turn our attention to the supremacy circuits.
We use random circuits with gate elisions for check-

ing the distributions because it is exponentially expen-
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FIG. S34. The Kolmogorov-Smirnov test results for
each of 10 circuits for a (20-qubit 14-cycle) random
circuit. See text for the definition of DKS and p-value. The
upper plot is for linear XEB, and the lower one is for log XEB.

sive to calculate the ideal theoretical probability of a bit-
string without gate elisions. The effect on fidelity from
gate elisions is well understood, see Sec. VIII C. The gate
elisions are chosen to minimize the effect while making
the classical estimation feasible, see Sec. VII G 1. We
sample Ns = 3 × 106 bitstrings {qi|i = 1...Ns} from
each of 10 (53-qubit 20-cycle) random circuits, and com-
pute the theoretical ideal probabilities of each bitstring
{pi|i = 1...Ns}.

The distributions of Dp and log(Dp) from one such
circuit along with the corresponding theoretical curves
are shown in Fig. S35.

We again use the Kolmogorov-Smirnov test to charac-
terize the goodness of fit of data {pi} to theoretical PDFs

with estimated fidelity F = F̂ and zero fidelity F = 0.
The Kolmogorov-Smirnov statistics DKS and the p-value
of every circuit are shown in figure S36.

The p-value for the null hypothesis of zero fidelity is
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FIG. S35. Distribution of bitstring probabilities from
a 53-qubit 20-cycle circuit. We calculate the theoretical
probabilities of experimentally-observed bitstrings. a, The
distribution of Dp and the theoretical curve Pl(x|F̂l) normal-
ized to histogram counts. b, The distribution of log(Dp) with

theoretical curve Pc(x|F̂c).

generally small for every circuit, with a maximum of
0.045 for circuit number 1. We say that the null hy-
pothesis of zero fidelity is rejected better than a 95%
confidence level for each circuit. On the other hand, the
p-value of null hypothesis of estimated fidelity F̂ is gener-
ally large. The p-value is between 0.18 and 0.98 for linear
XEB, and between 0.33 and 0.98 for log XEB. That in-
dicates that the empirical cumulative distribution func-
tions ECDF(pi) from data is quite consistent with the

theoretical CDF(pi|F̂ ).

As will be seen in Fig. S38 in section VIII G be-
low, the fidelity of individual circuits are consistent with
each other within the statistical uncertainties. There-
fore it makes sense to do a Kolmogorov-Smirnov test on
all samples combined, containing 30 million bitstrings.
The estimated fidelities from the combined sample are
F̂l = 2.24×10−3 and F̂c = 2.34×10−3, respectively. The
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FIG. S36. The Kolmogorov-Smirnov test results for
random circuits with 53 qubits. The upper plot is for
linear XEB, and the lower one is for log XEB.

DKS p-value

F = F̂ F = 0 F = F̂ F = 0

Linear XEB 1.3× 10−4 9.6× 10−4 0.66 < 2.2× 10−16

Log XEB 9.5× 10−5 9.6× 10−4 0.95 < 2.2× 10−16

TABLE V. The Kolmogorov-Smirnov test results on
combined samples.

DKS and p-values are listed in table V. The p-value for
the null hypothesis of F = 0 is very small: p-value =
3× 10−24 from scipy, and p-value < 2.2× 10−16 from R.
We note the more conservative value in the table. The
null hypothesis of F = 0 is rejected with much higher
confidence levels than individual circuits.

G. Statistical uncertainties of XEB measurements

In this section we check the statistical uncertainties of
estimated linear XEB and XEB fidelities against theoret-
ical predictions.

The statistical uncertainties of F̂l and F̂c are estimated
from data using the standard error-on-mean formula as

σ̂Fl
= D

√
Var(p)/Ns,

σ̂Fc
=
√

Var(log p)/Ns,

where Var(x) is the variance estimator of sample {xi}.
Because the distribution of p and log p have finite vari-
ances both experimentally and theoretically, we can use
the bootstrap procedure [63] to verify the estimate of
statistical uncertainties.

The fidelity distribution from 4000 bootstrap samples
are shown in Fig. S37. The distribution of F̂l and F̂c are
each fit to a Gaussian distribution function using maxi-
mum likelihood.

The Kolmogorov-Smirnov test on the Gaussian fit pro-
duces p-values of 0.99 and 0.41 for F̂l and F̂c bootstrap
distributions, respectively. It indicates that the central
limit theorem is at work and the distributions are con-
sistent with Gaussian distributions.

The estimated statistical uncertainty, the standard de-
viation of the bootstrap distribution, and the σ parame-
ter of the Gaussian fit are compared against each other
to verify that the statistical uncertainty estimate is mini-
mally biased. For the example circuit used in the figures,
the three parameters are 5.78, 5.78, 5.78 (×10−3) for σ̂Fl

,
respectively. The same parameters for σ̂Fc

are 7.40, 7.46,
7.46 (×10−3). The relative differences are less than 1%,
consistent with the expected agreement of parameters for
4000 bootstrap samples.

We repeat the bootstrap procedure on all ten 53-qubit
20-cycle circuits with 2500 bootstrap resamples. The sta-
tistical uncertainty estimates are all within 3.1% of the
bootstrap standard deviation.

The combined linear cross entropy fidelity and statisti-
cal uncertainty of 10 random circuits is calculated using
inverse-variance weighting to be F̂l = (2.24±0.18)×10−3.
The theoretical prediction of the statistical uncertainty,√

(1 + 2F − F 2)/Ns, is 1.8 × 10−4, which agrees with
the experimental estimate. As a comparison, the com-
bined cross entropy fidelity is F̂c = (2.34 ± 0.23) ×
10−3. The theoretical prediction of statistical uncer-
tainty,

√
(π2/6− F 2)/Ns, is 2.3 × 10−4, which agrees

with the experimental estimate as well. Thus, the cross
entropy fidelity and linear cross entropy fidelity estima-
tors produce consistent results. Furthermore, the statis-
tical uncertainty of the linear cross entropy estimator is
smaller, as expected from its theoretical formula.

In Fig. S38, we also show the linear XEB fidelities
and 5σ statistical uncertainties of all 10 elided circuit
instances for each circuit depth from Fig. 4b of the main
text. Variations between the fidelities of different cir-
cuit instances are consistent with the expected statisti-
cal noise due to the finite number of samples. In the last
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FIG. S37. Distribution of fidelity from 4000 bootstrap sam-
ples. a, The distribution of bootstrap F̂l. The theoretical
curve is a Gaussian fit normalized to histogram counts. b,
The distribution of bootstrap F̂c, with Gaussian fit.

panel, we also show the smaller statistical uncertainties
of the fidelity averaged over the 10 circuit instances for
each depth.

H. System stability and systematic uncertainties

In addition to statistical errors, XEB fidelity is also
subject to systematic drift as the system performance
may fluctuate and/or degrade over time. To quantify
these mechanisms, we perform a patch circuits time sta-
bility measurement on 53 qubits using a circuit of 16
cycles and 1 million bitstrings for 17.4 hours after cali-
bration. In between these measurements, we measured
the fidelity of other 53-qubit circuits with 16 to 20 cy-
cles. The analyzed results are shown in Fig. S39. The
statistical uncertainties of the fidelities are estimated to
be 1.29× 10−4, as indicated by the error bars.

We repeated the stability measurements twice, with
different circuits and on different days. Fig. S39 shows
the one that exhibits greater degradation as a conserva-
tive estimate of the effect. The measurement indicates a
degradation of fidelity within the range of time. A lin-
ear fit with F = p0 + p1t results in estimated parameters
p̂0 = (5.51± 0.055)× 10−3, p̂1 = (−6.87± 0.64)× 10−5,
and a correlation coefficient of p̂0 and p̂1, ρ, to be -0.76.
The χ2 per degree of freedom is 26.3/11.

The p-value for the χ2 for 11 degrees of freedom is
0.0058, indicating that it is not a very good fit. Because
the correctness of the estimates of statistical uncertain-
ties has been verified in Section VIII G, this is attributed
to systematic fluctuation in addition to degradation. It
is supported by the larger variance of fidelity than the
1 σ band in Fig. S39.

The 1 σ band depends on the statistical uncertainties
of fidelities and the variance of time on the x-axis, but is
independent of the variance of fidelity. To take the vari-
ance of fidelity into account, we use the variance of the
residuals of the linear fit as an estimator of the variance of
fidelity. The standard deviation of residuals is estimated
to be 1.84×10−4, which is added to σp0 in quadrature to
be the total σp0 . The estimate is total σp0 = 1.92×10−4,
3.5 times larger than the statistical-only σp0 of 5.5×10−5.

The uncertainty on a fidelity measured at time t can be
estimated by the standard error propagation, assuming
that t is uncorrelated with either p0 or p1.

σF =
[
σ2
p0 + 2tσp0σp1ρ+ σ2

p1t
2
]1/2

(80)

The value of σF as well as the ratio σF /F in the range
of measured fidelities monotonically decreases. We take
max(σF /F ) as the estimate of relative systematic uncer-
tainty for fidelities measured in the same run. The value
is found to be 4.4% and is used in subsequent analysis.

The physical origin of the observed system fluctuations
can be attributed to many possible channels: 1/f flux
noise, qubit T1 fluctuations, control signal drift, etc. We
speculate that the dominant mechanism is the moderate
interaction between a small number of TLS’s and a few
qubits at their idling and/or readout biases. In Fig. S40a,
we show the result of measuring per-layer simultaneous
pair XEB at a fixed depth of 14 cycles repeatedly over
time. The quantity plotted is the ratio of the worst pair
fidelity to best fidelity observed over the course of 30
minutes. This type of repetitive measurement allows us
to pinpoint which pairs dominate the fluctuations in full
system fidelity. Note that because we used fidelity at a
fixed cycle depth rather than the one extracted from the
exponential decay, these numbers contain the effect of
fluctuating measurement fidelity as well.

As shown in Fig. S40a, the depth-14 fidelity of most
pairs fluctuates downward by only ∼1% at depth 14,
which translates to either a ∼1% fluctuation in mea-
surement fidelity for a pair, or a ∼0.08% fluctuation
in the two-qubit gate fidelity for a pair. Before find-
ing the unstable TLS defect in Fig. S40b, a single qubit
dominated the fluctuations in full system fidelity seen
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FIG. S38. Per-instance elided circuit fidelities and statistical uncertainties. XEB fidelities of all 10 elided circuit instances for
each circuit depth from Fig. 4b of the main text. a to e, Here, each panel corresponds to a single circuit depth m. In these
panels, ±5σ statistical error bars, where σ = 1/

√
Ns, are shown for each of the individual circuit instance fidelities. Also shown

is a band corresponding to ±σ for a single instance, but about the mean fidelity of the 10 instances, showing that the variations
between circuits can be explained by statistical fluctuations from the finite number of samples. f, Fidelity averaged over all
10 circuits along with ±5σ error bars are shown (the same quantity is plotted in Fig. 4b of the main text but on a log scale),
where in this case σ = 1/

√
10Ns. Here, for all circuit depths, the mean fidelity is more than 5σ above 0.001.

in Fig. S40c. After we moved this problematic qubit far
from the fluctuating TLS, the fluctuations in fidelity dur-
ing the actual quantum supremacy experiment (Fig. S39)
were dominated by a handful of pairs containing qubits
in the “degenerate” readout region (described in section
VI). For these qubits, due to constraints from readout
crosstalk we had little freedom in what readout detun-
ings we could choose, and so the best we could do was
to put some qubits near defects or transmon-resonator
transition modes during readout. We speculate that this
is where the remaining dominant fluctuations originate.

I. The fidelity result and the null hypothesis on
quantum supremacy

We use the mean fidelity of ten 53-qubit 20-cycle cir-
cuits as the final benchmark of the system. In sec-
tion VIII G we estimated the fidelity and statistical un-
certainty to be (2.24±0.18)×10−3 using the linear cross
entropy. In section VIII H we estimated the relative sys-
tematic uncertainty due to drift to be 4.4%. Combin-
ing these 2 estimations we arrive at the final fidelity as
(2.24± 0.10(syst.)± 0.18(stat.))× 10−3.

As we show in section X, a noisy sampling of a ran-

dom quantum circuit at fidelity F = 10−3 requires 5000
years with a classical computer with CPU power equiva-
lent to 1 million cores, and it scales linearly with fidelity
F . It takes a quantum computer less than an hour to
complete the same noisy sampling. Therefore we form
the null hypothesis that the fidelity of the quantum com-
puter is F ≤ 10−3, and the alternative hypothesis that
F > 10−3. If the alternative hypothesis is true, we can
say that a classical computer can not perform the same
noisy sampling task as the quantum computer.

The total uncertainty on fidelity is estimated with ad-
dition in quadrature of systematic uncertainty and statis-
tical uncertainty. The mean fidelity of 10 random circuits
with 53 qubits and 20 cycles is (2.24± 0.21)× 10−3. The
null hypothesis is therefore rejected with a significance of
6 σ.

While our analysis of the uncertainty in FXEB was
computed from both statistical and systematic errors,
some care should be taken in the consideration of sys-
tematic errors as they pertain to the claim of quantum
supremacy. Systematic errors should be included if we
wish to use the XEB fidelity value, for example compar-
ing fidelities of patch, elided and full circuits. However
for quantum supremacy, a false claim would arise if FXEB

was zero, but we obtained a non-zero value because of a
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FIG. S39. Stability of repeated 53-qubit 16-cycle patch circuit
benchmarking over 17.4 hours, without any system recalibra-
tion. Statistical error bars from the finite bitstring sample
number are included. The intrinsic system fluctuations are
likely dominated by a small number of TLSs moderately cou-
pled to a few qubits at their idling and/or readout biases.

fluctuation. Systematic fluctuations produce a change
in magnitude of XEB, as seen in the data in this sec-
tion, which is thus a multiplicative-type error that does
not change the XEB fidelity value when it is zero. A
false positive is only produced by a additive-type statis-
tical fluctuations and thus it is the only mechanism that
should be considered when computing the uncertainty.
Therefore, the 6 σ significance of our claim should be
considered as conservative.

Some skeptics have warned that a quantum computer
may not be possible [64? ], for example due to the
fragility of quantum information at large qubit number
and exponentially large Hilbert space. The demonstra-
tion here of quantum behavior at 1016 Hilbert space is
strong confirmation that nothing unusual or unexpected
happens to our current understanding of quantum me-
chanics at this scale.

IX. SENSITIVITY OF XEB TO ERRORS

An important requirement for a procedure used to
evaluate quantum processors, such as XEB, is sensitiv-
ity to errors. Qubit amplitudes are complex variables
and therefore quantum errors are inherently continuous.
Nevertheless, they can be given a discrete description, for
example in the form of a finite set of Pauli operators. The
digital error model is used for instance in quantum error
correction where errors are discretized by syndrome ex-
traction. In this section we examine the impact of both
discrete and continuous errors on the fidelity estimate
obtained from the XEB algorithm.

The XEB procedure uses a set of random quantum

circuits U = {U1, . . . , US} with n qubits and m cycles.
Every circuit is executed Ns times on the quantum pro-
cessor under test. Each execution of the circuit Uj ap-
plies the quantum operation Λj , which is an imperfect
realization of Uj , to the input state |0〉 〈0|. The re-
sult of the experiment is a set B of SNs bitstrings qi,j
sampled from the distributions pe(qi,j) = 〈qi,j | ρj |qi,j〉
where ρj = Λj(|0〉 〈0|) is the output state in the experi-
ments with circuit Uj . For each bitstring qi,j , a simula-
tor computes the ideal probability ps(qi,j) = | 〈qi,j |ψj〉 |2
where |ψj〉 = Uj |0〉 is the ideal output state of the cir-
cuit Uj . Finally, XEB uses Eq. (27) or (28) to compute
an estimate FXEB(B,U) of fidelity F (|ψj〉 〈ψj | , ρj) =
〈ψj | ρj |ψj〉 averaged over circuits U . The result quan-
tifies how well the quantum processor is able to realize
quantum circuits of size n and depth m. See section IV
for more details on XEB.

The estimate FXEB(B,U) is a function of bistrings B
obtained in experiment and of the set of quantum circuits
U used to compute ideal probabilities. This enables a test
of the sensitivity of the method to errors by replacing the
error-free reference circuits U = {U1, . . . , US} with cir-
cuits UE = {U1,E , . . . , US,E} where Uj,E is the quantum
circuit obtained from Uj by the insertion at a particu-
lar location in the circuit of a gate E representing the
error. We identify errors inserted at different circuit lo-
cations that lead to the same output distribution since
XEB cannot differentiate between them.

We first consider the impact of a discrete single-qubit
Pauli error E placed in a random location in the circuit.
In Fig. S41 we plot FXEB(B,UE) where B are bitstrings
observed in our experiment and UE are quantum circuits
modified by the insertion of an additional X or Z gate
following an existing single-qubit gate. Each fidelity es-
timate corresponds to a different circuit location where
the error gate has been inserted. For every n, the highest
fidelity values correspond to the insertion of the Z gate
in the final cycle of the circuit. They have no impact
on measurements and thus are equivalent to absence of
error. The corresponding fidelity estimates match the
estimates for the unmodified circuits.

The probability of only seeing the error E is approx-
imately q = ep where e is the probability of E arising
at the particular circuit location and p is the probability
that no other error occurs. The fraction q of executions
realize circuit Uj,E ∈ UE yielding bitstrings BE while the
remaining fraction 1 − q yield bitstrings B∗. XEB aver-
ages over circuit executions, so

FXEB(B,UE) =

qFXEB(BE ,UE) + (1− q)FXEB(B∗,UE). (81)

Since bitstrings BE originated in a perfect realization of
UE we have FXEB(BE ,UE) ' 1 with high probability.
Also, assuming the circuits randomize the output quan-
tum state sufficiently, we have FXEB(B∗,UE) ' 1/

√
D,

where D = 2n, see Eq. (25) and Fig. S7. Therefore, for
large n
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FIG. S40. Identifying sources of fluctuations with repetitive per-layer simultaneous pair XEB. a, Per-pair ratio
of worst fidelity to best fidelity measured via per-layer simultaneous pair XEB at a depth of 14 cycles over the course of 30
minutes. During this time, fluctuations were dominated by a single TLS. b, Measured qubit T1 vs. f10 for Q1,7 at two different
times a few minutes apart (red vs. blue points), showing an unstable TLS that was dominating the fluctuations in full system
fidelity seen in c,. Moving Q1,7 far from this TLS led to the stability seen in Fig. S39.

FXEB(B,UE) ' q +
1− q√
D
' q (82)

with high probability.
Now, the probability p that no error other than E oc-

curs is approximately equal to the experimental fidelity
F which is approximated by FXEB(B,U), so

FXEB(B,UE) ' eFXEB(B,U) (83)

which means that XEB result obtained using circuits
modified to include E is approximately proportional to
the XEB result obtained using the error-free reference
circuits. Moreover, the ratio of the two XEB results is
approximately equal to the probability of E.

The data in Fig. S41 agrees with the approximate pro-
portionality in Eq. (83) and allows us to estimate the
median probability of a Pauli error. Based on the drop
in XEB fidelity estimate by a factor of almost 100 due
to the insertion of one single-qubit Pauli error into the
circuit, the probability is on the order of 1%. While more
work on the gate failure model needs to be done to cor-
rectly relate Sycamore gate error rates to the probability
of specific Pauli errors, we already see that e has the same

order of magnitude as our per cycle and per qubit error
given by e2c/2 ' 0.5%, see Table II. A possible resolu-
tion of the factor of two discrepancy may lie in the fact
that more than one gate failure can manifest itself as a
particular Pauli error E in a particular circuit location.

Lastly, we consider the impact of continuous errors on
XEB result. Fig. S42 shows the fidelity estimate obtained
from XEB using bitstrings observed in our experiment
and quantum circuits modified to include a single rota-
tion RZ(θ). The middle point of the plot is equal to the
fidelity estimate obtained for one of the discrete errors
in Fig. S41 whereas the leftmost and rightmost points
correspond to the fidelity estimate obtained from XEB
using the error-free reference circuit.

The analysis above illustrates how questions about the
behavior and performance of quantum processors can
be formulated in terms of modifications to the reference
quantum circuits and how XEB can help investigate these
questions. While XEB has proven itself a powerful tool
for calibration and performance evaluation (see sections
VI and VIII), more work is required to assess its efficacy
as a diagnostic tool for quantum processors.
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FIG. S41. Impact of one single-qubit Pauli error on fidelity estimate from XEB. a, Distributions of fidelity estimates
from XEB using measured bitstrings and quantum circuits with one bit-flip or one phase-flip error. For each n, shades of blue
represent the normalized histogram of the estimates obtained for the error gate placed at different circuit locations. The highest
fidelity estimates correspond to phase-flip errors immediately preceding measurement and are equal to the fidelity estimates
from XEB using error-free circuits. b, Quartiles of the distributions shown in a (blue) compared to the fidelity estimates from
XEB using measured bitstrings and unmodified quantum circuits (red). Both plots use linear scale between 10−4 and −10−4

and logarithmic scale everywhere else.

X. CLASSICAL SIMULATIONS

A. Local Schrödinger and Schrödinger-Feynman
simulators

We have developed two quantum circuit simulators:
qsim and qsimh. The first simulator, qsim, is a
Schrödinger full state vector simulator. It computes all
2n amplitudes, where n is the number of qubits. Essen-
tially, the simulator performs matrix-vector multiplica-
tions repeatedly. One matrix-vector multiplication cor-
responds to applying one gate. For a 2-qubit gate act-
ing on qubits q1 and q2 (q1 < q2), it can be depicted
schematically by the following pseudocode.

#iterate over all values of qubits q > q2
for (int i = 0; i < 2^n; i += 2 * 2^q2) {
#iterate values for q1 < q < q2
for (int j = 0; j < 2^q2; j += 2 * 2^q1) {
#iterate values for q < q1
for (int k = 0; k < 2^q1; k += 1) {
#apply gate for fixed values
#for all q not in [q1,q2]
int l = i + j + k;

float v0[4]; #gate input

float v1[4]; #gate output

#copy input
v0[0] = v[l];
v0[1] = v[l + 2^q1];
v0[2] = v[l + 2^q2];
v0[3] = v[l + 2^q1 + 2^q2];

#apply gate
for (r = 0; r < 4; r += 1) {
v1[r] = 0;
for (s = 0; s < 4; s += 1) {
v1[r] += U[r][s] * v0[s];

}
}

#copy output
v[l] = v1[0];
v[l + 2^q1] = v1[1];
v[l + 2^q2] = v1[2];
v[l + 2^q1 + 2^q2] = v1[3];

}
}

}

Here U is a 4x4 gate matrix and v is the full state vec-
tor. To make the simulator faster, we use gate fusion
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FIG. S42. Impact of the Rz(θ) error on XEB. Fidelity
estimates computed by XEB from measured bitstrings and
circuits with n = 20 qubits and m = 14 cycles modified to
include Rz(θ) error applied in 10th cycle to one of the qubits
as a function of θ (orange dots). Also shown is XEB fidelity
computed using the same bitstrings and unmodified circuits
(blue solid line) and a simple model which predicts the effect
of the error (green dashed line).

qubits, n run time in seconds
32 111
34 473
36 1954
38 8213

TABLE VI. Circuit simulation run times using qsim on a
single Google cloud node (n1-ultramem-160).

[65], single precision arithmetic, AVX/FMA instructions
for vectorization, and OpenMP for multi-threading. We
are able to simulate 38-qubit circuits on a single Google
cloud node that has 3844 GB memory and four CPUs
with 20 cores each (n1-ultramem-160). The run times
for different circuit sizes at depth 14 are listed in Table
VI.

The second simulator, qsimh, is a hybrid Schrödinger-
Feynman algorithm (SFA) simulator [37]. We cut the
lattice into two parts and use the Schmidt decomposition
for the 2-qubit gates on the cut. If the Schmidt rank of
each gate is r and the number of gates on the cut is g
then there are rg paths, corresponding to all the possible
choices of Schmidt terms for each 2-qubit gate across the
cut. To obtain fidelity equal to unity, we need to simulate
all the rg paths and sum the results. The total run time
is proportional to (2n1 + 2n2)rg, where n1 and n2 are the
qubit numbers in the first and second parts. Each part is
simulated by qsim using the Schrödinger algorithm. Path
simulations are independent of each other and can be
trivially parallelized to run on supercomputers or in data
centers. Note that one can run simulations with fidelity
F < 1 just by summing over a fraction F of all the paths
(see Ref. [37] and Sec. X D). In order to speed up the
computation, we save a copy of the state after the first p

2-qubit gates across the cut, so the remaining rg−p paths
can be computed without re-starting the simulation from
the beginning. We call the specific choice of Schmidt
terms for the first p gates in the cut a prefix.

B. Feynman simulator

qFlex was introduced in Ref. [49] and later adapted
to GPU architectures in Ref. [66] to allow efficient com-
putation on Summit, currently the world’s Top-1 super-
computer. Given a random quantum circuit, qFlex com-
putes output bitstring amplitudes by adding all the Feyn-
man path contributions via tensor network (TN) contrac-
tions [67, 68], and so it follows what we call a Feynman
approach (FA) to circuit sampling. TN simulators are
known to outperform all other methods for circuits with
low depth or a large number of qubits (e.g., Ref. [66]
successfully simulates 121 qubits at low depth using this
technique), as well as for small sample sizes (Ns), since
simulation cost scales linearly with Ns.

TN simulators compute one amplitude (or a few ampli-
tudes; see below) per contraction of the entire network.
In order to sample bitstrings for a given circuit, a set of
random output bitstrings is chosen before the computa-
tion starts. Then, the amplitudes for these bitstrings are
computed and either accepted or rejected using frugal
rejection sampling [37]. This ensures that the selected
subset of bitstrings is indistinguishable from bitstrings
sampled from a quantum computer. The cost of the TN
simulation is therefore linear in the number of output bit-
strings. This makes TN methods more competitive for
small sets of output bitstrings.

The optimization of qFlex considers a large number
of factors to achieve the best time-to-solution on current
supercomputers, an approach that often diverges from
purely theoretical considerations on the complexity of TN
contractions. More precisely, qFlex implements several
features such as:

• Avoidance of distributed tensor contrac-
tions: by “cutting” the TN (slicing some indexes),
the contraction of the TN is decomposed into many
paths that can be contracted locally and indepen-
dently, therefore avoiding internode communica-
tion, which is the main cause for the slowdown of
distributed tensor contractions.

• Contraction orderings for high arithmetic in-
tensity: TN contraction orderings are chosen so
that the expensive part of the computation con-
sists of a small number of tensor contractions with
high arithmetic intensity. This lowers the time-to-
solution.

• Highly efficient tensor contractions on GPU:
the back-end TAL-SH library [69] provides fully
asynchronous execution of tensor operations on
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PFlop/s* efficiency (%)
qubits cycles FXEB (%) Ns nodes runtime peak sust. peak sust. power (MW) energy (MWh)

53

12
0.5 1M

4550

1.29 hours
235.2 111.7 57.4 27.3 5.73

8.21
1.4 0.5M 1.81 hours** 11.2**
1.4 3M 10.8 hours** 62.7**

14

2.22× 10−6 1M 0.72 hours

347.5 252.3 84.8 61.6 7.25

6.11
0.5 1M 67.7 days** 1.18× 104**
1.0 0.5M 67.7 days** 1.18× 104**
1.0 3M 1.11 years** 7.07× 104**

TABLE VII. Runtimes, efficiency and energy consumption for the simulation of random circuit sampling of
Ns bitstrings from Sycamore with fidelity F using qFlex on Summit. Simulations used 4550 nodes out of 4608,
which represents about 99% of Summit. Single batches of 64 amplitudes were computed on each MPI task using a socket with
three GPUs (two sockets per node); given that one of the 9100 MPI tasks acts as master, 9099 batches of amplitudes were
computed. For the circuit with 12 cycles, 144/256 paths for these batches were computed in 1.29 hours, which leads to the
sampling of about 1M bitstrings with fidelity F ≈ 0.5% (see Ref. [49] for details on the sampling procedure); runtimes and
energy consumption for other sample sizes and fidelities are extrapolated linearly in Ns and F from this run. At 14 cycles,
128/524288 paths were computed in 0.72 hours, which leads to the sampling of about 1M bitstrings with fidelity 2.22× 10−6.
In this case, one would need to consider 288101 paths on all 9099 batches in order to sample about 1M (0.5M) bitstrings with
fidelity F ≈ 0.5% (1.0%). By extrapolation, we estimate that such computations would take 1625 hours (68 days). For Ns =3M
bitstrings and F ≈ 1.0%, extrapolation gives us an estimated runtime of 1.1 years. Performance is higher for the simulation
with 14 cycles, due to higher arithmetic intensity tensor contractions. Power consumption is also larger in this case. Job, MPI,
and TAL-SH library initialization and shutdown times, as well as initial and final IO times are not considered in the runtime,
but they are in the total energy consumption. *Single precision. **Extrapolated from the simulation with a fractional fidelity.
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FIG. S43. Logarithm base 2 of the bond (index) dimensions of the tensor network to contract for the simulation
of sampling from Sycamore with 12 cycles (top) and 14 cycles (bottom) using qFlex. The left plots represent the
tensor network given by the circuit. The middle plots represent the tensor network obtained from a circuit where fSim gates have
been transformed, when possible (see main text). The right plots represent the tensor network after the gate transformations
and cuts (gray bonds) have been applied; the log2 of the bond dimensions of the indexes cut are written explicitly. For 12
cycles, there are 25×21×22 = 28 = 256 cut instances (paths); for 14 cycles, there are 27×27×25 = 219 = 524288 cut instances.
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FIG. S44. TN contraction ordering for the computation of a batch of amplitudes for the simulation of Sycamore
with 12 and 14 cycles. Dotted qubits are used for fast sampling; the output index is left open. Three indexes are cut, with
remaining bond dimensions given in Fig. S43, and all possible cut instances are labelled by variables α, β, and γ (panel 1).
Tensors A, B, and C are independent of cut instances, and so are contracted only once (panels 2 and 3) and reused several
times. Given a particular instance of α and β, tensors D (panels 3 and 4) and subsequently E (panels 5 and 6) are contracted;
tensor E will be reused in the inner loop. For each instance of γ (inner loop), tensor F is contracted (panels 7 and 8), which
gives the contribution to the batch of amplitudes (open indexes on C and specified output bits otherwise) from a particular
(α, β, γ) instance (path). The sequence of tensor contractions leading to building a tensor are enumerated, where each tensor
is contracted to the one formed previously. For simplicity, the contraction of two single-qubit tensors onto a pair before being
contracted with others (e.g., tensor 10 in the yellow sequence of panel 5) is not shown on a separate panel; these pairs of tensors
are computed first and are reused for all cut instances.

GPU and fast tensor transposition, allowing out-of-
core tensor contractions for instances that exceed
GPU memory. This achieves very high efficiency
(see Table VII) on high arithmetic intensity con-
tractions.

In addition, qFlex implements two techniques in order
to lower the cost of the simulation:

• Noisy simulation: the cost of a simulation of fi-
delity F < 1 (F ≈ 5× 10−3 in practice) is lowered
by a factor 1/F , i.e., is linear in F [37, 49].

• Fast sampling technique: the overhead in apply-
ing the frugal rejection sampling mentioned above
is removed by this technique, giving an order of
magnitude speedup [49]. This involves the com-
putation of the amplitudes of a few correlated bit-
strings (batch) per circuit TN contraction.

As shown in Table VII, qFlex is successful in simulat-
ing Sycamore with 12 cycles on Summit, sampling 1M
bitstrings with fidelity close to 0.5% in 1.29 hours. At 14
cycles, we perform a partial simulation and extrapolate
the simulation time for the sampling of 1M bitstrings
with fidelity close to 0.5% using Summit, giving an
estimated 68 days to complete the task. Sampling
3M bitstrings at 14 cycles with fidelity close to 1.0%
(average experimentally realized fidelity) would take

an estimated 1.1 years to complete. Other estimates
for different sample sizes and fidelities can be found
in Table VII. At 16 cycles and beyond, however, the
enormous amount of Feynman paths required so that
the computation does not exceed the 512 GB of RAM
of each Summit node makes the computation impractical.

The contraction of the TNs involved in the compu-
tation of amplitudes from Sycamore using qFlex is pre-
ceded by a simplification of the circuits, which allows
us to decrease the bond (index) dimension of some of
the indexes of the TN. This comes from the realization
that fSim(θ = π/2, φ) = −i · [Rz(−π/2)⊗ Rz(−π/2)] ·
cphase(π + φ) · SWAP (see Sections VI and VII E); note
that the SWAP gate can be applied either at the be-
ginning or at the end of the sequence. We apply this
transformation to all fSim gates at the beginning (end)
of the circuit that affect qubits that are not affected by
any other two-qubit gate before (after) in the circuit. The
SWAP is then applied to the input (output) qubits and
their respective one-qubit gates trivially, and the bond
dimension remaining from this gate is 2, corresponding
to the cphase gate, as opposed to the bond dimension
4 of the original fSim gate. Note that in practice this
identity is only approximate, since θ ≈ π/2; we find that
transforming all gates described above causes a drop in
fidelity to about 95%.
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After the above simplification is applied, we proceed
to cut (slice) some of the indexes of the TN (see Ref. [49]
for details). The size of the slice of the index involved
in each cut (the effective bond dimension of the index)
is variable, and is chosen differently for different num-
ber of cycles on the circuit. Cutting indexes decomposes
the contraction of the TN into several simpler contrac-
tions, whose results are summed after computing them
independently on different nodes of the supercomputer.

Fig. S43 shows the bond dimensions of the TN corre-
sponding to the circuits with 12 and 14 cycles simulated.
We can see the decrease in bond dimension after the fSim
simplification is applied, as well as the remaining bond
dimension on the indexes cut for each case.

Finally, we contract the tensor network corresponding
to the computation of a set of amplitudes (for fast sam-
pling) for a particular batch of output bitstrings. The
contraction ordering, which is chosen (together with the
size and position of the cuts) in order to minimize the
time-to-solution of the computation (which involves a
careful consideration of the memory resources used and
the efficiency achieved on the GPUs) is shown in Fig. S44.
The computation can be summarized in the following
pseudo-code, where α, β, and γ are variables that de-
note the different instances of the cuts:

# Qubits on C are used for fast sampling.
# size_of_batch amps. per circuit contraction.
size_of_batch = 2^num_qubits(C)

# Placeholder for all amplitudes in the batch.
batch_of_amplitudes = zeros(size_of_batch)

# Start contracting...
contract(A) # Panel 2
contract(B) # Panel 2
contract(C) # Panel 2

# alpha labels instances of 1st cut
for each alpha {

# beta labels instances of 2nd cut
for each beta {

contract(D) # Panels 3 & 4
contract(E) # Panels 5 & 6

# gamma labels instances of 3rd cut
for each gamma {

contract(F) # Panels 7 & 8

# Add contribution from this
# path (alpha, beta, gamma).
batch_of_amplitudes += F

}
}

}

Dotted qubits on Fig. S44 denote the region used for
fast sampling, where output indexes are left open. The

circuit TN contraction leads to the computation of 64
amplitudes of correlated bitstrings (tensor F ). Note that
computing only a fraction F of the paths results in am-
plitudes with a fidelity roughly equal to F . Computing
a set of perfect fidelity batches of amplitudes, where the
number of batches is smaller than the number of bit-
strings to sample also provides a similar fidelity F in the
sampling task, where F is equal to the ratio of the num-
ber of batches to the number of bitstrings in the sample.
A hybrid approach (fraction of batches, each only with
a fraction of paths), which we use in practice, also pro-
vides a similar sampling fidelity. See Refs. [37, 49] and
Section X A for more details.

A new feature of qFlex, implemented for this work, is
the possibility to perform out-of-core tensor contractions
(of tensors that exceed GPU memory) over more than
one GPU on the same node. Although the arithmetic
intensity requirements to achieve high efficiency are
now higher (about an arithmetic intensity of 3000 for
an efficiency close to 90% over three GPUs, as opposed
to 1000 for a similar efficiency using a single GPU),
the fact that a large part of a node is performing a
single TN contraction lets us work with larger tensors,
which implies reducing the number of cuts, as well as
increasing the bond dimension of each cut; this, in turn,
achieves better overall time-to-solution for sampling
than simulations based on TNs with smaller tensors and
with a lower memory footprint during their contraction
(which could perhaps show a higher GPU efficiency due
to the simultaneous use of each GPU for independent
TNs). It is worth noting that the TN contraction
ordering presented in Fig. S44 provides us with the best
time-to-solution after considering several possibilities for
the simulation of sampling from Sycamore using qFlex
for both 12 and 14 cycles. This is generally not the case,
since different numbers of cycles generate different TNs,
which generally have different contraction schemes for
best simulation time-to-solution.

Sampling of random circuits on Sycamore is difficult
to simulate with TN simulators at 16 cycles and be-
yond. Indeed, FA simulators suffer from an exponential
scaling of runtime with circuit depth. For qFlex, this
is manifested in the large size of the tensors involved
in the circuit TN contraction (this size grows exponen-
tially with the number of cycles of the circuit), which
require a large number of cuts in order not to exceed
the RAM of a computation node, and which in turn gen-
erates an impractical number of Feynman paths. For
other simulators, such as the one presented in Ref. [70],
the number of projected variables is expected to be so
large that the computation time (which increases expo-
nentially with the number of projected variables) on a
state-of-the-art supercomputer makes the computation
impractical; see Section X E for a detailed analysis. For
TN-based simulators that attempt the circuit contraction
distributed over several nodes (without cuts) [71], we ex-
pect the size of the largest tensor encountered during the
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TN contraction (which grows exponentially with depth)
to exceed the RAM available on any current supercom-
puter. Not having enough memory for a simulation is
the problem that led to developing FA simulators in the
first place, for circuits of close to 50 qubits and beyond,
for which the Schrödinger simulator (see Section X C)
requires more memory to store the wave function than
available. FA simulators give best performance as com-
pared to other methods in situations with a large num-
ber of qubits and low depth. For circuits where both the
number of qubits and the number of cycles are consid-
ered large enough to make the computation expensive,
and contribute equally in doing so (formally, each linear
dimension of the qubit grid is comparable to the time di-
mension), like the supremacy circuits considered in this
work, we expect SFA of Section X A to be the leading ap-
proach for sampling from a random circuit, given a large
enough sample size (∼ 1M in this work); note the linear
dependence of the runtime of FA with sample size, which
is absent for SFA.

C. Supercomputer Schrödinger simulator

We also performed supercomputer Schrödinger sim-
ulations in the Jülich Supercomputing Centre. For a
comprehensive description of the universal quantum com-
puter simulators JUQCS-E and JUQCS-A, see Refs. [72]
and [73].

For a given quantum circuit U designed to generate
a random state, JUQCS-E [73] executes U and com-
putes (in double precision floating point) the probabil-
ity distribution pU (j) for each output or bitstring j ∈
{0, . . . , D− 1}, where D = 2n, n denoting the number of
qubits. JUQCS-E can also compute (in double precision
floating point) the corresponding distribution function

PU (k) =
∑k
j=0 pU (j) and sample bitstrings from it. We

denote by U the set of m states generated by executing
the circuit U . A new feature of JUQCS-E, not docu-
mented in Ref. 73, allows the user to specify a set Q of
M bitstrings for which JUQCS-E calculates pU (j) for all
j ∈ Q and saves them in a file.

Similarly, for the same circuit U , JUQCS-A [73] com-
putes (with adaptive two-byte encoding) the probability
distribution pA(j) for each bitstring j ∈ {0, . . . , D − 1}.
Although numerical experiments with Shor’s algorithm
for up to 48 qubits indicate that the results produced
by JUQCS-A are sufficiently accurate, there is, in gen-
eral, no guarantee that pA(j) ≈ pU (j). In this sense,
JUQCS-A can be viewed as an approximate simulator of
a quantum computing device.

In principle, sampling states with probabilities pA(j)
requires the knowledge of the distribution function

PA(k) =
∑k
j=0 pA(j). If D is large, and pA(j) ≈ O(1/D),

as in the case of random states, computing PA(k) requires
the sum over j to be performed with sufficiently high
precision. For instance, if D = 239, pA(j) ≈ O(10−12)
and even with double precision arithmetic (≈ 16 dig-

its), adding D = 239 small numbers requires some care.
Note that in practice, each MPI process only calculates
a partial sum, which helps to reduce the loss of signif-
icant digits. JUQCS-A can compute PA(k) in double
precision and sample bitstrings from it. We denote by
A the set of M bitstrings generated by JUQCS-A af-
ter executing the circuit U . Activating this feature re-
quires additional memory, effectively reducing the max-
imum number of qubits that can be simulated by three.
This reduction of the maximum number of qubits might
be avoided as follows. In the case at hand, we know that
all pA(j) ≈ O(1/D). Then, since pA(j) is known, one
might as well sample the states from a uniform distribu-
tion, list the weight wA(j) = NpA(j) for each generated
state j and use these weights to compute averages. We
do not pursue this possibility here because for the present
purpose, it is essential to be able to compute pU (j) and
therefore, the maximum number of qubits that can be
studied is limited by the amount of memory that JUQCS-
E, not JUQCS-A, needs to perform the simulation.

For an XEB comparison, the quantities of interest are

αU,U ≡ logD + γ +

D−1∑
j=0

pU (j) log pU (j), (84)

αA,U ≡ logD + γ +

D−1∑
j=0

pA(j) log pU (j), (85)

αA,A ≡ logD + γ +

D−1∑
j=0

pA(j) log pA(j), (86)

αX ,U ≡ logD + γ +
1

M

∑
j∈X

log pU (j), (87)

where X is one of the four sets U , A, M (a collection of
bitstrings generated by the experiment), or C (obtained
by generating bistrings distributed uniformly). If M is
sufficiently large (M = 500000 in the case at hand), we
may expect that αU,U ≈ αU,U and αA,U ≈ αA,U .

In addition to the cross entropies Eqs. (84)–(87), we
also compute the linear cross entropies

α̂U,U ≡
D−1∑
j=0

pU (j)(DpU (j)− 1), (88)

α̂A,U ≡
D−1∑
j=0

pA(j)(DpU (j)− 1), (89)

α̂A,A ≡
D−1∑
j=0

pA(j)(DpA(j)− 1), (90)

α̂X ,U ≡
1

M

∑
j∈X

(DpU (j)− 1). (91)

Table VIII presents simulation results for the α’s
defined by Eqs. (84)–(87) and for the α̂’s defined by
Eqs. (88)–(91), obtained by running JUQCS-E and
JUQCS-A on the supercomputers at the Jülich Super-
computer Centre. For testing quantum supremacy using
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these machines, the maximum number of qubits that a
universal quantum computer simulator can handle is 43
(45 on the Sunway TaihuLight at Wuxi China [73]).

The fact that in all cases, αU,U ≈ αA,A ≈ 1 sup-
ports the hypothesis that the circuit U , executed by ei-
ther JUQCS-E or JUQCS-A, produces a Porter-Thomas
distribution. The fact that in all cases, αU,U ≈ 1 sup-
ports the theoretical result that replacing the sum over all
states by the sum over M = 500000 states yields an ac-
curate estimate of the former (see Section IV). Although
αA,A ≈ 1 in all cases, using the sample A generated
by JUQCS-A to compute αA,U shows an increasing de-
viation from one, the deviation becoming larger as the
number of qubits increases. In combination with the ob-
servation that αA,A ≈ 1, this suggests that JUQCS-A
produces a random state, albeit not the same state as
JUQCS-E. Taking into account that JUQCS-A stores the
coefficients of each of the basis states as two single-byte
numbers and not as two double precision floating point
numbers (as JUQCS-E does), this is hardly a surprise.

From Table VIII it is clear that the simulation results
for αX ,U and α̂X ,U where X = A,M, C are consistent.
The full XEB fidelity estimates αM,U and α̂M,U , that
is the values computed with the bitstrings produced by
the experiment, are close to the fidelity estimates of the
probabilistic model, patch XEB, and elided XEB, as seen
in Fig. 4(a) of the main text.

For reference, in Tables IX and X we present some
technical information about the supercomputer systems
used to perform the simulations reported in this appendix
and give some indication of the computer resources used.

D. Simulation of random circuit sampling with a
target fidelity

A classical simulator can leverage the fact that exper-
imental sampling from random circuits occurs at low fi-
delity FXEB by considering only a small fraction of the
Feynman paths (see Secs. X A and X B) involved in the
simulation [37], which provides speedups of at least a
factor of 1/FXEB. This is done by Schmidt decomposing
a few two-qubit gates in the circuit and counting only
a fraction of their contributing terms (paths). A key as-
sumption here is that the different paths result in orthog-
onal output states, as was studied in Ref. [37] and later
in Ref. [49]. In what follows, we argue that, provided
the generation of paths through decomposing gates, the
Schmidt decomposition is indeed the optimal approach
to achieving the largest speedup, i.e., that the fidelity
kept by considering only a fraction of paths is largest
when keeping the paths with the largest Schmidt coef-
ficient. This is different from proving the optimality of
the Schmidt decomposition of a single gate, since here
we refer to the fidelity of the entire output state, and de-
composed gates are embedded in a much larger circuit.
In addition, we show that, for the two-qubit gates used
in this work, the speedup is very close to linear in FXEB

(and not much larger), since their Schmidt spectrum is
close to flat. We close this section by relating the present
discussion to Section VII G 2, where the formation of sim-
plifiable gate patterns in some two-qubit gate tilings of
the circuit is introduced.

In summary, this section provides a method to simu-
late approximate sampling with a classical computational
cost proportional to FXEB. Sec. XI argues, based on com-
plexity theory, that this scaling is optimal. We note that
Refs [76–78] propose an alternative method to approx-
imately sample the output distribution at low fidelity.
In essence, this method relies on the observation that,
for some noise models, the high weight Fourier compo-
nents of the noisy output distribution decay exponen-
tially to 0. Then this method proposes to estimate low
weight Fourier components with an additive error which
is polynomial in the computational cost. Nevertheless,
Ref. [79] shows that all Fourier components of the output
distribution of random circuits are exponentially small,
and therefore they can not be estimated in polynomial
time with this method. The conclusion is then that the
noisy output distribution can be approximated by sam-
pling bitstrings uniformly at random, the distribution for
which all Fourier components are 0. This is consistent
with Ref. [26] and Secs. IV and VIII E, but it will pro-
duce a sample with FXEB = 0, while the output of the
experimental samples at 53 qubits and m = 20 still has
FXEB ≥ 0.1%

1. Optimality of the Schmidt decomposition for gates
embedded in a random circuit

Consider a two-qubit gate Vab acting on qubits a and b.
We would like to replace it by a tensor product operator
Ma ⊗Nb. The final state of the ideal circuit is

|ψ〉 := U2VabU1|0n〉 (92)

where U1(U2) is a unitary composed by all the gates ap-
plied before (after) Vab. The final normalized state of the
circuit with the replacement by Ma ⊗Nb is

|φM,N 〉 := U2(Ma ⊗Nb)U1|0n〉/‖U2(Ma ⊗Nb)U1|0n〉‖.
(93)

We would like to find M,N which maximize the fidelity
of the two states, given by

〈ψ|φM,N 〉 = 〈0n|U†1V
†
ab|β〉/

√
〈β|β〉, (94)

where

|β〉 ≡ (Ma ⊗Nb)U1|0n〉 (95)

As the overlap is invariant if we multiply (Ma⊗Nb) by
a constant, we fix the normalization tr[(Ma⊗Nb)†(Ma⊗
Nb)] = 1.

We now make the assumption that the circuit is ran-
dom (or sufficiently scrambling) and that the Vab is a gate
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TABLE VIII. Simulation results for various α’s as defined by Eqs. (84)–(87), obtained by JUQCS-E and JUQCS-A. The results
for the α̂’s defined by Eqs. (88)–(91) are given in parenthesis. The set of bitstrings M has been obtained from experiments.
In the first column, the number in parenthesis is the circuit identification number. Horizontal lines indicate that data is not
available (and would require additional simulation runs to obtain it).

qubits αU,U αA,A αU,U αA,U (α̂A,U ) αM,U (α̂M,U ) αC,U (α̂C,U )

30 1.0000 1.0000 0.9997 0.8824 (0.8826) 0.0708 (0.0711) +0.0026 (+0.0017)
39(0) 1.0000 1.0000 0.9992 0.4746 (0.4762) 0.0281 (0.0261) −0.0003 (−0.0011)
39(1) 1.0000 1.0000 1.0002 —–; (—–) 0.0350 (0.0362) —–; (—–)
39(2) 1.0000 1.0000 0.9996 —–; (—–) 0.0351 (0.0332) —–; (—–)
39(3) 1.0000 1.0000 0.9999 —–; (—–) 0.0375 (0.0355) —–; (—–)
42(0) 1.0000 1.0001 0.9998 0.4264 (0.4268) 0.0287 (0.0258) −0.0024 (−0.0001)
42(1) 1.0000 1.0000 1.0027 —–; (—–) 0.0254 (0.0273) —–; (—–)
43(0) 1.0000 1.0001 1.0013 0.3807 (0.3784) 0.0182 (0.0177) −0.0010 (−0.0003)
43(1) 1.0000 1.0000 —– —–; (—–) 0.0217 (0.0204) —–; (—–)

TABLE IX. Specification of the computer systems at the Jülich Supercomputing Centre used to perform all simulations
reported in this appendix. The row “maximum # qubits” gives the maximum number of qubits n that JUQCS-E (JUQCS-A)
can simulate on a specific computer.

Supercomputer JURECA-CLUSTER [74] JURECA-BOOSTER [74] JUWELS [75]

CPU Intel Xeon Intel Xeon Phi 7250-F Dual Intel Xeon
E5-2680 v3 Haswell Knights Landing Platinum 8168

Peak performance 1.8 PFlop/s 5 PFlop/s 10.4 PFlops/s
Clock frequency 2.5 GHz 1.4 GHz 2.7 GHz
Memory/node 128 GB 96 GB + 16 GB (MCDRAM) 96 GB
# cores/node 2× 12 64 2× 24

# threads/core used 1 1 3
maximum # nodes used 256 512 2048

maximum # MPI processes used 4096 32768 32768
maximum # qubits 40 (43) 41 (44) 43 (46)

placed sufficiently in the middle of the computation that
the reduced density matrix of qubits a and b of U1|0n〉
shows maximal mixing between the two. In more detail,
let

ε :=

∥∥∥∥tr\(a,b)(U1|0n〉〈0n|U†1 )− I

4

∥∥∥∥
2

, (96)

with ‖X‖2 := tr(X†X)1/2 the Hilbert-Schmidt norm and
tr\(a,b) the partial trace of all qubits except a and b.

Using Eq. (96) and Eq. (94), we find

〈ψ|φM,N 〉 = tr(tr\(a,b)(U1|0n〉〈0n|U†1 )V †ab(Ma ⊗Nb)) (97)

=
1

4
tr[V †ab(Ma ⊗Nb)]± ‖(Ma ⊗Nb)‖2‖Vab‖2ε.

As ‖(Ma ⊗Nb)‖2 = 1 and ‖Vab‖2 = 2, we find

〈ψ|φM,N 〉 =
1

4
tr[V †ab(Ma ⊗Nb)]± 2ε. (98)

Refs. [80, 81] proved that for a random circuit U1 of
depth D in one dimension, ε ≤ (4/5)D. In two dimen-
sions we expect ε to go to zero even faster with depth, so

we can ignore the second term of Eq. (98) for sufficiently
large depth.

We now want to find Ma, Nb which are optimal for

max
Ma,Nb:‖Ma‖2=‖Nb‖2

tr[V †ab(Ma ⊗Nb)]. (99)

At this point, we have reduced the problem to finding
the optimal decomposition of the gate as a standalone
operator.

Consider the operator Schmidt decomposition of Vab:

Vab =
∑
i

λiRa,i ⊗ Sb,i, (100)

where Ra,i (Sb,i) are orthonormal set of operators in

the Hilbert-Schmidt inner product, i.e. tr(R†a,iRa,j) =

tr(S†a,iSb,j) = δij . The Schmidt singular values λ1 ≥
λ2 ≥ . . . are in decreasing order. Then it follows that
the solution of Eq. (99) is λ1, with optimal solution
Ma = Ra,1 and Nb = Sb,1. Indeed we can write Eq. (99)
as

max
|x〉,|y〉

〈x|V |y〉 (101)
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TABLE X. Representative elapsed times and number of MPI processes used to perform simulations with JUQCS-E and
JUQCS-A on the supercomputer indicated. Note that the elapsed times may fluctuate significantly depending on the load of
the machine/network.

JUQCS-E JUQCS-A
qubits gates Supercomputer MPI processes Elapsed time Supercomputer MPI processes Elapsed time

30 614 BOOSTER 128 0:02:28 CLUSTER 128 0:05:23
39 802 CLUSTER 4096 0:42:51 CLUSTER 4096 1:38:42
42 864 JUWELS 16384 0:51:16 JUWELS 8192 2:15:48
43 886 JUWELS 32768 1:01:53 JUWELS 32768 1:32:19
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FIG. S45. Probability distribution of the deviations
|δθ| from θ ≈ π/2 for fSim gates. The magnitude of δθ is
directly related to the runtime speedup low fidelity classical
sampling can take from exploiting the existence of paths with
large Schmidt coefficients. In practice, |δθ| ≈ 0.05 radians
on average, which imposes a bound of less than an order of
magnitude on this potential speedup for the circuits, gates,
and simulation techniques considered in this work.

where the maximum is over all unit vectors |x〉, |y〉 in
(C2)⊗2 and V is the matrix

V :=
∑
i

λi(Ra,i ⊗ I)|Φ〉〈Φ|(S†b,i ⊗ I) (102)

with |Φ〉 =
∑
i |i〉 ⊗ |i〉. This can be verified using the

fact that any unit vector |x〉 in (Cd)⊗2 can be written
as |x〉 = (L ⊗ I)|Φ〉 for a matrix L acting on (Cd) s.t.
‖L‖2 = 1. The result follows by noting that λi are the
singular values of V .

The argument above easily generalizes to the problem
of finding the optimal operator of Schmidt rank k for
replacing the unitary gate. In that case the optimal

choice is
∑k
i=1 λiRa,i ⊗ Sb,i.
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FIG. S46. Classical speedup given by the imbalance
in the Schmidt coefficients of the gates decomposed.
The speedup is computed by comparison with the case where
θ = π/2 exactly. The classical simulation has a target fi-
delity F , and g fSim gates are decomposed. For simplic-
ity, we assume θ = π/2 + δθ is the same for all gates, as
well as φ = π/6. Left: speedup at different target fidelities
for fixed g = 35. Note that the speedup decreases with F ;
this is due to the fact that at very low fidelity, considering a
few paths with very high weight might be enough to achieve
the target fidelity, while for larger values of F , paths with a
smaller weight have to be considered, and so a larger num-
ber of them is needed per fractional fidelity increase. Right:
speedup for fixed fidelity F = 0.001 for different values of g.
As expected, the speedup is greater as g increases, since the
weight of the highest contributing paths increases exponen-
tially with g. The largest speedup is achieved at large g and
small F . For g = 35 and F ' 0.001, we find speedups well
below an order of magnitude, given that |δθ| ≈ 0.05 radians in
practice (shaded area); this case is representative of our sim-
ulation of Sycamore with m = 20 (see Section X A) targeting
the fidelity measured experimentally.

2. Classical speedup for imbalanced gates

We now want to analyze the Schmidt spectrum of the
two-qubit gates used in this work. The fSim(θ, φ) gate is
introduced in Section VII E. This gate, which is presented
in matrix form in Eq. (53), has the following Schmidt
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singular values:

λ1 =
√

1 + 2 · | cos(φ/2) cos θ|+ cos2 θ (103)

λ2 = λ3 = sin θ (104)

λ4 =
√

1− 2 · | cos(φ/2) cos θ|+ cos2 θ , (105)

where normalization is chosen so that
∑4
i λ

2
i = 4. In

practice, we have θ ≈ π/2 and φ ≈ π/6, and so we obtain
λi ≈ 1, ∀i ∈ {1, 2, 3, 4}, which gives a flat spectrum.

In the case that θ = π/2 ± δθ, the spectrum becomes
imbalanced, as expected. When considering the decom-
position of a number g of fSim(π/2± δθ, φ ≈ π/6) gates,
the set of weights of all paths is equal to the outer prod-
uct of all sets of Schmidt coefficients (one per gate).
Achieving a fidelity FXEB > 0 implies (in the optimal
case) including the largest contributing paths, and so
the advantage one can get from this is upper bounded
by the magnitude of the largest weight, which is equal
to
∏g
α=1 λ

2
α,max, where α labels the gates decomposed

and λα,max is the largest Schmidt coefficient for gate α.
In practice, |δθ| has values of around 0.05 radians (see
Fig. S45). The geometric mean of λmax is about 1.047,
which gives an upper bound of 1.0472g to the speedup
discussed here. For the largest value of g considered in
this work, i.e., the decomposition of g = 35 gates using
the SFA simulator (Section X A) on a circuit of m = 20
cycles, we obtain a value of 1.0472×35 = 25.4. Note that
the speedup obtained in practice (as compared to run-
times over circuits with perfectly flat gate Schmidt de-
compositions) for fidelities of the order of 0.1% and larger
is expected to be far smaller than this value, given that
one has to consider a large number of paths, from which
only an exponentially small number will have a weight
close to 25.4.

We can get a better estimate for the speedup achieved
in practice, beyond the upper bound of about a factor of
25 that decomposing g = 35 gates with typical parame-
ters would give. For simplicity, let us assume that all g
gates have the same values of θ and φ. Then the weight
of each path arising from this decomposition can be writ-
ten as Wi = W(a,b,c) = λ2a

1 λ2b
2 λ

2c
3 , where a + b + c = g,

and that the number of paths for each choice of (a, b, c)

is equal to #(a, b, c) =
∑b
k=0 multinomial(a, b−k, k, c) =

2b×multinomial(a, b, c). After sorting all 4g weights (and
paths) by decreasing value, given a target fidelity, F , one
now has to consider the first S paths (i.e., those with the
largest weight), up to the point where the sum of their

weights
∑S
i=1

Wi

4g matches the target fidelity. The nor-
malization factor 4g guarantees that if one were to con-
sider all paths, the fidelity would be unity, as expected.
Compared to the case where we consider a number F×4g

of paths, as for a flat Schmidt spectrum, this provides a
speedup equal to S

F×4g . We show the speedup achieved
this way in Fig. S46. For the case where we would achieve
the largest speedup in the simulations considered in this
work, namely the simulation of Sycamore at m = 20
cycles and a fidelity F ≈ 0.2% with g = 35 gates decom-
posed (see Section X F), we estimate that the speedup

obtained this way would be well below an order of mag-
nitude, since |δθ| typically takes values of about 0.05 ra-
dians.

3. Verifiable and supremacy circuits

So far we have considered the decomposition of gates
one by one, i.e., where the total number of paths is equal
to the product of the Schmidt rank of all gates decom-
posed. However, by fusing gates together in a larger
unitary, one can provide some speedup to the classical
simulation of the sampling task.

The rationale here comes from the realization that
a unitary that involves a number of qubits q cannot
have a rank larger than 4min(ql,qr) when Schmidt decom-
posed over two subsets of qubits of size ql and qr, with
ql+qr = q. Therefore one might reduce exponentially the
number of paths by fusing gates such that the resulting
unitary reaches on either side (l or r) a number of qubits
that is smaller than the product of the ranks of the fused
gates to be decomposed. This is at the heart of the forma-
tion of wedges of Section VII G 2. These wedges denote
particular sequences of consecutive two-qubit gates that
only act upon three qubits. Fusing these two-qubit gates
together generates 4 paths, as opposed to a naive count
of 42 paths if one decomposes each gate separately. Each
wedge identified across a circuit cut provides a speedup
by a factor of 4.

In this work, we define two classes of circuits: verifiable
and supremacy circuits. Verifiable circuits present a large
number of wedges across the partition used with the SFA
simulator (Section X A) and are therefore classically sim-
ulatable in a reasonable amount of time. These circuits
were used to perform full XEB over the entire device up
to depth m = 14 (see Fig. 4a of the main article and
Sections VII and VIII), which involves perfect fidelity
computations. On the other hand, supremacy circuits
are designed so that the presence of wedges and similar
sequences is mitigated, therefore avoiding the possibility
of exploiting this classical speedup.

It is natural to apply the ideas presented here beyond
wedges. It is also easy to look for similar structures in
the circuits algorithmically. This way, we find that for
the supremacy circuits there is a small number of such
sequences. On the sequence of cycles DCD (see Fig. S25),
three two-qubit gates are applied on qubits 16, 47, and
51 (see Fig. S27 for numbering). These three gates can
be fused in one. Then, if the two gates between qubits 47
and 51 are decomposed (as is done with the SFA simula-
tions of Section X A used in Fig. 4 of the main article),
this technique provides a speedup of a factor of 4. The
sequence of layouts DCD appears twice for circuits of
m = 20, which provides a total speedup of 42 = 16 in
the simulation of the supremacy circuits. This particu-
lar decomposition is currently not implemented, and the
estimated timings of Section X A and Fig. 4 of the main
article do not take it into account.
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Beyond this, one has to go to groups of several cycles
of the circuit (more than two) in order to identify regions
where the fusion of several gates provides any advantage
of this kind. In our circuits, the resulting unitaries act
upon a large number of qubits, which makes explicitly
building the unitary impractical.

E. Treewidth upper bounds and variable
elimination algorithms

We explained in Section X B that the Feynman
method to compute individual amplitudes of the out-
put of a quantum circuit can be implemented as a
tensor network when quantum gates are interpreted
as tensors. All indexes of the tensor network have
dimension two because indexes correspond to qubits.
Similarly, Ref. [68] showed that a quantum circuit can
be mapped directly to an undirected graphical model.
In the undirected graphical model, vertices or variables
correspond to tensor indexes, and cliques correspond
to tensors. Individual amplitudes can be computed
using a variable elimination algorithm on the undirected
graphical model, which is similar to a tensor contraction
on a tensor network. The variable elimination algo-
rithm depends on the ordering in which variables are
eliminated or contracted. If we define the contraction
width of an ordering to be the rank of the largest
tensor formed along the contraction, the treewidth of the
undirected graph is equal to the minimum contraction
width over all orderings. Therefore, the complexity of
a tensor network contraction grows in the optimal case
exponentially with the treewidth, and the treewdith can
be used to study the complexity of Feynman methods
for simulating quantum circuits [67]. Ref. [68] showed
that for diagonal gates the undirected graphical model
is simpler, potentially lowering its treewidth, and hence
improving the complexity. This simplification is not
achievable in the tensor network view without including
hyperedges, i.e., edges attached to more than two
tensors. Ref. [68] also introduced the use of QuickBB to
find a heuristic contraction ordering [82]. If allowed to
run for long enough, QuickBB finds the optimal ordering,
together with the treewidth of the graph. However, note
that obtaining the treewidth of a graph is an NP-hard
problem, and so in practice a suboptimal solution is
considered for the simulations described here.

Once the width of a contraction is large enough,
the largest tensor it generates is beyond the memory
resources available. This constraint was overcome in
Ref. [70] by projecting a subset of p variables or ver-
tices in the undirected graphical model into each possi-
ble bistring of 0 and 1 values. This generates 2p similar
subgraphs, each of which can be contracted with lower
complexity and independently from each other, making
the computation embarrassingly parallelizable. Choos-
ing the subset of variables that, after projection, opti-

mally decreases the treewidth of the resulting subgraph
is also NP-hard. However, Ref. [70] developed a heuris-
tic approach that works well in practice. The algorithm
proceeds as follows:

1. Run QuickBB for S seconds on the initial graph.
This gives a heuristic contraction ordering, as well
as an upper bound for the treewidth.

2. For each variable, estimate the cost of contracting
the subgraph after projection. The estimate is done
with the ordering inherited from the previous step.

3. Choose to project the variable which results in the
minimum contraction cost.

4. Repeat steps 2 and 3 until the cost is within rea-
sonable resources.

5. Once all variables have been chosen and projected,
run QuickBB for S seconds on the resulting sub-
graph to try to improve the contraction ordering in-
herited from step 1 and lower the contraction cost.

In the top panel of Fig. S47 we show the contrac-
tion width as a function of the number of variables
that are projected for the supremacy circuits used in
this paper. In order to decrease the contraction width
to 28 or below (a tensor with 28 binary indexes con-
sumes 2 GB of memory using single precision complex
numbers), we need to project between 8 and 63 vari-
ables, depending on the depth of the circuits. In ad-
dition, we report the result of the projection procedure
on the Bristlecone circuits considered in Refs. [49, 83]
and available at https://github.com/sboixo/GRCS for
depths (1+32+1) and (1+40+1), since these cases were
benchmarked in Ref. [83]. We obtain a contraction width
equal to 28 after 10 projections for Bristlecone at depth
(1+32+1), and width 26 after 22 projections for Bristle-
cone at depth (1+40+1), consistent with the results in
Ref. [83]. Even though Ref. [70] uses S = 60, we run
QuickBB for 1800 seconds (30 minutes) every time, in or-
der to decrease the contraction width of the Bristlecone
simulations to values that match the memory require-
ments reported in Ref. [83]. Note that Ref. [83] neither
reports the value of S used nor the contraction widths
found; however, with S = 1800 we are able to match
the scaling of time complexity reported, as is explained
below.

To estimate the runtime of the computation of a single
amplitude using this algorithm on the circuits presented
in this work, we use the following scaling formula:

TVE = C−1
VE · 2

p · (cost after p projections)/ncores,
(106)

where VE refers to the variable elimination algorithm
with projections described in this section, CVE is a con-
stant factor, p is the number of variables projected, and
ncores is the number of cores used in the computation.

https://github.com/sboixo/GRCS
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FIG. S47. Contraction widths and estimated runtimes
for classical sampling using the variable elimination
algorithm with projected variables of Ref. [70] for
Sycamore supremacy circuits. Top: contraction width
as a function of the number of variables projected using the
algorithm of Ref. [70]. We project enough variables in order to
decrease the width to 28 or lower. Note that often the second
QuickBB run does not decrease the treewidth (and might even
increase it), in which case the resulting contraction ordering
it is ignored. Bottom: estimated runtimes for the classical
sampling of 1M bitstrings from the supremacy circuits with
fidelity 0.5% using the contraction ordering found by QuickBB

at the end of the projection procedure shown in the top panel.
The red data point shows the estimated runtime for a verifi-
able circuit; note that the heuristic algorithm analyzed here
provides some speedup in this case. Our time estimates as-
sume the use of fast sampling, although it is so far unclear
whether this technique can be adapted to the algorithm de-
scribed here. Failure to do so would result in a slowdown of
about an order of magnitude.

The cost of the full contraction of each subgraph is es-
timated as the sum of 2rank, where the rank refers to
the number of variables involved in each individual con-
traction along the full contraction of the subgraph. We
obtain the value of CVE from the runtimes reported in
Ref. [70], which shows that a single amplitude of Bristle-
cone at depth (1+32+1) takes 0.43 seconds to compute
on 127,512 CPU cores with 10 projected variables, and
at depth (1+40+1) it takes 580.7 seconds with 22 pro-
jected variables using the same number of cores. We use
the benchmark at depth (1+32+1) because it provides
the largest value for CVE (lowest time estimates), which
is equal to 52.7 MHz; the benchmark at depth (1+40+1)
gives CVE = 51.6 MHz. In order to sample 1M bitstrings

from a random circuit with fidelity 0.5%, we need to com-
pute 5000 amplitudes.

We present our estimates for Sycamore supremacy
circuits in the bottom panel of Fig. S47. Note that depth
(1+40+1) in Refs. [70, 83] is equivalent to m=20 cycles
here because of the denser layout of two-qubit gates.
Furthermore, computation times reported previously are
for circuit variations less complex than for Sycamore,
arising from changes in complexity such as CZ vs. fSim
gates and differing patterns; with this change of gates,
depth (1+40+1) in Refs. [70, 83] is actually equivalent
to m=10 cycles here. Finally, note that we present
optimistic estimates, since we are assuming that the fast
sampling technique discussed in Section X B is applicable
here. To the best of our knowledge, it is not known
how to apply this technique for the heuristic variable
elimination algorithm discussed here; in the absence of
an implementation of this technique, in order to success-
fully apply rejection sampling we would instead need
to compute a few independent amplitudes per sampled
bitstring, which would increase the estimated times
by about an order of magnitude (see Section X B and
Refs. [37, 84] for more details). According to our esti-
mates, sampling from supremacy circuits at m = 16 and
beyond is out of reach for this algorithm. Interestingly,
we find some speedup for the simulation of verifiable cir-
cuits, as is shown in Fig. S47 for m = 16 (red data point).

Finally, note that the undirected graphical model
derived from the supremacy circuits can take advan-
tage of the structure of the Sycamore gates (fSim
plus single-qubit Rz rotations). Due to the fact
that fSim(θ ≈ π/2, φ) ≈ −i · [Rz(−π/2)⊗ Rz(−π/2)] ·
cphase(π + φ) · SWAP, the Sycamore gate corresponds
to a subgraph of only two variables, which explicitly rep-
resents the diagonal cphase and the logical SWAP. This
simplification, used in our estimates, results in an undi-
rected graphical model that is simpler than that one gen-
erated by arbitrary two-qubit gates. See Fig. S48 for an
example.

F. Computational cost estimation for the sampling
task

We find that the most efficient simulator for our hard-
est circuits is the SFA simulator (see Sec. X A). In order
to estimate the computational cost associated with sim-
ulating a 53 qubit circuit with 20 cycles, where no gates
are elided on the cut, we use a Google cloud cluster com-
posed of 1000 machines with 2 vCPUs and 7.5 GB of
RAM each (n1-standard-2). We use n1-standard-2 be-
cause this is the smallest non-custom machine with suf-
ficient RAM for simulating the two halves of the circuit.
In 20 cycles, the circuit contains 35 gates across the cut.
All cross gates have a Schmidt rank of 4 except for the
last four gates which can be simplified to cphase with a
Schmidt rank of 2. To obtain a perfect fidelity simulation
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FIG. S48. Circuit with Sycamore gates (top) and its
corresponding undirected graphical model (bottom).
Each non-diagonal single-qubit gate introduces a new vertex
or variable. Note that, even though two-qubit gates are gen-
erally represented by a clique with four vertices or variables,
Sycamore gates can be simplified as a cphase followed by a
SWAP. The cphase is represented as an edge between two
existing variables. The SWAP, however, provides more com-
plexity to the graph as it swaps the corresponding variables.
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FIG. S49. Qsimh execution time for a 53 qubit circuit with
20 cycles for the first 1000 prefix values. The average job time
〈tprefix〉 is calculated to be 246 seconds.

we would need to simulate all 431 × 24 paths. We con-
figure qsimh according to Ref. [37] to have a prefix of 30
cross gates, thus requiring 430 separate qsimh runs. The
first 1000 paths of the required 430 were used for timing
purposes. In Figure S49 we plot the distribution of sim-
ulation times with qsimh consuming two hyperthreads.
The average job time is 246 seconds resulting in a calcu-
lated 1.6× 1014 core hours for a simulation of the circuit

qubits, n cycles, m total #paths fidelity run time
53 12 41724 1.4% 2 hours
53 14 42124 0.9% 2 weeks
53 16 42523 0.6% 4 years
53 18 42823 0.4% 175 years
53 20 43124 0.2% 10000 years

TABLE XI. Approximate qsimh run times using one million
CPU cores extrapolated from the average simulation run time
for 1000 simulation paths on one CPU core.

with 0.002 fidelity [85]. Extrapolated run times for other
circuits with 53 qubits are shown in Table XI. To calcu-
late a total cost for the largest circuit we multiply the
Google Cloud preemptible n1-standard-2 price in zone
us-central-1 of $0.02 per hour, 246 seconds average run
time, 0.002 target fidelity, and 430 qsimh runs. This re-
sults in an estimated cost of 3.1 trillion USD. For perfect
fidelity simulations (necessary for XEB), an extrapola-
tion to a fidelity value of 100% gives a good estimate
of the run time. We believe these estimates are a lower
bound on costs and simulation time due to the fact that
these calculations are likely to compete with each other
if they are run on the same nodes.

As a final remark, note that a hypothetical implemen-
tation of the decomposition discussed at the end of Sec-
tion X D 3 could decrease the computation time presented
here by a factor of 16.

G. Understanding the scaling with width and
depth of the computational cost of verification

1. Runtime scaling formulas

Here we study the scaling of the runtime of the
classical computation of exact amplitudes from the
output wave function of a circuit with m cycles and n
qubits on Sycamore, assuming a supercomputer with 1M
cores. This computation is needed in order to perform
XEB on the circuits run. We consider two algorithms:
a distributed Schrödinger algorithm (SA) [72, 73] (see
Section X C) and a hybrid Schrödinger-Feynman algo-
rithm (SFA) [37] that splits the circuit in two patches
and time evolves each of them for all Feynman paths
connecting both patches (see Section X A). The latter
is embarrassingly parallelizable. Note that these scaling
formulas provide rough estimates presented with the
intent of building intuition on the scaling of runtimes
with the width and depth of the circuits, and that the
finite size effects of the circuits can give discrepancies
of an order of magnitude or more for the circuit sizes
considered in this work.

For SA, the runtime is directly proportional to the size
of the wave function on n qubits. This is equal to 2n. In
addition, the runtime is proportional to the number of
gates applied, which scales linearly with n and m. For
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this reason, we propose the scaling:

TSA = C−1
SA ·mn · 2

n, (107)

where the constant CSA is fit to runtimes observed
experimentally when running on a supercomputer, and
scaled to 1M cores.

For SFA the runtime is proportional to the number of
paths connecting both patches, as well as to the time
taken to simulate each pair of patches. When using
the supremacy two-qubit gate layouts (ABCDCDAB. . . ),
each fSim gate bridging between the two patches (cross-
gates) generates a factor of 4 in the number of paths.
The number of cross-gates scales with

√
n (we assume a

two-dimensional grid) and with m. The time taken to
simulate each patch is proportional to 2n/2, where n/2
estimates the number of qubits per patch, and the expo-
nential dependence comes from a linear scaling of the run-
time with the size of the wave function over that patch.
The runtime therefore scales as:

TSFA, supremacy = C−1
SFA · 2 · 2

n
2 · 4B·m

√
n, (108)

where the extra factor of two accounts for the fact that,
for every path, two patches have to be simulated. The
constant CSFA, with units of frequency, is the effective
frequency with which 1M cores simulate paths and is fit
from experimentally observed runtime. The constant B
accounts for the average number of cross-gates observed
per cycle, which depends on the two-dimensional grid
considered and on the two-qubit gate layouts used. For
Sycamore, with the supremacy layouts, we find 35 cross-
gates for n = 53 and m = 20, which gives B = 0.24 ≈
1/4.

For SFA, using the verifiable two-qubit gate lay-
outs (EFGHEFGH. . . ), the main difference with the
supremacy circuits case is the fact that most of the cross-
gates can be fused in pairs, forming three-qubit gates we
refer to as wedges (see Sec. VII G 2 and X D 3). Each
cross-wedge generates only 4 paths, as opposed to the 42

paths the two independent fSim gates would have gen-
erated. Since every 4 cycles provide 7 cross-gates, and
from those 7 gates, 6 are converted into 3 wedges, we
count only 44 paths, as opposed to a naive count of 47

for those 4 cycles. In turn, the exponent in the last factor
of Eq. 108 is corrected by the fraction 4

7 . This results in:

TSFA, verifiable = C−1
SFA · 2 · 2

n
2 · 4 4

7B·m
√
n. (109)

2. Assumptions and corrections

There are several assumptions considered in Sec-
tion X G 1 and other details that can either (1)
contribute to a somewhat large discrepancy between
the runtimes predicted by the scaling formulas and the
actual runtimes potentially measured experimentally,
or (2) be ignored with no significant impact on the

accuracy of the predictions. Here we discuss the ones we
consider most relevant.

Concerning SA, the algorithm is benchmarked in prac-
tice on up to 100K cores. Since this is a distributed
algorithm, the scaling with number of cores is not ideal
and therefore the constant CSA can only be estimated
roughly. We assume perfect scaling in our estimates for
runtime on 1M cores, i.e., the runtime on 1M cores is
the one on 100K cores divided by 10; this is of course an
optimistic estimate, and runtimes should be expected to
be larger.

For memory requirement estimates, we assume a
2 byte encoding of complex numbers. Beyond about
49 qubits there is not enough RAM on any existing
supercomputer to store the wave function. In those
cases, runtimes are given for the unrealistic, hypothetical
case that one can store the wave function.

SFA is embarrassingly parallelizable, and so it does not
suffer from non-ideal scaling. However, there are other
factors to take into account. First, we have written no
explicit dependence of the time to simulate patches of
the circuit with m; the number of cycles m only plays a
role when counting the number of paths to be considered.
SFA stores several copies of the state of a patch after its
evolution at different depths, iterating over paths over
several nested loops. For this reason, most of the time is
spent iterating over the inner-most loop, which accounts
for the last few gates of the circuit and is similar in cost
for all depths. This implies that the amortized time per
path is considered approximately equal for all depths and
the direct m dependence was correctly ignored.

A factor contributing to the discrepancy between
the predicted runtimes of the scaling formulas of Sec-
tion X G 1 and those expected in practice is due to finite
size effects. While these scaling formulas consider the
average number of cross-gates encountered per cycle, dif-
ferent cycles have layouts that contribute a few more (or
less) gates than others. Since the runtime dependency
is exponential in the number of gates, this might cause
discrepancies of around an order of magnitude. Further-
more, for verifiable circuits, wedges form over groups of
two cycles; this coarse graining exacerbates finite size ef-
fects. For the sake of simplicity in the scaling formulas,
we do not perform any corrections to include these fac-
tors. However, in order to mitigate the propagation of
finite size effect errors, we consider different constants
CSFA, supremacy and CSFA, verifiable, that we fit indepen-
dently.

Finally, we refer to runtimes of our simulations on a
hypothetical supercomputer with 1M cores. While this
is a realistic size for a Top-5 supercomputer currently, a
core-hour can vary significantly between different CPU
types. Again, we only intend to provide rough estimates
in order to build intuition on the dependence of runtimes
with circuit width and depth.
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FIG. S50. Scaling of the computational cost of XEB using SA and SFA. a, For a Schrödinger algorithm, the limitation
is RAM size, shown as vertical dashed line for the Summit supercomputer. Circles indicate full circuits with n = 12 to 43
qubits that are benchmarked in Fig. 4a of the main paper. 53 qubits would exceed the RAM of any current supercomputer,
and is shown as a star. b, For the hybrid Schrödinger-Feynman algorithm, which is more memory efficient, the computation
time scales exponentially in depth. XEB on full verifiable circuits was done at depth m = 14 (circle). c, XEB on full supremacy
circuits is out of reach within reasonable time resources for m = 12, 14, 16 (stars), and beyond. XEB on patch and elided
supremacy circuits was done at m = 14, 16, 18, and 20.

3. Fitting constants

In the case of SA, we fit the constant CSA with a run-
time of 0.1 hours for the simulation with n = 43 and
m = 14. This runtime is obtained by assuming ideal
scaling when extrapolating a runtime of 1 hour on nearly
100K nodes (215 MPI processes, 3 cores per process), as
reported in Sec. X C. This gives a value of

CSA = 0.015× 106 GHz. (110)

For SFA, we consider B = 1/4 for simplicity. In order
to fit CSFA, we consider a runtime of 5 hours and 4 years
for the case with n = 53 and m = 14 for verifiable and
supremacy circuits, respectively (see Fig. 4 of the main
text). This gives:

CSFA, verifiable = 0.0062× 106 GHz

CSFA, supremacy = 3.3× 106 GHz. (111)

As discussed above, these fits provide times estimated for
a supercomputer with 1M cores. Contour plots showing
the dependency of runtime with n and m are presented
in Fig. S50.

4. Memory usage scaling

Let us conclude with a discussion of the memory foot-
print of both algorithms. For these estimates, we assume
a 2-byte encoding of complex numbers, as opposed to 8
bytes (single precision) or 16 bytes (double precision).
This results in a lower bound for the memory usage of
these two algorithms. These estimates need an extra fac-
tor of 4 (8) when using single (double) precision. SA
stores the wave function of the state on all qubits. For
this reason, it needs 2n × 2 = 2n+1 bytes. SFA simu-
lates the wave function of both halves of the system (n/2
qubits) per path, one at a time. This requires 2

n
2 ·2 bytes

per path. In practice, the use of checkpoints implies the
need to store more than one wave function per path; for
simplicity, and in the same optimistic spirit of other as-
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sumptions, we ignore this fact. If 1M cores are used
and each path is simulated using a single core, the total
memory footprint is estimated to be 106 × 2

n
2 +1 bytes.

State-of-the-art supercomputers have less than 3 PB of
memory.

H. Energy advantage for quantum computing

With the end of Dennard scaling for CMOS circuits,
gains in computing energy efficiency have slowed signifi-
cantly [86]. As a result, today’s high performance com-
puting centers are usually constrained by available en-
ergy supplies rather than hardware costs. For example,
the Summit supercomputer at Oak Ridge National Lab-
oratory has a total power capacity of 14 MW available
to achieve a design specification of 200 Pflop/s double-
precision performance. We took detailed energy mea-
surements with qFlex running on Summit. The energy
consumption grows exponentially with the circuit depth,
as illustrated in Table VII.

For a superconducting quantum computer, the two pri-
mary sources of energy consumption are:

1. A dilution refrigerator: our refrigerator has a
direct power consumption of ∼10 kW, dominated
by the mechanical compressor driving the 3 K cool-
ing stage. The power required to provide chilled
water cooling for the compressor and pumps asso-
ciated with the refrigerator can be an additional
10 kW or more.

2. Supporting electronics: these include mi-
crowave electronics, ADCs, DACs, clocks, classical
computers, and oscilloscopes that are directly asso-
ciated with a quantum processor in the refrigerator.
The average power consumption of supporting elec-
tronics was nearly 3 kW for the experiments in this
paper.

We estimate the total average power consumption of
our apparatus under worst-case conditions for chilled wa-
ter production to be 26 kW. This power does not change
appreciably between idle and running states of the quan-
tum processor, and it is also independent of the circuit
depth. This means that the energy consumed during the
200 s required to acquire 1M samples in our experiment
is ∼ 5×106 J (∼ 1 kWh). As compared to the qFlex clas-
sical simulation on Summit, we require roughly 7 orders
of magnitude less energy to perform the same computa-
tion (see Table VII). Furthermore, the data acquisition
time is currently dominated by control hardware commu-
nications, leading to a quantum processor duty cycle as
low as 2%. This means there is significant potential to
increase our energy efficiency further.

XI. COMPLEXITY-THEORETIC FOUNDATION
OF THE EXPERIMENT

The notion of quantum supremacy was originally
introduced by John Preskill [87]. He conceived of it
as “the day when well controlled quantum systems
can perform tasks surpassing what can be done in the
classical world”. For the purpose of an experimental
demonstration we would like to refine the definition.

Demonstrating quantum supremacy requires:

1. A well defined computational task, i.e. a mathemat-
ical specification of a computational problem with
a well defined solution.

Comment: This requirement, standard in computer
science, excludes tasks such as “simulate a glass
of water”. However, it would include finding the
ground state energy of an H2O molecule to a given
precision governed by a specific Hamiltonian. Note
that a mathematical specification of a computa-
tional problem calls for highly accurate control re-
sulting in measurable system fidelity.

2. Programmable computational device

Comment: Many physics experiments estimate the
values of observables to a precision which can not
be obtained numerically. But those do not involve
a freely programmable computational device and
the computational task is often not well defined
as required above. Ideally, we would even restrict
ourselves to devices that are computationally uni-
versal. However, this would exclude proposals to
demonstrate quantum supremacy with BosonSam-
pling [88] or IQP circuits [89].

3. A scaling runtime difference between the quantum
and classical computational processes that can be
made large enough as a function of problem size so
that it becomes impractical for a supercomputer to
solve the task using any known classical algorithm.

Comment: What is impractical for classical com-
puters today may become tractable in ten years.
So the quantum supremacy frontier will be mov-
ing towards larger and larger problems. But if a
task is chosen such that the scaling for the quan-
tum processors is polynomial while for the classi-
cal computer it is exponential then this shift will
be small. Establishing an exponential separation
requires substantial efforts designing and bench-
marking classical algorithms [26, 49, 65–68, 70, 72,
73, 83], and support from complexity theory argu-
ments [26, 29, 90]. Sampling the output of random
quantum circuits is likely to exhibit this scaling sep-
aration as a function of the number of qubits for
large enough depth. In this context, we note that
quantum analog simulations that estimate an ob-
servable in the thermodynamic limit typically do
not define a problem size parameter.
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The requirements above are satisfied by proposals of
quantum supremacy emerging from computer science,
such as BosonSampling [88], IQP circuits [89], and ran-
dom circuit sampling [5, 26, 29, 90, 91]. They are also
implicit in the “Extended Church-Turing Thesis”: any
“reasonable” model of computation can be efficiently sim-
ulated, as a function of problem size, by a Turing ma-
chine.

We note that formal complexity proofs are asymp-
totic, and therefore assume an arbitrarily large number of
qubits. This is only possible with a fault tolerant quan-
tum computer and therefore near term practical demon-
strations of quantum supremacy must rely on a careful
comparison with highly optimized classical algorithms on
state-of-the-art supercomputers.

So far we have argued for quantum supremacy by com-
paring the running time of the quantum experiment with
the time required for the same task using the best known
classical algorithms, running on the most powerful su-
percomputers currently available. The fastest known al-
gorithm for exact sampling (or for computing transition
probabilities) runs in time exponential in the treewidth
of the quantum circuit [67, 68]; for a depth D circuit on
a rectangular lattice of sizes lx and ly, the treewidth is
given by min(min(lx, ly)D, lxly). For approximate simu-
lation in which one only requires a given global fidelity
F , the classical cost is reduced linearly in F [37]. As
classical algorithms and compute power can be improved
in the future, the classical cost benchmark is a moving
target.

A complementary approach to back up supremacy
claims consists of giving complexity-theoretic arguments
for the classical hardness of the problem solved (in our
case sampling from the output distribution of a random
circuit of a given number of qubits, depth and output fi-
delity). Previous work gave hardness results for sampling
exactly from the output distribution of different classes
of circuits [26, 88, 92–94]. Most relevant to us are Refs.
[90, 91, 95], which proved that it is classically intractable
(unless the polynomial hierarchy collapses to its third
level, which is considered extremely unlikely [96]) to sam-
ple from the exact probability distribution of outcomes
of measurements in random circuits. We note the dis-
tribution of circuits considered in [90, 91, 95] is different
from ours.

An important clarification is that such results are
asymptotic, i.e. they show that, unless the polynomial
hierarchy collapses, there are no polynomial-time classi-
cal algorithms for sampling from output measurements
of certain quantum circuits. But they cannot be used
directly to give concrete lower bounds for quantum com-
putations of a fixed number of qubits and depth. Refs.
[97–99] tackled this question using tools from fine-grained
complexity, giving several finite size bounds.

There are also results arguing for the hardness of ap-
proximate sampling (see e.g. [26, 88, 89, 93]), where the
task is only to sample from a distribution which is close
to the ideal one. As the quantum experiment will never

be perfect, this is an important consideration. However
those results are weaker than the ones for exact sampling,
as the hardness assumptions required have been much
less studied (and in fact were introduced with the exact
purpose of arguing for quantum supremacy). Another
drawback is that the results only apply to the situation
where the samples come from a distribution very close to
the ideal one (i.e. with high fidelity with the ideal one).
This is not the regime in which our experiment operates.

With these challenges in mind, we consider an alterna-
tive hardness argument in this section, which will allow
us to lower bound the classical simulation cost of noisy
quantum circuits by the cost of the ideal one. On one
hand, our argument will be more restrictive than pre-
vious results in that we will assume a particular noise
model for the quantum computer (one, however, which
models well the experiment). On the other hand, it will
be stronger in two ways: (1) it will apply even to the
setting in which the output fidelity of the experimental
state with the ideal one can be very small, but still the
product of total fidelity with exact computational cost
is large; and (2) it will be based on more mainstream
complexity assumptions in contrast to the tailor-made
conjectures required in e.g. [88, 89, 93] to handle the
case of small adversarial noise.

A. Error model

Our error model is the following. We assume that the
quantum computer samples from the following output
distribution:

rU,F (x) := F | 〈x|U |0〉 |2 + (1− F )/2n, (112)

with U the circuit implemented. In words, we assume
global depolarizing noise. Ref. [26] argues that Eq. (112)
is a good approximation for the output state of random
circuits (see Sec. IV and Section III of [26]); this form has
also been verified experimentally on a small number of
qubits. In the experiment, F is in the range 10−2−10−3.

We note that while we assume a global white noise
model in this section, we do not assume it in the rest
of the paper, neither for validating the cross entropy test
nor in the comparison with state-of-the-art classical algo-
rithms (and indeed the algorithm considered in Section X
samples from an approximate distribution different from
the one in Eq. (112)).

B. Definition of computational problem

Before stating our result, let us define precisely the
computational problem we consider. We start with the
ideal version of the problem with no noise:

Circuit Sampling: The input is a description of a n
qubit quantum circuit U , described by a sequence of one-
and two-qubit gates. The task of the problem is to sample
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from the probability distribution of outcomes pU (x) :=
|〈x|U |0〉|2.

Circuit sampling is an example of a sampling problem
[100]. A classical algorithm for circuit sampling can be
thought of, without loss of generality, as a function A
mapping m ∈ poly(n) bits r = (r1, . . . rm) to n bits such
that

1

2m
|{(r1, . . . , rm) s.t. A(r1, . . . , rm) = x}| = p̃U (x),

(113)
with p̃(x) an approximation of pU (x) to l ∈ poly(n) bits
of precision. So when r is chosen uniformly at random,
the output of A are samples from p (up to rounding errors
which can be made super-exponentially small).

Assuming the polynomial hierarchy does not collapse,
it is known that Circuit Sampling cannot be solved classi-
cally efficiently in n, meaning any algorithm A satisfying
Eq. (113) must have superpolynomial circuit complexity,
for several classes of circuits (such as short depth circuits
[94], IQP [92] and Boson Sampling [88]). We might also
be interested in the average case of circuit sampling (for
a restricted class of circuits).

Random Circuit Sampling: The input is a set of
quantum circuits U on n qubits. The task is to sample
from pU (x) := |〈x|U |0〉|2 for most circuits U ∈ U .

Ref. [90] proved that an efficient (in terms of n) clas-
sical algorithm for this task for random circuits would
also collapse the polynomial hierarchy. As every realistic
quantum experiment will be somewhat noisy, it is rele-
vant to consider a variant of this task allowing for small
deviations from ideal. One possible formulation is the
following:

ε-Approximate Random Circuit Sampling: The in-
put is a set of quantum circuits U on n qubits. The task
is to sample for most circuits U ∈ U , from any distri-
bution qU s.t. dVD(qU , pU (x)) ≤ ε, where dVD is the
variational-distance between the distributions p, q [101]
and pU (x) := |〈x|U |0〉|2.

Refs. [26, 88, 89] put forward new complexity-theoretic
assumptions about the #P-hardness of certain problems
and proved they imply that several restricted classes of
circuits are hard to approximately sample for ε suffi-
ciently close to zero. However, we cannot use these re-
sults here as the ε we achieve is far from zero. We will
resort to the following different variant of approximate
circuit sampling.

Unbiased-Noise F -Approximate Random Circuit
Sampling: The input is a set of quantum circuits U on
n qubits. The task is to sample from the distribution
rU,F given by Eq. (112), for most circuits U ∈ U .

We note that there are alternatives for defining the
computational problem for which supremacy is achieved
without having to use sampling problems. These have the
advantage that it is possible to verify, for each problem

instance, that the task was achieved (whereas while it is
in principle possible to verify that one is sampling from
the correct distribution by estimating the frequencies of
outcomes, this is unfeasible in practice for high entropy
distributions with > 250 outcomes as the one we consider
here).

One such problem (considered on Refs. [26, 29]) is the
following:

b-Heavy Output Generation: Given as input a num-
ber b > 1 and a random circuit U on n qubits (drawn at
random from a set of circuits U), generate output strings
x1, . . . , xk s.t.

1

k

k∑
j=1

|〈xj |U |0〉|2 ≥
b

2n
(114)

Ref. [29] argues for the hardness of this task for ev-
ery b > 1, although here again one has to resort to
rather bold complexity-theoretic conjectures. Cross en-
tropy benchmarking allows us to estimate b for a rea-
sonable value of k (though the classical time needed to
compute |〈xj |U |0〉|2 still grows very fast), see Sec. IV.
In terms of known algorithms, the complexity of solv-
ing Heavy Output Generation is equivalent to the com-
plexity of sampling k samples from a noisy distribution
corresponding to the same b value.

The experiment we report in this paper can be inter-
preted as showing quantum supremacy in solving the b-
Heavy Output Generation with b = 1 + F and F the
fidelity of the output quantum state.

C. Computational hardness of unbiased-noise
sampling

To state our result, we use the complexity class Arthur-
Merlin, which is a variant of the class NP and is denoted
by AM[T ]. It is defined as the class of problems for which
there is an Arthur-Merlin one-round protocol of the fol-
lowing form: given an instance of a problem in AM [T ]
(which Arthur would like to decide if it is a YES or NO in-
stance), Arthur first sends random bits to Merlin. Merlin
(which is computationally unbounded) then sends back
a proof to Arthur. Finally Arthur uses the proof and de-
cides in time T if he accepts. In the YES case, Arthur
accepts with probability larger than 2/3. In the NO case,
he accepts with probability no larger than 1/3.

Theorem 1 Assume there is a classical algorithm run-
ning in time T and using m bits of randomness that sam-
ples from the distribution rU,F (x) given by Eq. (112), for
a given quantum circuit U on n qubits and F ≥ 0. Then
for every integer L, there is an AM [LT + 2Lm] protocol
for deciding, given λ > 0, whether

| 〈0|U |0〉 |2 ≥ λ
(

1 +
2

L

)
+

2(1− F )

FL2n
(115)
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or

| 〈0|U |0〉 |2 ≤ λ
(

1− 2

L

)
− 2(1− F )

FL2n
(116)

Before giving the proof, let us discuss the significance
of the result. We are interested in the theorem mostly
when L = c/F with c a small constant (say 10). Not-
ing that for a random circuit, with high probability,
| 〈0|U |0〉 |2 ≥ 2−n/5 [95], the theorem states that if we
can sample classically in time T from the distribution
given in Eq. (112), then we can calculate a good esti-
mate for | 〈0|U |0〉 |2 in time 10T/F (with the help from
an all-powerful but untrustworthy Merlin). It is unlikely
that Merlin can be of any help for this task for random
circuits, as estimating | 〈0|U |0〉 |2 for random circuits is
a #P-hard problem [90], and it is believed #P is vastly
more complex than AM (which is contained on the third
level of the polynomial hierarchy [96]). Therefore we
conclude that global white noise leads to no more than
a linear decrease in fidelity in classical simulation time
(which is in fact optimal as it is achieved by the method
presented in Ref. [37]).

Ref. [102] proposed a similar, but more demanding,
conjecture about the non-existence of certain AM pro-
tocols for estimating transition probabilities of random
circuits. This conjecture was applied to show that the
output bits of our supremacy experiment can be used to
produce certifiable random bits.

We note Theorem 1 does not establish a lower bound
on the classical computation cost of calculating a tran-
sition amplitude with additive error δ/2n, for small con-
stant δ > 0. What it does is to show that the sampling
problem with unbiased noise is as hard as this task, up
to a linear reduction in F in complexity.

Concerning the hardness of computing |〈0|U |0〉|2 it is
known that this problem is #P hard for random circuits
to additive error 2−poly(n) [90]. This implies that there
is no subexponential-time algorithms for this task (un-
less #P collapses to P). For finite size bounds, which are
more relevant to our experiment, the result of Ref. [97] is
the most relevant. It shows that under the Strong Expo-
nential Time Hypothesis (SETH) [103], there are quan-
tum circuits on n qubits which require 2(1−o(1))n time for
estimating |〈0|U |0〉|2 to additive error 2−(n+1) [104]. To-
gether with Theorem 1, we find there is a quantum circuit
U on n qubits for which the distribution rU,F (given by

Eq. (112)) cannot be sampled in time F2(1−o(1)n), unless
SETH is false.

It is an open question to show a similar lower bound to
the one proved in Ref. [97] for estimating the transition
probability of random circuits. Even more relevant for
this work, it would be interesting to study if one can
show a lower bound of the form 2(1−o(1))treewidth for a
random quantum circuit, under a suitable complexity-
theoretic assumption, as the depth of the construction in
[97] is relatively high.

D. Proof of Theorem 1

The proof will follow along similar lines to previous
work [88, 89, 93]. We will use approximate counting
(which can be done in AM) to show that a sampling
algorithm for rU,F running in time T implies an AM pro-
tocol to compute rU,F (0)(1 ± 1/L), with classical veri-
fication of order LT . Since the noise is unbiased, i.e.
rU,F (0) = F 〈0|U |0〉|2+(1−F )/2n, we can subtract it and
find an AM protocol for estimating |〈0|U |0〉|2 as stated
in the theorem.

In more detail, suppose there is a classical algorithm
for sampling from rU,F given by a function A mapping
m ∈ poly(n) bits r = (r1, . . . rm) to n bits such that

1

2m
|{(r1, . . . , rm) s.t. A(r1, . . . , rm) = x}|

= rU,F (x). (117)

Let a(r1, . . . , rm) be a function which is 1 if
A(r1, . . . , rm) = 0n and zero otherwise.

We start with the following lemma, showing the exis-
tence of A implies an AM [LT + 2Lm] protocol for esti-
mating rU,F (0):

Lemma 1 Assume there is an algorithm A given by
Eq. (117). Then for every θ and L there is an AM [LT +
2Lm] protocol which determines if (i) rU,F (0) ≥ θ(1 +
2/L) (YES instance) or (ii) rU,F (0) ≤ θ(1 − 2/L) (NO
instance).

Proof: The protocol is the following:

1. For every t ∈ [Lm], Arthur chooses a function at
random ht ∈ HLm,t from a family HLm,t of 2-
universal linear hash functions from {0, 1}Lm to
{0, 1}t [96]. Then he communicates his choice of
(h1, . . . , hLm) to Merlin.

2. Merlin sends an Lm-bitstring w to Arthur and an
integer s ∈ [Lm] .

3. Arthur verifies that hs(w) = 0 and

a(w1,1, . . . w1,m) ∧ . . . ∧ a(wL,1, . . . wL,m) = 0.

He rejects if any of the three equations is not sat-
isfied. Then he checks if θ ≤ 2−m201/L2s/L(1 +
2/L)−1, accepting if it is the case and rejecting oth-
erwise.

The cost to compute a(w1,1, . . . w1,m) is T , and the
cost to compute is hs(w) is less than 2Lm, so the total
verification time of the AM protocol is LT + 2Lm.

Let us analyze the completeness and soundness of the
protocol.

Completeness: Suppose we have a YES instance,
rU,F (0) ≥ θ(1+2/L). Let us show that Merlin can send w
and s which makes Arthur accept with high probability.
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Let M be the number of solutions of a(r1, . . . , rm) =
0 (i.e. M = 2mrU,F (0)). Then a(r1,1, . . . r1,m) ∧ . . . ∧
a(rL,1, . . . rL,m) has ML solutions, M for each copy of the
function a. As part of the proof Merlin sends s satisfying
20 ≥ ML/2s ≥ 10 (such a value always exists as s can
be an arbitrary integer less than or equal to Lm).

Let us apply Lemma 2 (stated below) with q = Lm,
t = s, δ = 1/2, and S the set of solutions, so |S| = ML.
Then indeed |S|/2s > 10 > 1/δ3. Therefore, with high
probability, the number of solutions of

a(x1,1, . . . x1,m) ∧ . . . ∧ a(xL,1, . . . xL,m) ∧ hs(x) (118)

is in the interval [(1/2)ML/2s, 2ML/2s]. Since
(1/2)ML/2s ≥ 1, there is a string w s.t.
a(w1,1, . . . w1,m) ∧ . . . ∧ a(wL,1, . . . wL,m) ∧ hs(w) = 0,
which Merlin also sends to Arthur as part of the proof.

Since M = 2mrU,F (0) ≥ 2mθ(1 + 2/L) and ML/2s ≤
20,

20 ≥ ML

2s
≥ 2Lm

2s
θL
(

1 +
2

L

)L
, (119)

so indeed θ ≤ 2−m201/L2s/L(1 + 2/L)−1 and Arthur will
accept with high probability.

Soundness: Suppose we have a NO instance, rU,F (0) ≤
θ(1− 2/L). Let us show that no matter which witnesses
w, s Merlin sends, Arthur will only accept with a small
probability. Merlin must send s such that

θL ≤ (20)2−Lm2s(1 + 2/L)−L, (120)

otherwise Arthur rejects. By Lemma 2 (stated below),
the number of solutions of

a(x1,1, . . . x1,m) ∧ . . . ∧ a(xL,1, . . . xL,m) ∧ hs(x) (121)

will be in the interval [(1/2)ML/2s, 2ML/2s], with M =
2mrU,F (0) ≤ 2mθ(1− 2/L). Since

2ML/2s ≤ 2(2−s)2LmθL(1− 2/L)L

≤ 40(1− 2/L)L(1 + 2/L)−L ≤ 40e−4 < 1, (122)

there is no solution to Eq. (121) and thus there is no w
which will make Arthur accept. This finishes the proof
of Lemma 1.

Reduction to AM protocol for |〈0|U |0〉|2: Finally let us
show how to use Lemma 1 to build the AM protocol
stated in Theorem 1. Since rU,F (0) = F | 〈0|U |0〉 |2 +
(1− F )/2n, on one hand:

|〈0|U |0〉|2 ≥ λ
(

1 +
2

L

)
+

2(1− F )

FL2n
(123)

implies that

rU,F (0) ≥ (Fλ+ (1− F )/2n)

(
1 +

2

L

)
. (124)

On the other hand:

|〈0|U |0〉|2 ≤ λ
(

1− 2

L

)
− 2(1− F )

FL2n
(125)

implies that

rU,F (0) ≤ (Fλ+ (1− F )/2n)

(
1− 2

L

)
. (126)

Setting θ = Fλ+(1−F )/2n we see that the AM proto-
col from before can also be used to decide if Eq. (123) or
Eq. (125) hold true. This ends the proof of the theorem.

Lemma 2 [96] For t ≤ q, let Hq,t be a family
of pairwise-independent linear hash functions mapping
{0, 1}q to {0, 1}t, and let δ > 0. Let S ⊆ {0, 1}n be
arbitrary with |S| ≥ δ−32t. Then with probability larger
than 9/10 over the choice of h ∈ Hn,t,

(1− δ) |S|
2t
≤ |{x ∈ S|h(x) = 0t}| ≤ (1 + δ)

|S|
2t

(127)

Moreover h(x) can be evaluated in time 2n, for every
h ∈ Hn,t.
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