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1 The full patterning system

1.1 Notation

For simplicity, the following single-letter notation are used in the analysis
below:

Substance Short notation Notation in the paper
Sog s [sog]
Scw sc [scw]
Tld T [tld]
Scw Receptor (Sax) r1

Tsg tsg
Dpp dp

Dpp Receptor (Tkv) r2

Scw-receptor complex {r1sc}
Dpp-receptor complex {r2dp}
Sog-Scw complex c1

Sog-Tsg complex s2

Sog-Tsg-Dpp complex c2

Average Scw concentration sc [scw]ave

Average Dpp Concentration dpp

Total sax concentration rtot
1

Total tkv concentration rtot
2

Rate constants are as defined in main text.

1.2 model equations

The full model results presented in the paper’s figure 3, was obtained by
numeric simulation of the following system of equations:
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∂s

∂t
= Ds∇2s− k

(1)
b ssc − k

(1)
br s{r1sc} − αtsgs + ηs(x) (1a)

∂c1

∂t
= Dc1∇2c1 + k

(1)
b ssc + k

(1)
br s{r1sc} − λ1T (x)c1 (1b)

∂sc

∂t
= −k

(1)
b ssc − k(1)

r scr1 + λ1T (x)c1 + ηsc(t) (1c)

∂{r1sc}
∂t

= −k
(1)
br s{r1sc}+ k(1)

r scr1 (1d)

rtot
1 = r1 + {r1sc} (1e)

∂tsg
∂t

= Dtsg∇2tsg − αtsgs + λ2T (x)c2 (1f)

∂s2

∂t
= Ds2∇2s2 − k

(2)
b s2dp − k

(2)
br s2{r2dp}+ αtsgs (1g)

∂c2

∂t
= Dc2∇2c2 + k

(2)
b s2dp + k

(2)
br s2{r2dp} − λ2T (x)c2 (1h)

∂dp

∂t
= −k

(2)
b s2dp − k(2)

r dpr2 + λ2T (x)c2 + ηdpp(t) (1i)

∂{r2dp}
∂t

= −k
(2)
br s2{r2dp}+ k(2)

r r2dp (1j)

rtot
2 = r2 + {r2dp} (1k)

The equations were solved on a ring of circumference L with x = 0 at
the dorsal midline. In addition to the reactions described in Box 1 of the
paper, this model considers the interaction of Scw with its receptor and the
formation of the Dpp gradient through its interaction with Sog, Tsg and Tld.
The model simulates explicitly the kinetics in all regions of the embryo. Sog
is produced continuously with a rate ηs(x) in the region flanking the dorsal
part (l1 < |x| < l1 + l2), while Scw is produced at a rate ηsc in all parts of the
embryo and Dpp is produced in the dorsal region at a rate ηdpp. Both Scw
and Dpp are produced during a limited time (0 < t < τ). T (x) is non-zero,
only at the dorsal ectoderm (|x| < l1). The reference system was defined by
the following parameters: Ds = Dc = DTsg = Ds2 = Dc2 = 85µm2 sec−1,
L = 550µm, l1 = 125µm, l2 = 100µm, T = 0.5µM , tsg = 0.4µM , ηs =
0.02µM sec−1; ηsc = 0.19nM sec−1, ηdpp = 0.16nM sec−1, t = 600 sec, α =

0.02 sec−1 µM−1, λ1 = 2 sec−1 µM−1, λ2 = 4 sec−1 µM−1. k
(1)
b = k

(1)
br =

2 sec−1 µM−1, k
(2)
b = k

(2)
br = 0.25 sec−1 µM−1, k

(1)
r = 2 sec−1 µM−1, k

(2)
r =
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1 sec−1 µM−1, and the total receptor concentration was taken to be rtot
1 =

0.25µM , rtot
2 = 0.1µM . An arbitrary threshold representing 5% receptor

occupancy for Scw and 10% for Dpp were defined. The positions where the
levels of occupied receptors reached this threshold was tested for the different
parameters. For the reference system, these positions are located ˜12 cells
from the dorsal midline. Similar robustness is obtained for other choices of
threshold.

The two models presented in figure 2a-b, are solutions of the equations
presented in the method section of the paper, using the following parameters
(in arbitrary units): Non-Robust system (Fig. 2a): Ds = 1, Dscw = 0.01,
Dc = 0.01, kb = 10, k−b = 0.5, λ[tld] = 2, α[tld] = 10, ηs = 10, scwav = 1.
Robust system (Fig 2b): Ds = 1, Dscw = 0.01, Dc = 10, kb = 120, k−b = 1,
λ[tld] = 200, α[tld] = 1, ηs = 10, scwav = 1.

1.3 Choice of parameters

To date, no biochemical measurements are available which constrain the
assignment of parameter values. For most the parameters, including pro-
duction rates, binding constants and concentrations, the biological relevant
range spans several orders of magnitude. Proper patterning, which repro-
duce the profile of the BMP signaling pathway, is obtain for a wide range of
parameters values.

The parameters of the reference system are within the realistic biochem-
ical range, and obey the robustness conditions (Eq. 24-25 below). Here we
describe the rational which guided our choice of reference system

• Length scale. The circumference of the embryo (550 µm), determines
the system’s length scale. The appropriate length for the dorsal region
is 2l1 = 250 µm and for each side of the neural ectoderm is l2 = 100 µm.

• Diffusion rates.

– The diffusion rate determines the patterning time. J. Ross et. al.
(Nature, 410 479-483) reported that wild-type embryos accumu-
late P-MAD in an 18–20-cell-wide dorsal stripe at mid-cellularization
that rapidly resolves into an 8–9-cell-wide stripe of more intense
staining, as gastrulation starts. These observations again limit
the patterning time, which amounts to at least several diffusion
times, to ∼20 minutes.
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– Measurement of diffusion time. The diffusion time at the periv-
itilline fluid were measured by D. Stein et. al. (Cell, 65 725-
735), who injected FITC-conjugated BSA into the perivitilline
compartment of a recipient embryo. They observed that within
10 minutes after injection, the fluorescent material has become
distributed uniformly within the perivitelline space surrounding
the embryo. BSA is a 66 kDa protein. Considering the length of
the embryo to be ∼ 500 µm and assuming that 10 minutes corre-
spond to at least two diffusion times one obtains an estimation of
D ∼ 102 − 103 µm2 sec−1.

– It is possible that mixing processes in the perivitelline fluid con-
tribute to the equilibration process. For simplicity we approximate
such processes as an effective diffusion. This approximation does
not affect our conclusions.

– The diffusion rate of the diffusing molecules in our model was
chosen as the rate measured for GFP in water, D = 85 µm2 sec−1.
(Swaminathan et al., 1997, Biophysical J, Vol 72, 1900-1907). The
associated diffusion time scale for the system is τdiff = 3 min
and for the whole circumference of the embryo τcirc ∼ 20 min.
Patterning time is about 6τdiff for the reference parameters (see
also section 5)

• Characteristic concentrations and reaction rates

– Receptor concentration. To determine characteristic concentra-
tions, we assume that the external cell surface facing the perivit-
illine space contains ∼ 1000 receptors. For typical cell surface of
about 10 µm2 and a perivitelline layer of 0.5 µm, this correspond
to a receptor concentration of R = 0.3µM .

– Threshold for cell-fate determination. We assume that the
amnioserosa differentiation threshold corresponds to ∼ 10% occu-
pied receptors. From Eq. 3 in Box 1, such a threshold is realized

at the position x = l1/3 when
l2b
l21

=
2Ds/l21

kb
= 0.005µM , which leads

to a binding rate of Sog to Scw, kb = 2µM−1sec−1.

• Production rates. Sog production rates in the reference system cor-
respond to ∼ 50 molecules/cell/sec.

6



2 Extendening the simple model

2.1 Analysis of the simplified system (Box 1)

The set of equations analysed in Box 1 of the paper includes the interaction
between Scw, Sog and Tld and describes the system’s kinetics in the dorsal
region:

∂s

∂t
= Ds∇2s− kbssc (2)

∂c

∂t
= Dc∇2c + kbssc − λTc (3)

∂sc

∂t
= −kbssc + λTc. (4)

The steady state solution is derived by setting the LHS of the above
equations to zero, and is defined by the following three equations:

Ds∇2s = kbssc (5)

Dc∇2c = λTc− kbssc (6)

kbssc = λTc. (7)

Substituting Eq. 4 into Eqs 3 and 2, we obtain:

Ds∇2s = λTc (8)

Dc∇2c = 0 (9)

sc =
λTc

kbs
. (10)

The general solution to Eq. 9 is given by:

c = c0 + σx. (11)

However, from the symmetry of the system we know that c(x) = c(−x),
implying that σ = 0. Thus, the complex level is uniform,
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c = c0. (12)

Substituting Eq. 10 into Eq. 8 we obtain:

Ds∇2λTc

kbsc

= λTc, (13)

since the complex is uniform (Eq. 12), we can divide both sides of the above
equation by λTc to obtain the effective Scw diffusion equation (Eq. 1 in Box
1):

∇2s−1
c =

kb

Ds

≡ 2l−2
b . (14)

Eq. 14 is solved by straightforward integration. Substituting the above
results into Eqs. 8, we obtain:

c = c0 (15)

s =
λTc0

2Ds

(x2 + ε2) (16)

sc =
l2b

x2 + ε2
. (17)

The kinetics outside the dorsal region defines the boundary conditions (see
section 3). In this analysis we denote the value of Sog flux at the boundary of
the dorsal region by s(x = ±l1) = s0 and the average level of Scw (averaged
around the full circumference of the embryo, L) by sc. The values of c0 and
ε are determined by these boundary conditions:

c0 =
2Ds

λT

s0

l21 + ε2
(18)

(similarly, we can use constant Sog flux, ηs, boundary condition and find

c0 = ηs/l1
λT

, for further discussion see section 3).
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sc = c0 +
1

L

l1∫
−l1

scdx. (19)

Here we have assumed that sc vanishes outside of the dorsal region. This
assumption is not essential, as we show in section 3.3. Substituting the
solution for sc (Eq. 17) into Eq. 19:

sc = c0 +
1

L

l1∫
−l1

l2b
x2 + ε2

dx ≈ c0 + L−1πl2b
ε

, (20)

where we have used the approximation
l1∫

−l1

dx
x2+ε2 ' πε−1. This approximation

is valid for ε � l1. Under these conditions, the value of ε is given by:

ε =
πl2b

sc − c0

L−1. (21)

Thus, the approximation ε � l1 is indeed valid for large enough sc. For
positions that are far enough from the dorsal midline, x � ε , we find that
the level of Scw is given by its robust value (Eq. 3 in box 1):

sc =
l2b
x2

x � ε. (22)

We find Scw profile is robust to the concentrations of Sog, Scw and
Tld. The only condition for robustness is that ε remains considerably small
compared to the length of the dorsal domain, l1; ε � l1, under perturbations.
This will be true if:

sc − c0 �
l2b
l1

. (23)

Since the complex level, c0, depends on s0 and T , we further demand that
its value will be negligible compared to the averaged Scw level, obtaining the
robustness condition:

9



sc � c0 =
2Ds

λT

s0

(1 + ε2)
≈ 2s0

λT
Ds. (24)

The first robustness condition (Eq. 23) can then be written as:

sc �
l2b
l1

. (25)

Eqs. 24 and 25 are the system’s robustness conditions (see discussion on
section 4).

2.2 Binding of Scw to Sax

The model simulated in the paper (Fig. 3) considers explicitly the binding
of Scw to its receptor Sax (r). The output in this case is the steady state
concentration of receptor-bound Scw, {rsc}. We assume that Sog can bind
Scw even when the latter is bound to its receptor. Robustness to the level
of receptors is crucially dependent on this assumption. In the dorsal region,
the model is defined by the following set of equations:

∂s

∂t
= Ds∇2s− kbssc − kbrs{rsc} (26)

∂c

∂t
= Dc∇2c + kbssc + kbrs{rsc} − λTc (27)

∂sc

∂t
= −kbssc − krscr + λTc (28)

∂{r1sc}
∂t

= −kbrs{rsc}+ krscr (29)

rtot = r + {rsc}, (30)

where rtot denotes the total concentration of receptors (which is assumed to
be constant and uniform). Adding Eqs. 28, 29 and defining effective Scw
concentration Σc:

kbΣc = kbsc + kbr{rsc}, (31)
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we find that at steady state, the system is reduced to the simple system’s set
of equations, Eqs. 5-7 above:

0 = Ds∇2s− kbsΣc (32)

0 = Dc∇2c + kbsΣc − λTc (33)

0 = −kbsΣc + λTc. (34)

The steady state profile is given by:

Σc =
l2b

x2 + ε2
. (35)

The effective Scw concentration will reach a robust profile in most of

the dorsal region, Σc =
l2b
x2 , under the robustness condition ε � l1. The

output of the system, however, is the concentration of receptor-bound Scw,
which determines the activation level of the BMP pathway. The relative
contributions of receptor-bound and free Scw are determined by the steady
state of Eqs. 29,30:

rsc =
k−r + kbrs

kr

{rsc} (36)

r + {rsc} = rtot, (37)

from which we obtain:

sc =
k−r + kbrs

kr

{rsc}
rtot − {rsc}

. (38)

For krr
tot � k−r, kbrs most Scw will be bound to receptors, with free Scw

starting to accumulate only in the region where the receptors are saturated.
Using Eq. 38, and the definition of Σc, we find that when the robustness
conditions (Eq. 24, 25 above) are satisfied, the distribution of receptor-bound
Scw in the dorsal region is given by the robust profile:

{rsc} '

{
l2b

x2+ε2

l2br

x2 < rtot

rtot l2br

x2 > rtot

}
, (39)

where l2br = 2Ds/kbr depends only on fixed parameters and not on the con-
centration or production rates of Sog, Scw, Tld or the receptor.
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2.3 Including Dpp/Tsg

The above analysis focuses on the formation of the Scw gradient while ne-
glecting the affects of Dpp, the second activating ligand. In this section we
extend the model to include the interaction of Dpp with Sog and Tsg. Inter-
estingly, we find that a direct interaction between Dpp and Sog renders the
system non-robust to Scw levels. This is shown in detail in section 7.2 below.
Robustness is retained, however, when the experimentally observed require-
ment for Tsg in mediating the Dpp-Sog interaction is considered. Specifically,
we assume that free Sog binds Scw but does not bind Dpp. Sog, however,
binds also Tsg, and the complex Sog-Tsg may then bind Dpp, but not Scw.

We find that both activation gradients (Dpp and Scw) are established
independently through the shuttling mechanism described in Box 1. Tsg is
crucial for decoupling the two processes; thus, while Sog is responsible for
shuttling Scw, Dpp is being shuttled by the complex [Sog-Tsg]. This ’division
of labor’ prevents local competition between Scw and Dpp. Globally, the two
ligands still compete for Sog. However, since the activation profile is robust
to levels of the shuttling molecule (See above section 2.1), the ratio between
free Sog and Sog-Tsg does not affect patterning. The extended model is
defined by the following set of equations:

∂s

∂t
= Ds∇2s− k

(1)
b ssc − αtsgs (40)

∂c1

∂t
= Dc1∇2c1 + k

(1)
b ssc − λ1Tc1 (41)

∂sc

∂t
= −k

(1)
b ssc + λ1Tc1 (42)

∂tsg
∂t

= DTsg∇2tsg − αtsgs + λ2Tc2 (43)

∂s2

∂t
= Ds2∇2s2 − k

(2)
b s2dp + αtsgs (44)

∂c2

∂t
= Dc2∇2c2 + k

(2)
b s2dp − λ2Tc2 (45)

∂dp

∂t
= −k

(2)
b s2dp + λ2Tc2. (46)

Thus, the formation of the Dpp gradient proceeds through the mechanism
described in Box 1 and section 2.1 above. The shuttling molecule here is the
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Sog-Tsg complex, s2. Note that the term αTsgs functions as the effective
source for s2. At steady state Tsg is approximately uniform:

Tsg(x) ' Tsg. (47)

so that the s2 source follows the Sog profile, with ηs2 = αTsgs. However,
since Sog profile vanishes near the dorsal midline (x = 0), the expression for
Dpp profile is essentially the same as that of Scw (Eq. 17 ):

dpp =
2Ds/k

(2)
b

x2 + ε2
. (48)

This profile will be robust to Sog,Tld and Tsg, when the second robustness
condition applies (Eq. 25):

c0
2 '

ηs2

λ2T
∝

Tsgηs

T
� dpp. (49)

Experimentally, it was found that the system is not robust to the levels
of Dpp (e.g. Fig. 1d in the paper). This will be the case when the Dpp levels
are not sufficient to satisfy the second robustness conditions (Eq. 24),

εdpp ≈ l1 =⇒ dpp ≈ l2b(2)/l
2
1 ≡

2Ds

k
(2)
b

. (50)

2.3.1 Reaching the full set of equations

To get the full set of equations, 1a-1k, used in the numerical simulation for
the system we incorporate the assumption of ligand-receptor reactions intro-
duced in section 2.2 (equations 28-30) into the set of equations for Dpp/Scw
patterning (equations 40-46 above).

3 Boundary conditions

3.1 Sog profile outside the dorsal region

The equations describing the kinetics of the system outside the dorsal region
are different from those in the dorsal region in two aspects. First, Tld is
not expressed outside the dorsal region and does not diffuse, so Sog is not
cleaved. Second, Sog is being produced in most of this region. Using the
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simple model for Scw, Sog and Tld we find the steady-state equations in the
neural ectoderm to be:

0 = Ds∇2s− kbssc + ηs (51)

0 = Dc∇2c + kbssc (52)

0 = −kbssc. (53)

Eq. 53 implies that sc = 0 in this region. Eq. 52 implies that the complex

Scw-Sog is uniform in this region, and from continuity consideration its value
is the same as in the dorsal region, c = c0. Eq. 51 then turns into:

Ds∇2s + ηs = 0, (54)

which has a solution:

s = smax −
ηs

2Ds

(x− x0)
2. (55)

In the mesoderm there is no Sog production or Tld cleavage so the steady
state equation is ∇2s = 0 which results in a uniform concentration s =
smeso. From continuity of the Sog concentration and flux between the neural
ectoderm and the mesoderm we deduce that smax = smeso and x0 = l1 + l2
(which is the boundary between the neural ectoderm and the mesoderm).
From continuity consideration of Sog on the boundary between the neural
ectoderm and the dorsal region we find that smax = s0 + ηs

2Ds
l22 ≈

ηs

2Ds
(l21 + l22),

where s0 = ηs

2Ds
(l21 + ε2) is the value of Sog on the dorsal region boundary.

3.2 Sog flux conservation

We can deduce the level of complex easily from consideration of total Sog
flux conservation. The produced Sog flux is just:

Fin = ηsl2. (56)

The degraded Sog flux level is:

Fout =

∫ l1

0

λTcdx. (57)
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In steady state, the net fluxes should be equal:

ηsl2 =

∫ l1

0

λTcdx = λTc0l1. (58)

The complex level c0 is:

c0 =
ηs

λT

l2
l1

. (59)

Note that the system will achieved steady state only when enough Scw is
available (see section 4 for further details):

s̄c > c0 =
ηs

λT

l2
l1

. (60)

3.3 Ubiquitous expression of Tld

To assess the robustness to excess levels of Tld, we over-expressed Tld using
a maternal Gal4 driver. It is important to note this experiment had affected
both the concentration of Tld as well as its expression domain. While in
wild-type embryos Tld expression is restricted to the dorsal domain, the Mat-
Gal4 driver leads to uniform expression in all cells. We find that patterning
is robust to this over-expression, indicating that the Tld restricted expression
to the dorsal domain is not required for patterning.

In this section we extend the mathematical analysis of the model to ac-
count for uniform Tld distribution, and demonstrate that it does not alter the
robustness of the system. Surprisingly, we show that Scw will still accumu-
late preferentially in the dorsal region rather then being distributed between
the dorsal and the ventral regions.

We define the three different expression regions of the embryo on a circular
axis; The dorsal region (0 < |x| < l1), the neural ectoderm(l1 < |x| < l1 + l2)
and the mesoderm (l1 + l2 < |x| < l1 + l2 + l3 = L/2). The steady state
equations for these regions in case of ubiquitous Tld expression are:
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For the dorsal region and the mesoderm:

0 = Ds∇2s− kbssc (61)

0 = Dc∇2c + kbssc − λTc (62)

0 = −kbssc + λTc. (63)

For the neural ectoderm:

0 = Ds∇2s− kbssc + ηs (64)

0 = Dc∇2c + kbssc − λTc (65)

0 = −kbssc + λTc. (66)

Solving these we find for the three regions:

For the dorsal region (x = 0 at the dorsal midline):

c = c0 (67)

s =
λTc0

2Ds

(x2 + ε2
d) (68)

sc =
l2b

x2 + ε2
d

. (69)

For the neural ectoderm:

c = c0 (70)

s = smax −
ηs − λTc0

2Ds

(x− x0)
2 (71)

sc =
λTc0

kbs
. (72)

For the mesoderm (x = L/2 is the mesoderm center):

c = c0 (73)

s =
λTc0

2Ds

((
L

2
− x)2) + ε2

m) (74)

sc =
l2b

(L
2
− x)2 + ε2

m

, (75)
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where l2b = 2Ds/kb and the parameters smax, x0, εm, εd and c0 are inte-
gration coefficients. These parameters are found by using the continuity
conditions of Sog profile and its derivative at the regions boundaries:

λTc0

Ds

l1 = −ηs − λTc0

Ds

(l1 − x0) (76)

λTc0

Ds

l3 = −ηs − λTc0

Ds

(l1 + l2 − x0) (77)

λTc0

2Ds

(l21 + ε2
d) = smax −

ηs − λTc0

2Ds

(l1 − x0)
2 (78)

λTc0

2Ds

(l23 + ε2
m) = smax −

ηs − λTc0

2Ds

(l1 + l2 − x0)
2. (79)

Using Scw flux conservation (see section 3.2, but with slight difference that
Tld degrades the complex everywhere this time) we find:

c0 =
ηs

λT

l2
L

. (80)

dividing Eqs. 76,77 we find:

x0 =
L

2

x1

x1 + x3

. (81)

Substructing Eq. 78 from 79 and using Eqs. 80,81 we obtain a relation
between the two ε’s:

ε2
d − ε2

m =
1

2
L(l3 − l1). (82)

The last equation implies that εd < εm, since the mesoderm is smaller than
the dorsal region (l3 < l1).To account for increasing amounts of Scw it
must be that, εd −→ 0, but then εm converges to a positive value εm −→
(L(l1 − l3))

1/2 > 0 . This means that the amount of Scw at the mesoderm
is bounded. Scw distribution in the mesoderm will not exhibit the limit-
ing profile, but reach a positive and relativly shallow peak (with εm ∼ l3).
In the dorsal region, however, Scw distribution is not affected by the over-
expression of Tld. The model thus accounts for the observed robustness to
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uniform over-expression of Tld. We find that although ubiquitos expression
of Tld renders the system a dorsal-ventral symmetry in terms of expression
patterns of all components, the dorsal-ventral symmetry is broken due to the
difference in size of the two regions. The larger region exhibit the limiting
profile, while the smaller doesn’t.

4 Robustness conditions

Robustness of Scw concentration at xth , sc =
l2b

x2+ε2 , is maintained as long
as changes in the levels of Scw, Sog or Tld will not change the relation:

ε =
πl2b

sc − c0

L−1 � xth ∼ l1. (83)

This condition will be achieved if the parameters follow two conditions:

sc �
πl2b
Lxth

≈ l2b
l21

(84)

sc � c0 ∝
ηs

T
. (85)

Without the second condition, any increase in the level of c0 will lead to the
immposible situation c0 > s̄c (i.e. ε < 0) and to a loss of steady state
(see below). We note that the first condition is relevant mostly for the
robustness of the system to variations in Scw concentration, while the second
is relevant mostly for robustness of the system to variations in either Sog
or Tld concentration. For example, in the case of Dpp (see section 2.3),
the system is robust to Sog and Tld but not Dpp, because ε is of order
of the dorsal region dimensions so any change of Dpp concentration will
considerably change Scw profile.On the other hand, the second inequality
holds, so changes in the level of c0 will not change much the level of ε.

We stress here the fact that the system losses its steady state solution,
Eqs. 16-17, when the anticipated steady state level of the complex (either of
Eqs. 59 or 18) is bigger than the total Scw concntration, c0 > s̄c. In such a
case, Sog will continue to accumulate indefinitely and subsequently all Scw
will be bounded to Sog. Activation of the system will drop to zero. This
situation is similar to a case of tld mutant phenotype.
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4.1 Normalized system of equations

Robust patterning is achieved for a wide range of parameter values and in
different regions of parameter space. For a better understanding of the ro-
bustness condition, it is useful to consider the dimensionless form of Eqs.
2-4. To do that, we consider the following characteristic dimensions:

Dimension Units Physical meaning
Length l1 The dorsal region half-length
Time l21/Ds = τdiff Sog diffusion time across the dorsal region

Concentration 2/(kbτdiff ) = l2b/l
2
1

Scw concentration which is enough
to capture Sog along the length

of the dorsal region
Using these dimensions, the system’s parameters are reduced to four nor-

malized parameters:

s∗0 =
s0

l2b/l
2
1

, λ∗ = λTτdiff ≡
τdiff

τtld

, d =
Dc

Ds

, s̄∗c =
s̄c

l2b/l
2
1

. (86)

The parameters of the reference system correspond to characteristic dimen-
sion, l1 = 125 µm, τdiff ≈ 3 min, l2b/l

2
1 ≈ 5nM . The normalized parameters

are; s∗0 ' 3600, λ∗ ' 180, d = 1, s̄∗c ' 20.
Using the new variables and omitting the asterisk sign, Eqs. 2-4 and the

boundary conditions can be written as:

∂s

∂t
= ∇2s− 2ssc ; s(x = 1) = s0 (87)

∂c

∂t
= d∇2c + 2ssc − λc (88)

∂sc

∂t
= −2ssc + λc

∫
(sc + c) dx = sc. (89)

The solution for the normalized equations is (for ε � 1):

c = c0 ≈ 2
s0

λ
(90)

s = 1
2
λc0(x

2 + ε2) (91)

sc =
1

x2 + ε2
; ε ∼=

π

2
s̄−1

c (92)
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The robustness conditions are:

sc � 1 (93)

sc � c0 (94)

5 Kinetic behaviour

This section describes the kinetic process leading to the formation of the
Scw and Dpp gradient. As described in the paper, the shuttling of Scw
by the diffusible Sog-Scw complex into the dorsal-most region is the main
mechanism underlying Scw gradient formation. The figures below illustrate
this process. Fig. 1 presents the evolution of Scw and Dpp profiles for a time
series. Although the profile near the midline is still developing after 60 min.,
the profile at the threshold (x=0.5) reaches a steady state much earlier, As
can be seen in Fig. 2.

In section 2.1 we show that the steady state profile of Scw is highly robust
to changes in the parameters. What we find analytically and numerically is
that the dynamics of the system varies considerably with the parameters.
Below we estimate analytically that the steady-state time is of the order:

tR ≈
scλT

ηsDc

l21 =
sc

c0

τdiff > τdiff , (95)

here, τdiff is the diffusion time of the Sog-Scw complex across the dorsal
region. Fig. 3 compares the dynamic behaviour of different parameters. As
can be seen, in the Sog hetrozygous case it takes almost twice the time to
reach staedy state at x = 0.5, than in the wild-type case. In the case of Tld
or Scw it doesn’t take half the time since the production time scale (taken
to be 10 minutes in our simulations) dictates a minimum patterning time.

5.1 Analytic approximation of the shuttling time.

In this section we provide an analytic estimate for the shuttling time of the
ligand to the dorsal midline. Based on simulation results we have looked
for a wavelike solution for the system Eqs. 2-4. Specifically, we look for a
solution of the form:
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Figure 1: The profile of Scw and Dpp for the indicated times (in minutes).

21



Figure 2: The concentration level of Scw at x = 0.5 (full line) and x = 0
(dashed line) as a function of time. The break in the full line is at the time
when production of Scw is terminated.

s(x, t) = t−mŝ(u)θ(u) (96)

c(x, t) = t−mĉ(u)θ(u) u = gtm − x (97)

sc(x, t) = ŝc(u)θ(u), (98)

where g and m define the wave ”velocity”. The origin, x = 0, is defined here
at the boundary between the dorsal and neural ectoderm, where Sog is being
produced. We are looking for a finite solution in the region gtm ≥ u ≥ 0
(gtm ≥ x ≥ 0). Substituting the functional forms, Eqs. 96-98, into Eqs. 2-4,
we find:

−mt−m−1ŝ(u) + mgt−1 dŝ

du
= t−m(Ds∇2ŝ− kbŝŝc) (99)

−mt−m−1ĉ(u) + mgt−1 dĉ

du
= t−m(Dc∇2ĉ + kbŝŝc − λT ĉ)mgtm−1 (100)

mgtm−1dŝc

du
= t−m(−kbŝŝc + λT ĉ). (101)
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Figure 3: (a) Scw profiles at different times for the reference system (blue),
Tld overexpression (dark red) and Sog (black), Scw (green) and Tld (red)
hetrozygous systems.
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At long times, t � 1 we can ignore the t−1, t−−m−1 terms obtaining the quasi
steady state equation:

0 = Ds∇2ŝ− kbŝŝc (102)

0 = Dc∇2ĉ + kbŝŝc − λT ĉ (103)

mg
∂ŝc

∂u
t2m−1 = −kbŝŝc + λT ĉ. (104)

If m < 0.5 (or for large enough u when m = 0.5), we can neglect the term
g
2

∂ŝc

∂u
t2m−1 on the LHS of Eq. 104. In this region, Eqs. 102-103 are reduced

to the steady state system Eqs. 5-7. The solution in this region is thus given
by Eqs. 15-17:

s =
ηs

2Ds

(u2 + ε2) (105)

c = c0 =
ηs

λTg
(106)

sc =
l2b

u2 + ε2
; ε ' π/2

stot
c

. (107)

As can be seen from the solution for the ligand, the ligand profile is
very steep near the edge where most of it is concentrated in the limited
region of size ε. Further away the profile is robust to the specific amount
of the ligand. The wave velocity g and the appropriate power of time m,
are found by solving the equations at the boundary of the wave, u ∼ 0. An
approximated solution can be found by noting that for ε −→ 0, sc behaves
as a dirac δ function:

ĉ(u) =
ηs

λTg
θ(u) (108)

ŝc(u) = stot
c (t)δ(u). (109)

Adding equations 103,104 we obtain:

mg
∂ŝc

∂u
t2m−1 = Dc∇2ĉ, (110)

and by using the above approximation:

mgstot
c (t)t2m−1δ′(x) = Dc

ηs

λTg
δ′(x). (111)
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We distinguish here between two cases. In the first, all ligand is concen-
trated on the boundary of the dorsal region and there is no ligand on the
other side of the wave. In this case, total ligand amount is conserved as the
wave advances, stot

c (t) = stot
c . Eq. 111 will be valid if:

g2 = 2
Dcηs

stot
c λT

; m =
1

2
. (112)

On the second case, the ligand is distributed evenly along the region and
the wave advances in a region with constant concentration of the ligand. In
this case the amount of ligand is proportional to the distance passed by the

wave, gtm; stot
c (t) = stot

c

l1
gtm, where l1 is the length of the region. Under these

conditions the appropriate values for g and m are:

g3 =
3ηsl1Dc

stot
c λT

; m =
1

3
. (113)

The system will reach steady state only when the peak has reached the
midline (x = l1), this will happen after a time tR in the first case:

tR ≈
(

l1
g

)2

=
stot

c λT

2Dcηs

l21 =
1

2

stot
c

c0

τdiff , (114)

and a time t′R on the second case:

t′R ≈
(

l1
g

)3

=
stot

c λT

3Dcηs

l21 =
1

3

stot
c

c0

τdiff =
2

3
tR, (115)

where we have defined τdiff =
l21
Dc

to be the characteristic diffusion time
of the complex. The second robustness condition stot

c � c0 implies that the
more robust the system, the longer it takes to reach the steady state. For the
reference parameters used in the simulations, we find that tR ' 5Tdiff which
is in good agreement with the numerical results. Simulation results confirm
the scaling laws, and the wave velocity given by Eqs. 114,115. The validity
of the above approximation is true for cases where a step like wave solution
exists. This situation is typical for relatively high values of λ and η such
that the degradation length scale is smaller than the system’s length scale,

l1; ld ≡
√

Ds

λT
< l1 lower levels will lead to longer times. This approximation
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is good for the chosen reference system. Since Scw is produced both within
and outside of the dorsal region, the dynamical behavior of the system is a
combination of the two conditions and the dependence of g on parameters is
an intermediate dependence as well (Eqs. 112,113).

For small enough α we find that tα(x) ' tR. The above approximation is
not good for regions where x ' ε where patterning is much slower.

6 Linear deviations from precise robustness

6.1 Scw diffusion

In box 1 we assumed that Scw couldn’t diffuse. Numerically we find that
if Scw diffusion; Dsc, is small compared Ds, the deviations from precise
robustness are small, as illustrated in figure 4a,b,c below. Defining D0

sc 5%

to be the diffusion rate for which the threshold moves 5% outward of its
location when Dsc = 0, we find that for the reference system used in the paper

D0
sc 5% ≈ 7 · 10−4

(
Dc

D0
c

)0.5 (
ηs

η0
s

)1.15 (
T
T 0

)−2/3
(

sc

s0
c

)−1.3

Ds. The dependence of

D0
sc 5%on the system’s parameters is shown in figure 4d.

6.2 Scw production and degradation

The limited production or degradation of Scw does not alter the robust-
ness as long as the shuttling mechanism is fast enough compared to the
production or degradation time scales. In figure 5 we examine a model
in which Scw is constantly being produced and degraded at rates ηsc and
αsc, respectively. We assume that a constant steady state Scw amount
sc = ηsc/αsc is maintained. Defining α0

sc 5% as the degradation rate for which
the threshold position is moved 5% outward of its location when αsc = 0,
we find that below a characteristic degradation rate (or production rate),
robustness is retained. We find the characteristic degradation rate to be

α0
sc 5% ≈ 4 · 10−3

(
Dc

D0
c

)0.8 (
ηs

η0
s

)1 (
T
T 0

)−0.8
(

sc

s0
c

)−1

τ−1
diff .

6.3 Free Sog degradation

A linear (or other form of) degradation of free Sog change the steady state
solution in two ways; Inside the dorsal region it sharpen the profiles of Sog
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Figure 4: (a) The Scw concentration profile for Dsc = 0 and for 4 orders
of magnitude of Dsc (the value of the diffusion constant, are given as the
ratio Dsc/Ds). (b) Position of the threshold as a function of Dsc. D0

sc 5% is
indicated. (c) The value of D0

sc 5% as a function of the parameters Sog (black),
Tld (red), Scw (green) and the complex diffusion constant (cyan) (d) The
change in robustness of the system for moderate values of Dsc. Robustness
is measured as the change of position of the threshold (in percents) across an
order of magnitude around the reference system. Parameters are indicated
with same colors as in c.
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Figure 5: (a) The Scw concentration profile for 3 different values of αsc

(measured in units of 1/τdiff (b) position of the threshold as a function of αsc

in units of 1/τdiff , where τdiff is the diffusion time acrros the dorsal region.
α0

sc 5% (defined as D0
sc 5%) is indicated. (c) The value of α0

sc 5% as a function
of the four parameters indicated in the figure.
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and Scw, while outside of the dorsal region it serves to reduce the effective
incoming Sog flux.

If we assume Sog is degrading linearly with a constant γ, The steady-state
equation for Sog inside the dorsal region, (Eq. 8), turns into:

Ds∇2s− λTc0 − γs = 0. (116)

The contribution of the linear degradation term will be negligible if λTc0 �
γs for all s:

λTc0 � γsmax ≈ γ
λTc0

2Ds

l21. (117)

This implies that the linear degradation time scale should be much slower
than the diffusion time scale (or that the linear degradation length scale
should be larger than the system’s length scale):

τdeg = γ−1 � l21
Ds

= τdiff ⇔ Ldeg =

√
Ds

γ
� l1, (118)

where we used Eqs. 16 to determine the maximum value of Sog (at the dorsal
boundary). In such a case, the profiles will retain their form and robustness.
It can be shown that the shape of Scw profile will be altered for higher values
of γ, but the robustness of the profile to Scw, Tld or Sog concentrations will
be retained. On the other hand, the profile will not be robust to changes in
the value of γ. In figure 6a,d we show simulations results of the the simple
model including the region outside of the dorsal ectoderm. As can be seen,
the threshold position and its robustness are not altered considerbly even at
rather high degradation rates.

The other effect of free Sog degradation is to change the boundary con-
ditions on Sog flux by reducing the amount of Sog available for the shuttling
process outside the dorsal region. We define the Sog flux, ηeff , as the flux of
Sog degraded through the complex Sog-Scw:

ηeff = λTc0. (119)

For high values of γ we find that most of Sog flux can be degraded by linear
degradation (i.e. ηeff/ηs � 1), while the system retains its robust profile
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(compare Figs. 6a and 6c). The increase of γ elevates considerably the
time to reach steady state (see 6b). This is mostly due to the reduction in
effective Sog flux, if the effective flux is being kept constant as γ increases
(by increasing the total flux), the time is kept almost constnat (not shown).

The full model (Eqs. 1a-k) includes a linear degradation term for Sog - Its
binding process to Tsg. We can deduce from the above discussion that the
flux of Sog degraded by interaction with Tsg/Dpp can be on the same order
of magnitude as the flux of Sog degraded by interaction with Scw without
considerably altering the shapes and robustness of the profile of Scw. For
the chosen reference system the ratio of the fluxes is about 1:1. Note that
in a case where ηeff/ηs � 1, a dpp homozygous mutant embryo might loose
the Sog profile since the Scw system will be overwhelmed by Sog flux (see
section 4).

7 Non-Robust mechanisms

7.1 Non-robustness of a simple inhibitory model

Here we give an analytic solution for an example of a family of models in
which Sog behaves mostly as an inhibtor of the Activation and not as a
shuttling agent. We Assume that Tld degrades free Sog and that Scw can
bind as well as dissociate from Sog. We also assume that neither Scw, nor
the complex can diffuse. This system is described by the following equations:

∂s

∂t
= Ds∇2s− kbssc + k−bc− λTs (120)

∂c

∂t
= kbssc − k−bc (121)

stot
c = sc + c. (122)

Using Eqs. 121, 122 we find the binding formula for Scw and the complex:

sc =
k−b/kb

s + k−b/kb

stot
c ; c =

s

s + k−b/kb

stot
c . (123)

Adding Eqs. 120, 122 we get:

∂s

∂t
= Ds∇2s− λTs, (124)
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Figure 6: Response of the system as a function of the linear degradation
rate of Sog. (a) The threshold position.The threshold is defined to give
XTh = 0.5l1 for γ = 0. (b) The time to reach steady state. (c) The effective
Sog rate. (d) Robustness of the system to Sog (black), Scw (green) and Tld
(red).
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with the solution:

s ' s0 cosh(x/

√
Ds

λT
). (125)

The expression for Scw is:

sc =
k−b/kb

s0 cosh(x/
√

Ds

λT
) + k−b/kb

stot
c . (126)

As can be clearly seen, sc(x) is linearly dependent on stot
c and s0, and has a

length scale which is defined by Tld. This expression is highly non-robust.

7.2 Direct competition between Scw and Dpp on Sog
will lead to a non-robust mechanism

In this section we show that neglecting Tsg contribution by assuming a direct
interaction between Dpp and Sog/Tld in an identical fashion to Scw’s inter-
action will lead to a non-robust model. We can write the following equations
to describe the system:

∂s

∂t
= Ds∇2s− k

(1)
b ssc − k

(2)
b sdp (127)

∂c1

∂t
= Dc1∇2c1 + k

(1)
b ssc − λ1Tc1 (128)

∂sc

∂t
= −k

(1)
b ssc + λ1Tc1 (129)

∂c2

∂t
= Dc2∇2c2 + k

(2)
b sdp − λ2Tc2 (130)

∂dp

∂t
= −k

(2)
b sdp + λ2Tc2 (131)
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In steady state we find (in a similar fashion to the analysis above) that:

c1 = c0
1; c2 = c0

2 (132)

s =
1

2
(λ1Tc0

1 + λ2Tc0
2)(x

2 + ε2) (133)

sc = α · 2Ds/k
(1)
b

x2 + ε2
; α =

λ1Tc0
1

(λ1Tc0
1 + λ2Tc0

2)
(134)

dp = (1− α) · 2Ds/k
(2)
b

x2 + ε2
(135)

The conservation condition on Scw and Dpp implies that:

sc =
2Ds

k
(1)
b

α

∫
dx

x2 + ε2
(136)

dp =
2Ds

k
(2)
b

(1− α)

∫
dx

x2 + ε2
. (137)

Dividing the two conditions we get:

α

1− α
=

k
(1)
b sc

k
(2)
b dp

. (138)

The competition term α, will give a linear ratio term in the expression
for one of the components:

sc =
2Ds/k

(1)
b

x2 + ε2
(1 +

k
(2)
b dp

k
(1)
b sc

)−1; dp =
2Ds/k

(2)
b

x2 + ε2
(1 +

k
(1)
b sc

k
(2)
b dp

)−1 (139)

This will lead to non-robustness of at least one of the profiles to Scw
concentration.
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