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Supplementary tables:
Table S1. Classification of dyes based on textile usage, chemical constitution and solubility (Broadbent 2001; Samsami et al. 2020)
	Classification
	Types
	Refs.

	



Based textile usage
	· Azoic dyes 
· Acid dyes 
· Basic dyes 
· Direct dyes
· Disperse dyes
· Mordant dyes
· Pigments
· Reactive dyes
· Sulfur dyes
· Vat dyes
	(Broadbent 2001)

	




Based on chemical constitution
	· Azo dyes
· Anthraquinone dyes
· Heterocyclic dyes
· Indigoid dyes
· Nitro dyes
· Phthalocyanine dyes
· Polymethine dyes
· Stilbene dyes
· Sulfur dyes
· Triphenylmethane dyes
	

	


Based on solubility
	
Soluble
	
Anionic
	· Acid dyes 
· Direct dyes
· Mordant dyes
· Reactive dyes
	(Samsami et al. 2020)

	
	
	Cationic
	· Basic dyes
	

	
	
Insoluble
	· Azo dyes
· Disperse dyes
· Mordant dyes
· Sulfur dyes
· Vat dyes
	



Table S2. The industrial dyes according to their application class, characteristics and application with structure.
	Class of dye
	Structure
	Characteristics and application

	Acid
	[image: C.I.Acid Red 35,C.I.18065,CAS 6441-93-6,523.45,C19H15N3Na2O8S2,Acid Red 3B,Acid Red 6B,Acid pink 3B,Acid Brilliant Red 3BS]Acid Red 35
	Characteristic: The size of the dye molecule has a direct relationship with color fastness (Walters, A., Santillo, D., & Johnston 2005)

	
	
	Applications: Acid dyes are used on a variety of textile substrates: wool, silk, paper, inks, leader, polyamide, cosmetics, ink-jet printing etc. 

	Reactive
	[image: https://www.researchgate.net/profile/Ramiro-Escalera/publication/318283587/figure/fig2/AS:513698172030976@1499486597026/Chemical-structure-of-the-dye-Reactive-blue-19_W640.jpg]Reactive Blue 19
	Characteristics:  Dyeing with reactive dye takes less time and is done at a lower temperature (above 60°) (Chiou and Li 2002; Pei et al. 2017). This dyes are now in powder, liquid, and print paste forms and are water soluble.

	
	
	Applications: For dyeing cellulose, protein, and polyamide fibers, reactive dyes are utilized (Mathur et al. 2012). 

	Disperse 
	[image: C.I.Disperse Blue 7,C.I.62500,CAS 3179-90-6,C18H18N2O6,358.35,Cibacet Turquoise G ]Disperse Blue 7
	Characteristics: Disperse dyes are comparatively low molecular weight (range; 400-600), slightly water soluble and substantive to hydrophobic fibers (Nylon & Polyester) (Ding et al. 2020).

	
	
	Applications: The only dyes that may be used to dye poly (ethylene terephthalate) are disperse dyes. Furthermore, cellulose acetate, nylon, and polyester fibers are dyed with disperse dyes.

	Direct
	[image: http://www.worlddyevariety.com/wp-content/uploads/2012/07/Direct-Orange-34.gif]Direct Orange 36
	Characteristic: Direct dyes are less expensive than indirect dyes (Zinatloo-Ajabshir et al. 2017).

	
	
	Applications: Cotton, viscose, paper, leather, and cellulose fibers are dyed with direct dyes.

	Basic
	[image: C.I.Basic Blue 6,C.I.51175,CAS 966-62-1,310.78,C18H15ClN2O,Meldola's Blue]CI Basic Blue 6
	Characteristics: The basic dyes are less expensive, not easily soluble in water but soluble in alcohol and methyted spirit (2015).

	
	
	Applications: Basic dyes are used in paper, inks and synthetic fibers. 

	Vat
	[image: C.I.Vat Blue 20,C.I.59800,CAS 116-71-2,456.49,C34H16O2,Vat Navy Blue BO,Cibanon Blue BOA-Ol]Vat Blue 20
	Characteristics: Vat dyes are water soluble, the reduced dyes has substantivity to cellulose, exhibit excellent wet and light fastness and after dyeing soluble dyes are oxidized with in the fabric to form insoluble again(Khatri et al. 2015). 

	
	
	Applications: Vat dyes are used in viscose, wool, cotton and cellulose. Besides, this dyes are used in superior quality shirting material, military uniforms, furnishing, toweling and denim. 

	Sulfur
	[image: CAS No.1327-73-7,Sulphur Green 3 Suppliers]Sulfur brilliant green, CI 53570
	Characteristics: Sulfur dyes are water insoluble, it needs solubilization for application, and this dyes are used in alkaline condition. Additionally, electrolyte can be injected to the dye to enable faster the dye exhaustion process, which is optimal for generating black and brown on textile materials at a temperature of 90°  (Chakraborty and Jaruhar 2014).

	
	
	Applications: Sulfur dyes are mainly applied on cotton, viscose and staple fibers (Nguyen and Juang 2013). 

	Azoic
	[image: Disperse Yellow 3 Dye content 30 % | 2832-40-8]Disperse Yellow 3
	Characteristics: Azoic dyes are water insoluble, They aren't dyes that have been pre-mixed. The color is generated in the fiber by two main components typically known as "Napthols" and "Bases". The dyed goods exhibit good to excellent light fastness and good washing fastness (Walters, A., Santillo, D., & Johnston 2005; Hassan and Carr 2018)
 

	
	
	Applications: Azoic dyes are used in textile fibers such as cellulose acetate, polyester, rayon and cotton. 

	Mordant
	[image: Mordant Black 17]Mordant Blue 17
	Characteristics: Many standard mordant dyes form stable complex on the Nano crystalline surface TiO2 (Millington et al. 2007), some types of textile substrates have a poor affinity for them. These dyes are also anticipating a reaction from their industrial applications (2009).

	
	
	Applications: Textile fibers such as silk, leather, and wool are dyed with mordant dyes.

	
	[image: Disperse Red 82]Disperse Red 82
	Characteristic: Disperse azo dyes have a lower water solubility (Vacchi et al. 2016).

	
	
	Applications: This dyes are used in polyester, polyamide and plastic.




Table S3. Chemical class distribution across major application ranges (%) (Suteu, Zaharia and Malutan, 2012; R Ananthashankar, 2013).
	Chemical class 
	Distribution between application ranges, (%)

	
	Acid 
	Basic 
	Direct
	Disperse
	Mordant
	Pigment
	Reactive 
	Solvent
	Vat

	Unmetallised azo
	21
	4
	30
	12
	11
	7
	9
	6
	-

	Metal complex
	64
	-
	11
	-
	-
	-
	13
	12
	-

	Thiazole
	-
	6
	94
	-
	-
	-
	-
	-
	-

	Stilbene
	-
	3
	97
	-
	-
	-
	-
	-
	-

	Anthraquinone
	14
	3
	-
	26
	2
	4
	5
	10
	36

	Indigoid
	2
	-
	-
	-
	-
	18
	-
	-
	80

	Quinophthalene
	30
	20
	-
	40
	-
	-
	10
	-
	-

	Aminoketone
	10
	-
	-
	40
	8
	-
	3
	8
	21

	Phtalocyanine
	15
	3
	8
	-
	4
	10
	42
	16
	2

	Formazan
	69
	-
	-
	-
	-
	-
	31
	-
	-

	Methine
	-
	70
	-
	24
	-
	2
	-
	4
	-

	Nitro, nitroso
	30
	3
	-
	48
	3
	4
	-
	12
	-

	Triarylmethane
	36
	21
	1
	1
	24
	4
	-
	13
	-

	Xanthene
	32
	16
	-
	-
	10
	2
	2
	38
	-

	Acridine
	-
	92
	-
	4
	-
	-
	-
	4
	-

	Azine
	40
	40
	-
	-
	-
	2
	-
	18
	-

	Oxazine
	-
	23
	16
	2
	39
	10
	10
	-
	-

	Thiazine
	-
	56
	-
	-
	10
	-
	-
	10
	24



Table S4. Different dye classes have varying rates of fixation on different textile substrates (Dos Santos, Cervantes and Van Lier, 2003; Scalbi, Tarantini and Mattioli, 2005; Avvannavar, Mani and Kumar, 2008; Mani, Chowdhary and Bharagava, 2019).
	Dye class
	Fiber type
	Fixation rate (%)
	Effluent rate (%)

	Acid
	Polyamide
	90-95
	5-10

	Azo
	Cellulose 
	90-95
	5-10

	Basic
	Acrylic
	90-100
	0-10

	Direct
	Cellulose
	75-95
	5-25

	Disperse
	Polyester
	95-100
	0-5

	Metal complex
	Wool
	95-98
	2-5

	Reactive
	Cellulose
	50-90
	10-50

	Sulfur
	Cellulose
	65-90
	10-35

	Dye-stuff 
	Cellulose
	85-95
	5-15

	Vat
	Cellulose
	80-95
	5-20



Table S5. A typical textile industry effluent in terms of physio-chemical characteristics
	Factor/ Parameter
	Reported value*
	References

	BOD
	237.2±32.1
	(Kaur et al. 2018; Tara et al. 2019; Hussain et al. 2019; Chandanshive et al. 2020)

	TDS
	8850±756
	(Khan and Malik 2014; Chandanshive et al. 2017; Kaur et al. 2018; Kadam et al. 2018)

	COD
	1268±121
	(Chandanshive et al. 2017; Kaur et al. 2018; Kadam et al. 2018; EL-Mekkawi et al. 2020)

	PH
	8.75±1.29
	(Hussain et al. 2019; Oktem et al. 2019)

	TSS
	253.2±43.5
	(Guadie et al. 2017; Tara et al. 2019; Hussain et al. 2019; EL-Mekkawi et al. 2020)

	TS
	5076±344
	(Tara et al. 2019; Hussain et al. 2019)

	EC
	7.1±1.72
	(Tara et al. 2019; Hussain et al. 2019)

	TOC
	222.2±53.3
	(Tara et al. 2019; Hussain et al. 2019; Ağtaş et al. 2021)

	Cl-
	51.6±16
	(Tomei et al. 2016; Guadie et al. 2017)

	Cr
	2.74±0.4
	(Chandanshive et al. 2017, 2020; Watharkar et al. 2018; Hubadillah et al. 2020)

	Pb
	0.35±0.3
	(Amare et al. 2017; Chandanshive et al. 2017, 2020; Hubadillah et al. 2020)

	AIk
	396±132
	(Guadie et al. 2017; Arcanjo et al. 2018)

	SO42-
	240.6±75.4
	(Arcanjo et al. 2018; Hussain et al. 2019)

	TN
	24.4±11.7
	(Guadie et al. 2017; Tara et al. 2019; Hussain et al. 2019; EL-Mekkawi et al. 2020)

	Phenol
	0.52±0.22
	(Tara et al. 2019; Hussain et al. 2019)

	As
	2.21±0.4
	(Chandanshive et al. 2017, 2020; Watharkar et al. 2018; Kadam et al. 2018)

	Zn
	0.37±0.37
	(Amare et al. 2017; Hubadillah et al. 2020)

	NO3-
	116.1±109
	(Arcanjo et al. 2018)

	Cu
	0.54±0.5
	(Amare et al. 2017; Hubadillah et al. 2020)

	PO43-
	12.4±3.2
	(Guadie et al. 2017; Tara et al. 2019; Hussain et al. 2019; EL-Mekkawi et al. 2020)

	Cd
	0.62±0.3
	(Tara et al. 2019; Hussain et al. 2019; Hubadillah et al. 2020; Chandanshive et al. 2020)


Note: All the values are means of triplicates (n = 3) ± SD. 
*Except pH, all the parameters are expressed in “mgL-1”, but the conductivity is expressed in “μmho/cm”. 











Supplementary figures:

Figure S1. Major sectors that discharge dyes into the environment. Reproduced with permission (Samsami et al. 2020). Copyright 2020, Elsevier.

Figure S2. International textile dyes market over the forecasted period of 2016–2023. Reproduced with permission (Samsami et al. 2020). Copyright 2020, Elsevier.
[image: C:\Users\HP\Documents\Image3.jpg]
Figure S3. Different wet processing steps in the textile industry and some pollutants propagated from these steps.
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Figure S4. Discharge colored dyes from textile industries.
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Figure S5. Sources and pathways of dyes in the eco-system (Dutta et al. 2021).
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Figure S6. Manufacturing processes in textile industry, wastewater discharge, negative impacts and several remedial techniques. Reproduced with permission (Kishor et al. 2021). Copyright 2021, Elsevier.
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Figure S7. Industrial dye effluent techniques (Hynes et al. 2020).
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Description automatically generated]Figure S8. Suggested mechanism for reduction of azo dyes by azo reductase. Reproduced with permission (Pearce et al. 2003). Copyright 2003, Elsevier.
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Figure S9. schematic illustration of coagulation-flocculation for wastewater treatment (B) (Choumane et al. 2017).

[image: Diagram

Description automatically generated]Figure S110. A proposed mechanism of dye de-colorization by immobilized laccase with the aid of the crystal structure of laccase from Thermus thermophilus HB27 (Morsy et al. 2020).
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Figure S113. Process in the removal of dyes using white rot fungi (Jebapriya and Gnanadoss 2013).
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Figure S124. The azo dye (AO7) degradation pathway by the oleaginous yeast consortium NYC-1 linked to biodiesel synthesis. (Ali et al. 2021).
[image: Diagram

Description automatically generated]
Figure S135. GC–MS chromatograms of: (a) raw wastewater, (b) treated by microbubble-ozonation, and (c) treated by macrobubble-ozonation. Reproduced with permission (Zheng et al. 2015). Copyright 2015, Elsevier.
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Figure S146. Broad overview and classification of different AOPs, influencing factors and published EEO-values of different AOPs sorted according to median values. Reproduced with permission (Miklos et al. 2018). Copyright 2018, Elsevier.
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Figure S157. Schematic diagram of the MF experimental apparatus. Reproduced with permission (Lu and Liu 2010). Copyright 2010, Elsevier.
[image: Diagram, schematic

Description automatically generated]
Figure S168. Operational modes of the pilot scale reverse osmosis process. (A) Batch (or concentrated) mode of operation, (B) Complete recycle mode of operation, (C) Continuous mode of operation. Reproduced with permission (Sahinkaya et al. 2019). Copyright 2019, Elsevier.
[bookmark: _Hlk92555749][image: Diagram

Description automatically generated]Figure S179. Types and benefits of different nanomaterials membrane bioreactor (NMs-MBR) technology and several publications are observed related to these NMs-MBR technology with their historical timeline. a. Examples of commonly used nanomaterials membrane bioreactor (NMs-MBR) technology (left to right) nanofibers membrane bioreactor (NFs-MBR), nanoparticles membrane bioreactor (NPs-MBR), nanotubes membrane bioreactor (NTs-MBR), nanocrystals membrane bioreactor (NCs-MBR), nanowires membrane bioreactor (NWs-MBR), nanosheets membrane bioreactor (NSs-MBR), and the advantages of using NMs-MBR technology are fouling control, high efficiency and sustainability. b. Diagram of the total number of publications related to different types of NMs-MBR technology. Until 3rd August 2020, which were collected from the web of science scientific database. c. Historical development of NMs-MBR technology for wastewater treatment. In 2005, Tae-Hyun Bae investigated the ability of TiO2-embedded nanocomposite membrane for  NPs-MBR , In 2009, Decostere Bjorge evaluated the electrospun  NFs-MBR , In 2014, Chuanqi Zhao prepared nanosheets membrane and tested for  NSs-MBR , In 2015, Zahra Rahimi applied  NTs-MBR , In 2018, Jinling Lv synthesized nanocrystal membrane and used for  NCs-MBR  and In 2019, Xiafei Yin established nanowires membrane and used for membrane bioreactor (NWs-MBR) (Pervez et al. 2020).

[image: Diagram, schematic
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Figure S1820. Schematic diagrams of AFMBR (a) and anoxic-aerobic MBR (b). Reproduced with permission (Li et al. 2020). Copyright 2020, Elsevier.
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