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Scientific modelling has become a crucial tool for assessing climate change impacts on marine resources. Brander et al. criticize the treat-
ment of reliability and uncertainty of such models, with specific reference to Cheung et al. (2013, Nature Climate Change, 3: 254 –258) and
their projections of a decrease in maximum body size of marine fish under climate change. Here, we use the specific criticisms of Brander
et al. (2013, ICES Journal of Marine Science) on Cheung et al. (2013) as examples to discuss ways to make progress in scientific modelling in
marine science. We address the technical criticisms by Brander et al., then their more general comments on uncertainty. The growth of fish is
controlled and limited by oxygen, as documented in a vast body of peer-reviewed literature that elaborates on a robust theory based on
abundant data. The results from Cheung et al. were obtained using published, reproducible and peer-reviewed methods, and the results
agree with the empirical data; the key assumptions and uncertainties of the analysis were stated. These findings can serve as a step towards
improving our understanding of climate change impacts on marine ecosystems. We suggest that, as in other fields of science, it is important
to develop incrementally (or radically) new approaches and analyses that extend, and ultimately improve, our understanding and projec-
tions of climate change effects on marine ecosystems.
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Introduction
The Swedish physicist Svante Arrhenius suggested, based on first-
order consideration (or a “toy model”) that the carbon dioxide
released by the burning of large quantities of coal would eventually
result in more of the sun’s energy being trapped in the Earth’s atmos-
phere, leading to a global increase in temperature (Arrhenius, 1896),
which can be considered the beginning of climate change research.
Since then, the development of improved conceptual, mathematical
and computer models of atmospheric phenomena have modified
Arrhenius’ first-order considerations almost beyond recognition.
These advancements assimilated an immense amount of empirical
data, and also enabled a wide range of descriptions to be produced,
tests of important hypotheses, and increasingly realistic scenarios to
be generated for policy makers (Edwards, 2010). With each advance
and new model, the previous models were shown to be wanting—
although the older models (including Arrhenius’ toy model) were
not “wrong” at the time they were published. Rather, they became

“wrong” because they triggered the development of the improved
models that replaced them. Indeed, models which do not trigger
further developments, and hence their eventual replacement, are, to
cite the celebrated phrase of Wolfgang Pauli, “not even wrong”.

Scientific modelling has also become a crucial tool for assessing
and analysing climate change impacts on the biological (including
human) components of marine resources (Stock et al., 2010), and
as has occurred with their counterpart in the physical sciences, these
efforts will progress from toy model to complex constructs, capable
of incorporating (and hence explaining) more data from different
domains, and making projections of increased usefulness. One ex-
ample is the Dynamic Bioclimate Envelope Model (Cheung et al.,
2008a, 2008b), whose scope was gradually extended, like that of the
physical models alluded to above, to consider processes not part of
the original model formulation, such as poleward migrations of fish
and the implication for biodiversity (Cheung et al., 2009), the poten-
tial impact of these migrations onfisheries (Cheung et al., 2010), shifts
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in phytoplankton size distribution, effects of changes in ocean chem-
istry (Cheung et al., 2011) and, recently, the effects of higher tempera-
tures and lower oxygen availability on fish size distribution (Cheung
et al., 2013) and trophic interactions (Fernandes et al., 2013).

Criticisms of scientific modelling include “philosophical” and
“technical” issues of science as well as non-scientific issue, as exem-
plified by Brander et al. (2013). In this paper, we use the specific cri-
ticisms of Brander et al. (2013) on Cheung et al. (2013) as examples
to illustrate these points. At the philosophical level, Brander et al.
suggest that scientific modelling should deal at length with issues
of reliability and uncertainties, while their claim, at the technical
level, is that the model used by Cheung et al. (2013) is unreliable
and that it overestimates the decreases in maximum body size of
fish likely to occur under climate change. Additionally, they
suggest that Cheung et al. (2013) overplayed their result through
the press—a non-scientific issue.

Philosophically, we agree that understanding the reliability and
uncertainties of scientific modelling is very important and that all
analyses should account for and acknowledge major sources of un-
certainty—this is true for any scientific investigation, and it is one of
the functions of peer-review to filter out papers whose authors do
not acknowledge and deal properly with uncertainties. However,
it is impossible to truly assess the uncertainty of any predictions until
the occurrence, or non-occurrence, of the events in the future.
Secondly, we note with Donald Rumsfeld that while it is relatively
straightforward to deal with “known unknowns” (or known uncer-
tainties), it is far more difficult to deal with “unknown unknowns”.
In fact, the latterare the reasonwhy models that seemed correct upon
publication (including in their treatment of uncertainty) turn out to
be “wrong” some time later. We think that is the main reason why
(post-peer review) critiques of the way models deal with “uncer-
tainty” (i.e. “known unknowns”) are not the most effective way to
advance science. Rather, we believe that the most effective way to
criticize a published model is to propose a better one: one that, at
a minimum, identifies one or several of the previously “unknown
unknowns”.

We will address the technical criticisms by Brander et al., and
show that the model of Cheung et al. (2013) is robust. As for
Brander et al.’s comment on non-scientific issues, we will not
engage in an argument about the “kudos” gained by scientists com-
municating their research with the public. There is no need to cast
aspersion on anyone here, as the level of science communication
in which scientists engage is entirely dependent on their institution-
al culture and personal preferences. The broader issue related to the
quality of science journalism is also beyond the scope of the discus-
sion here. On the issue of publishing in high profile journals (in add-
ition to publishing highly technical papers that refine existing
findings, e.g. through studies that improve treatment of uncer-
tainty), there is a need to publish studies that use unconventional
or new approaches to raise important issues. Cheung et al. (2013)
clearly falls in the latter category as they report surprisingly strong
effects of climate change on fish size, which they demonstrate
using scientifically sound methods. Such a finding deserves the
greater attention that a high visibility journal can bring to it, as
agreed by the reviewers and editors of Nature Climate Change,
even if the uncertainty is high—which was stated explicitly and is
always the case for complex natural systems.

Reliability of projections by Cheung et al. (2013)
Cheung et al. (2013) applied the Dynamic Bioclimate Envelope
Model (DBEM) initially documented in Cheung et al. (2008a,

2009) to assess how changing ocean conditions, particularly tempera-
ture and oxygen level, would affect maximum body size of fish under
climate change. Their approach is based on fundamental ecological
and physiological theory, and has two interconnected components:
(i) an ecophysiology model that predicts changes in growth and
body weight, and (ii) a species distribution model that predicts
changes in distribution of fish based on changes in ocean conditions.
Driven by changes in ocean physical and biogeochemical conditions
projected from two different global earth system models, the DBEM
was applied to 610 species of exploited marine fish.

Cheung et al. (2013) reported two main findings: one that
maximum body size in individual fish populations is projected to
decrease by a median rate of around 10% by 2050 relative to 2000
under the SRES A2 scenario, the other that, because of the decrease
in maximum body size of fish populations and invasion of smaller,
low-latitude fish, the fish assemblage is projected to decrease its
average maximum body size by 14–24%.

The relationship between seawater temperature, oxygen and
maximum body size of fish are supported by first-order considera-
tions and abundant empirical evidence, starting with Pütter (1920)
and highlighted in Pörtner (2010). While Brander et al. cite Brett
(1979) to suggest that oxygen is a limiting factor for growth, and
not a controlling factor, there is abundant theoretical and empirical
support in the peer-reviewed literature for oxygen being both a limit-
ing and controlling factor for the growth of fish and aquatic inverte-
brates (Pauly, 1981; Peck and Chapelle, 2003; Kolding et al., 2008;
Pörtner, 2010; Pörtner and Peck, 2010; Verberk and Bilton, 2011;
Verberk et al., 2011), although the degree of sensitivity may vary
between species. The growth equations incorporating relationships
linking temperature, oxygen, thermal niche and maximum body
size of fish were detailed in Cheung et al. (2013) and have been previ-
ously published in the peer-reviewed literature (Cheung et al., 2011).

Brander et al. also argue that fish growth is inversely related to re-
productive investment. However, this “reproductive drain hypoth-
esis” cannot explain why female fish (which have a much larger
reproductive investment than male fish) reach larger sizes than
males in the majority of fish species, and why sterile fish (i.e. fish
that never invest in reproduction) grow asymptotically. Moreover,
a review of published experiments comparing diploid (reproduc-
tively active) and triploid (sterile) fish show very similar growth pat-
terns despite large differences in reproductive investment (Maxime,
2008). Indeed, the “reproductive drain hypothesis”, which is usually
perceived as a truism and not as the hypothesis that it is, was thor-
oughly refuted 40 years ago (Iles 1974; see also Pauly, 1984, 2010).

Moreover, while Brander et al. cited an older book chapter (Brett,
1979) to support their argument, they criticized Cheung et al. (2013)
for citing a recent book (Pauly, 2010) to support their own case. The
journal in which Cheung et al. (2013) was published has a strict limit
on the number of references that can be cited. Pauly (2010), al-
though not being a peer-reviewed book, provides a detailed synthe-
sis of published literature supporting the relationship between
growth and oxygen, based on peer-reviewed research by its author
(Pauly, 1981, 1984, 1997, 1998a, b), and other colleagues (e.g.
Chiba, 1988; Bejda et al., 1992; Chabot and Dutil, 1999; Chapelle
and Peck, 1999; Burleson et al., 2001; Peck and Chapelle, 2003;
Pörtner and Knust, 2007; Kolding et al., 2008).

Contrary to what Brander et al. assert, all of the scaling relation-
ships in Cheung et al. (2013) were based on intraspecific compari-
sons, or on abundant empirical supports for the relationships between
and within species. Thus, the metabolic scaling for temperature was
based on intraspecific comparisons (Clarke and Johnson, 1999), as
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mentioned explicitly. Moreover, the body-mass scaling used for
their growth model is widelyapplicable across and within fish species
(Pauly, 1981, 2010).

Branderetal.question the legitimacyofearlier,published tempera-
ture–size relationships for North Sea haddock (Melanogrammus
aeglefinus) (Baudron et al., 2011) and Atlantic cod (Gadus morhua)
(Taylor, 1958), and their use for comparison with the projections
from Cheung et al. (2013). Regarding the former species, Brander
et al. argued that the temperature–size relationship presented by
Baudron et al. (2011) was so strong that other unaccounted factors
were likely to have been involved. While we cannot refute that hypoth-
esis, we point out that the projection from Cheung et al. (2013) was
much more conservative than the temperature–size relationship
reported in Baudron et al. (2011). Changes in body size projected
by Cheung et al. (2013) were only those driven by oceanographic
changes. If fishing effects were to be included in the study, the pro-
jected decrease in body size would be higher and likely to be closer
to the observed changes reported in Baudron et al. (2011). Regarding
the latter species, we suggest that there is nothing inherently unreli-
able in using the growth parameters and temperature data measured
early in the 20th century and reported in Taylor (1958). Fish age de-
termination using otoliths was routine in the early 20th century, in-
cluding for cod (see e.g. bibliographies in Mohr 1927, 1930, 1934),
and temperature and fish sizes were routinely measured. In fact,
it could be argued that datasets originating from the first decades
of industrial fisheries should document the relationship between
growth and temperature better than more recent ones, as fishing
itself has modified the growth pattern of fish, notably cod (Swain
et al., 2007). The fact that some stocks are migratory will add vari-
ance to the data, but this potential confounding effect will not
affect the strong temperature–size relationship demonstrated in
Taylor (1958). The inverse relationship between terminal body
size and temperature has been known since the work of Pütter
(1920), from which von Bertalanffy (1951) derived his widely
used growth equation, and has also been observed in other species
such as Atlantic herring (Clupea harengus) (Brunel and Dickey-
Collas, 2010). This relationship is also known to fish taxonomists,
for example Randall et al. (1993), who noted that “tropical fish
living near the limit of their tolerance for low temperature grow to
larger size at such temperatures” or Smith-Vaniz et al. (1999) who
noted that “[m]any fishes live longer and grow larger in the cooler
parts of their range”. We therefore disagree with Brander et al. that
the temperature–size relationship of fish populations can only be
studied by using recently developed electronic storage tags.

Brander et al. also contrasted the use of sea surface temperature by
Taylor (1958) to the use of sea bottom temperature in Cheung et al.
(2013). For shelf seas such as those in the North Atlantic, the Earth
System Model predicts that sea surface temperature (SST) is strongly
correlated with sea bottom temperature (SBT) (Figure 1). Cheung
et al. (2013) acknowledge the potential uncertainty associated with
predictions from the Earth System Models. Notwithstanding such
uncertainty, the results here suggest that whether the projections
from Cheung et al. (2013) are reported with SST or SBT in the com-
parison with data from Taylor (1958) will have no effect on the con-
clusion that the projected decreases in body size of cod are consistent
with observations.

Finally, and most importantly, Brander et al. suggested that a
recent meta-analysis of empirically observed responses by Forster
et al. (2012) demonstrates that the rate of change of body mass in re-
sponse to the temperature and oxygen changes applied in Cheung
et al. (2013) was overestimated by one order of magnitude. If true,

this would indeed be a devastating argument. However, Brander
et al. overlooked two important aspects of the study by Forster et al.
(2012). First, Brander et al. did not distinguish the assemblage-level
decrease in body size changes (14–24%) with the individual popula-
tion level decreases (�10+6%) by 2050 relative to 2000 projected by
Cheung et al. (2013). Results fromForster et al. (2012) should be com-
pared only with the latter, as they did not account for distribution
shifts in their study. Second, while Forster et al. (2012) suggested
that the average temperature–body size response of the aquatic
ectotherms they studied was around 2 5%oC21 when mean
species dry body mass is about 100 mg, they also showed that the tem-
perature–body size response is size-dependant over a range of body
size from 10210–103 mg dry mass, which does not overlap with the
range of body size of exploited fish included in Cheung et al.
(2013), i.e. from 103 to 108 mg dry mass. Extrapolating the significant
relationship presented by Forster et al. (2012) to the size range of
exploited marine fish, the temperature–size responses were predicted
to be 0–13%oC21, generally overlapping with the �210+6% es-
timate of the projected changes of individual body size in Cheung
et al. (2013) (Figure 2). There is uncertainty associated with the ex-
trapolation of the empirical relationship beyond the data. On the
other hand, it is invalid to compare biological responses between
organisms that differ in body size by orders of magnitude when sig-
nificant body size effect is demonstrated in such responses. Thus, if
an example is required, the percentage change in body mass of
Atlantic cod projected from Cheung et al. (2013: Figure 4) is 2

13%oC21, while the prediction based on extrapolating the regression
lines reported in Forster et al. (2012) is between 2 12 and 23%oC21

(Figure 2, 95% prediction intervals). Notwithstanding the admitted
uncertainties associated with both analyses, the prediction from
Cheung et al. is similar to the extrapolation from Forster et al. (2012).

Cheung et al. (2013) specified the key assumptions and uncer-
tainties associated with their study, such as uncertainties of
climate projections, assumption of stationary trophic effects, and
the lack of evolutionary adaption, while they examined sensitivity
of the analysis to alternative values of key parameters. Also, the algo-
rithms and data sources used by Cheung et al. (2013) are described
and published (e.g. Cheung et al. 2008b, 2011, 2013 supplementary
information), allowing for the reproduction of the models and

Figure 1. Relationship between modelled sea surface temperature and
sea bottom temperature in the year 2000 from NOAA’s GFDL Earth
System Model 2.1 (used by Cheung et al. 2013) for shelf seas (,200 m
depth) in the North Atlantic.
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results. Based on fundamental ecological theory, the DBEM leads to
results that can be duplicated, and which thus can be revised when
better data or hypotheses become available. Cheung et al. (2013)
also clearly stated that their results should be viewed as a step
towards better understanding of climate change impacts on
marine ecosystems.

Brander et al. objected to Cheung et al. (2013) having used only
one species distribution model. However, at the time Cheung et al.
(2013) was published, the DBEM was the only published model that
simultaneously evaluated the effects of temperature and oxygen on
ecophysiology, growth, population dynamics and species distribu-
tion, and which had been applied globally to a wide range of
exploited fish. When other models that integrate changes in body
size and species distributions become publicly available, we will be
able to apply multimodel and ensemble comparisons.

Advancing the science in modelling climate
change impacts
Brander el al. bring up the important philosophical question of what
“models” are and what they should do. Models are a representation
of complex systems that allow for investigation of the properties of
such systems and, in some cases, prediction of future outcomes.
Models, therefore, are usually designed for a specific objective e.g.
to characterize the energy flow of a marine ecosystem, or to
develop hypotheses of how climate change may affect marine bio-
diversity. Thus, by definition, models are not a replication of all of
the components of such systems, nor are they ever complete.
Rather they remain abstractions, involving numerous assumptions
and uncertainties, both explicit and implicit. Scientific communi-
ties are generally aware of the limitations of models and are cautious
in interpreting their outputs, because they know, with Box and
Draper (1987), that “[a]ll models are wrong, but some are useful.”

We suggest that marine and fisheries biologists should emulate
our colleagues who study the physics of climate change by relying,
as Cheung et al. (2013) did, on incremental models, rooted in first
principles, and to which, in a gradual and collective process, ele-
ments can be added which enable them to assimilate more data,
and thus extend their domain. When multiple models addressing
similar questions start to become publicly available, multimodel
comparisons and ensembles can then be conducted (e.g. Jones
et al., 2012, 2013). This would both improve the characterization
of their uncertainty, and increase their usefulness. Modelling
climate change impacts on marine ecosystems, particularly at
large spatial scales, is difficult, both in terms of developing compu-
tational methods and obtaining the data required for parameteriza-
tion. This requires progressive development and refinement of
models and improved data acquisition systems—a point that is
also suggested by Brander et al.

The advancement made from incremental progression of mod-
elling approaches could be illustrated by the study of Sarmiento
et al. (2004) referred to by Brander et al. This paper was originally
designed to build on previous efforts (e.g. Bopp et al., 2001;
Christian et al., 2002) in analysing how projected physical atmos-
pheric and oceanographic changes would alter ocean primary prod-
uctivity. Sarmiento et al. (2004) developed and applied alternative
statistical approaches to predict biological responses, which would
then allow further comparisons between different models (e.g.
Steinacher et al., 2010). Thus, the advances made in developing dif-
ferent models gradually improved our understanding of biological
responses to ocean and atmospheric changes, and, ultimately,
revealed the overall uncertainty of those predictions.

Scientific studies that describe the methodology and assump-
tions clearly, and are reproducible (making it possible for peers to
provide critiques), are important components of the scientific ap-
proach. The study presented in Cheung et al. (2013), as illustrated
in this discussion, clearly fulfils these criteria. We suggest that the
most effective way to make progress in our scientific understanding
and ability to predict the climate change response of these extraor-
dinarily complex systems is through a continual process of model
development and improvement, and we encourage our colleagues
to join us in the process.
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