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Tropical fishes: patterns and propensities*
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When key biological statistics (growth parameters, mortality rates, etc.) of a large number of
fish species are plotted against other variables (notably maximum size and mean habitat
temperature), clear trends or patterns tend to emerge. These patterns are usually not perceived
as requiring explanation, as reflected in the rarity of pertinent hypotheses in the literature,
relative to the ubiquity of the patterns. A theory is presented which has the potential to explain
the propensities behind many of these observed patterns. This theory, based on the author’s
earlier work, is built around the notion that gill area severely constrains the respiration and
hence the growth of fishes (and other water-breathing animals). The patterns generated by
growth-related processes, such as mortality, reproduction or food consumption can then also be
explained. In this theory, tropical fishes are not different from other fishes, once account is
taken of the fact that tropical fish are, not metaphorically but literally, in hot water.
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INTRODUCTION

Fish biologists, whether working in the tropics or not (Fig. 1), tend to
concentrate on a species, or a group of them, but rarely, if ever, on fishes as a
whole. The result, obviously, is that ichthyology consists largely of scattered
accounts, each dealing with the biology of one fish or group.

The exception to this is taxonomy, whose lists often cover entire continents,
but which usually does not cover the life processes of the species thus listed.
CLOFFA (Daget et al., 1984–1991) is an exception in that it provides at least
references to papers on the various aspects of the biology of the species it covers.
Fish classification (Berg, 1958; Greenwood et al., 1966; Eschmeyer, 1990) also
fails to cover life processes, though it reflects on phylogeny, a life-generating
process if ever there was one.

This contribution is peculiar in that its raw data are dots on graphs,
representing species or populations whose life processes (growth, mortality, food
consumption, etc.) can be expressed by the parameter values of some standard
equation. When plotted for a large number of cases, the points form the patterns
of the title. On these patterns, tropical fish form sub-patterns, whose shape and
position differs from those of fishes from the sub-tropical, temperate and
high-latitude regions (Fig. 1), and which are used as background.

Some of these (sub)patterns are easy to see and interpret; some others require
explanatory digression. Some colleagues are weary of these digressions. Some
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other colleagues may be interested by the shape of patterns, especially those
pertaining to the fish they work on, but not by the existence of the patterns
themselves. Yet, their existence poses an important question: why do tropical
and other fish so often arrange themselves to form clear patterns on graphs?

One answer—this is just the way it is—is clearly not acceptable. Stating that
fishes are programmed genetically to form patterns will not do either, as the
question of why a given pattern and why not another, still stands. Clearly, one
should deal with material causes. However, in biology, identifying such causes,
that is, events which are always followed by certain effects, can be tricky, and
hence the propensities of the title, that is, weighted possibilities, ‘ capable of
producing, upon repetition, a certain statistical average ’ (Popper, 1990).

To explain the propensities evident in the exhibited patterns, it will be
proposed that the metabolic rate of fish, determined, among other things, by the
relative size of their gills, controls growth, food consumption and related
phenomena. This leads to the conclusion that tropical fishes display the very
propensities one would expect from any gill-breathing organism living in warm
water.
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F. 1. Definition of the tropics, and of other climatic areas mentioned in this contribution (adapted from
Anon., 1991).
MATERIALS AND METHODS

Most of the graphs which form the core of this contribution were generated using
FishBase 98, the computerized encyclopaedia of fishes (Froese & Pauly, 1998). Their
(original) colour version, and related graphs, may be seen on the FishBase homepage
(www.fishbase.org), where various information on this extensive database is presented,
incuding the full text of Froese & Pauly (1998). Each of the dots in these graphs is
documented in a FishBase table, via a link to the reference from which the parameter
values were extracted. Thus, each of the data points behind the patterns discussed here
is traceable to its source, and nothing needs to be taken at face value.

Most dots in these graphs are the result of some specific study; each dot, therefore, is
extremely valuable. Thus, the single dot representing a growth curve on an auximetric
plot can be estimated as incorporating work equivalent to a master’s thesis, or a short
paper, requiring U.S. $10 000–100 000 worth of inputs (Morgan & Hopkins, 1986; Pauly,
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1986). Therefore, in an age of stagnating support for research, these points and the
patterns they generate should be taken seriously.
OBSERVED PATTERNS
MAXIMUM SIZE
The most important attribute of organisms is their size, which determines

largely the nature of their interaction with other organisms, and their demo-
graphic characteristics (e.g. large organisms tend to live longer than small ones,
and their populations fluctuate less than those of small species). The maximum
size reached by tropical fishes, plotted against mean environmental temperature
(Fig. 2), over the background provided by all species with available data,
suggests that tropical fishes, contrary to temperate and other cold water fishes,
had enough evolutionary time to fill all available size-related niches, i.e. to
generate the ‘ full house ’ of Gould (1996). Figure 3 suggests, however, this
filling up process to be biased: tropical fish tend to be smaller than those of
colder climes. At least, there are relatively more small species in the tropics than
elsewhere (see later).
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F. 2. Maximum length of fish species with temperature record so far included in FishBase (Froese &
Pauly, 1998) v. the mean temperature of their habitat. Note that tropical fish (black dots; n=1940),
with a range of habitat temperature of about 10) C, fill a wider range of sizes than cold-water fish
(grey dots; n=833), despite the latter’s much wider range of habitat temperatures. The largest fish
is the whale shark.
GROWTH
The growth of fish and other organisms defines the time they spend in different

(size-related) predatory fields, and is thus the key process behind a specific life
history. Though growth can take a multiplicity of forms, the major features of
fish growth can usually be described by a simple asymptotic growth curve, the
von Bertalanffy growth function (VBGF), whose basic shape is expressed by the
parameter K (quantifying the curvature of the VBGF), and the corresponding
asymptotic size (length or weight). This feature of the VBGF makes it possible
to summarize and compare growth data using auximetric plots (Pauly, 1979), i.e.
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F. 3. Species so far included in FishBase (Froese & Pauly, 1998), by interval of log(maximum length).
Note that more tropical (black dots; n=10 152) than cold water fish (grey dots; n=6119) are small,
whatever the definition of small. The isolated black dot on the x-axis refers to whale shark, the
next (grey) dot to basking shark.
plots of log K v. log asymptotic size, named from the Greek ‘ auxesis ’ (growth)
and ‘ metron ’ (measure).

Therefore Fig. 4(a) may be seen as the key exhibits of this contribution, as it
shows the pattern generated by an auximetric plot of over 4826 sets of parameter
estimates of the VBGF, representing the utilization of the available growth space
by over 1000 fish species so far studied. As might be seen, only a limited amount
of growth space is utilized by fishes, which either tend to remain small, and have
high values of K, or become large, but then have low values of K. Note also that
this is not a statistical artifact, resulting from our methods for fitting size at age
and other growth data: there is an order-of-magnitude range for the value of K
that may be attached to an asymptotic size of say 100 cm. Indeed, that range of
K values determines whether one is dealing with a fast-growing scombrid, or a
slow-growing rockfish.

The other pattern evident in Fig. 4(a) is that, as expected, tropical fishes tend
to be confined to the space defined by smaller asymptotic sizes, and higher values
of K. An exception is the largest extant fish, the whale shark Rhincodon typus
Smith, which may reach over 14 m, and which must be considered a tropical
species. However, the large number of species with asymptotic sizes ranging
from 2–4 m consists mainly of sharks and large scombroids (tuna and billfish),
which range from tropical to temperate areas; for these, the subtropical label
must be used.

Fig. 4(b) shows that the same pattern is obtained, whether one works with
asymptotic weights or with asymptotic lengths, i.e. the observed patterns are not
due to the biasing effects of comparing eel-like fish with rotund ones.

The six panels of Fig. 5 illustrate the distinct clusters that are generated in
growth space when dots representing families, genera and species appear on
auximetric plots. The resulting patterns can be analysed using cluster analysis,
leading to dendrograms reflecting the affinities of fishes in terms of growth
performance (see Pauly & Binohlan, 1996; Pauly et al., 1996). Perhaps more
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F. 4. Plot of the parameter K of the von Bertalanffy growth function v. the corresponding estimate of
asymptotic size in different populations (n) of over 1000 species. (a) K v. asymptotic length
(n=4826). (b) K v. asymptotic weight (n=2948). Note propensity of tropical fishes (black dots, n
for length=1851; n for weight=1077) to have the higher value of K corresponding to a given
asymptotic size (data from Binohlan & Pauly, 1998).
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importantly, they lead to the question why a certain cluster is located where it is,
rather than somewhere else: a theme to which this paper returns.
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F. 5. Auximetric plots for some predominantly tropical fish families, genera and species, with
(unrelated) cold water taxa provided for contrast; left: freshwater, right marine taxa. (a)
Poeciliidae (black) v. Esocidae (grey); (b) Leiognathidae (black) v. Sebastidae (grey); (c)
Limnothrissa spp. (black) v. Thymallus spp. (grey); (d) Nemipterus spp. (black) v. Gadus spp. (grey);
(e) Stolothrissa tanganicae (black) v. Lepomis macrochirus (grey); (f) Katuswonus pelamis (black) v.
Clupea harengus (grey). Data from Binohlan & Pauly (1998).
NATURAL MORTALITY
The natural mortality (M) of fish is difficult to estimate, requiring either that

we estimate total mortality (Z) in an unexploited stock or, since Z=M+F, where
F is fishing mortality. It is astonishing that estimates of M in fish should relate
to their growth parameters in the first place, given that M values do not actually
describe the fate of individuals. Natural mortality differs in this from growth
parameters, which describe a process observable at the level of single specimens.
Yet, M values correlate strongly with growth parameters. This is illustrated here
by Fig. 6(a), i.e. a plot of M values v. asymptotic size, and by Fig. 6(b), a plot of
M v. the parameter K of the VBGF.
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F. 6. Relations between natural mortality (M) and growth parameters (n=358). (a) Plot of M v.
asymptotic length. (b) Plot of M v. the parameter K of the VBGF. Note propensity of M to be
higher in tropical (black dots, n=105) than in other species, given values of asymptotic length (a)
or K (b).
On these plots, tropical fishes are right where one would expect them, given the
analysis of Pauly (1980), in which, on the basis of 175 data triplets covering a
wide range of taxa, sizes and habitats, M was shown to depend on K, on
asymptotic size and on mean environmental temperature. Thus, tropical fishes
tend to have, for any asymptotic size, higher values of M than other fishes
[Fig. 6(a)]. This is similar for K, i.e. tropical fishes tend to have, for any value of
K, higher values of M than temperate fishes [Fig. 6(b)].
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Note that these effects are not due to the M values all having been estimated
via the same rule of thumb (e.g. M=0·2): the values of M included in FishBase
are all independent, and were all estimated from local data (Pauly & Binohlan,
1998). The plots in Fig. 6 thus confirm that M varies with size and temperature
in addition to varying with K, and that hence, the ratio M/K is not the invariant
as stated by Charnov (1993).
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F. 7. Relationship between the relative food consumption (daily ration per unit body weight) v. body
weight of fish (n=249) in FishBase 98. Tropical fish (black dots, n=72) tend to consume more than
other fish, as may be expected, given the high temperatures of their habitats. This well-documented
effect is there partly masked by the variance due to different food types.
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F. 8. Relationship between the trophic level and the maximum length reached by 454 fish species in
FishBase 98. The graph confirms earlier assumptions about the sign of the trend; that tropical
fishes (black dots, n=152) may have higher trophic levels than other fishes of the same size is a new
finding.
FOOD CONSUMPTION
Figures 7 and 8 deal with the food consumption fuelling the growth

documented in Figs 4 and 5, and the natural mortality of some of the smaller
fishes in Fig. 6. The data in Fig. 7, though scattered due to different food types,
generate a pattern reflecting known trends: relative ration declines with body
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weight, and warm water, i.e. tropical fishes tend to consume more than their
colder-water counterparts, other things being equal. Thus, this pattern illus-
trates the empirical relationship of Palomares & Pauly (1989), allowing predic-
tion of food consumption as a function of body weight, food type and
temperature.

Figure 8, on the other hand, presents evidence never shown before, though
illustrating a relationship assumed by a number of authors (Sheldon & Kerr,
1972; Paloheimo, 1988; Thiebaux & Dickie, 1993; Pauly et al., 1998): that
trophic level increases with fish size. [The LT values used for this plot were based
either on diet composition of the specimens of the species in question (with LT

then estimated as 1+weighted mean LT of the diet items; Pauly & Christensen,
1998), or as part of the output of mass-balance food web models (Christensen &
Pauly, 1992, 1993), with cross-validation using 15N/14N ratios (Kline & Pauly,
1998).]

Figure 8 suggests that the trophic levels of tropical fish species may be higher
than those of colder water fishes, given the same maximum size—an unantici-
pated, but not surprising discovery, given the large number of species in tropical
systems, and hence the high connectance—at least potentially—of food webs
describing their trophic interactions (see contributions in Christensen & Pauly,
1993).
METABOLISM AND GILL SURFACE AREA

The metabolism of fish is what turns their food into useful energy. This
process is illustrated here with a single figure, illustrating that indeed, warm-
water fishes consume more oxygen than cold-water fishes (Fig. 9). Note that the
issue here is not that the metabolic rate of an individual fish increases when its
experimental temperature is increased—a well-studied phenomenon—rather, it is
that warm-water fishes (subtropical and tropical species) have elevated metabolic
rates, compared to fishes of temperate and cold waters (deep and polar seas).

Considering metabolism, i.e. oxygen consumption, brings us somewhat closer
to the mechanism proposed here to explain the propensities evident in the
previous graphs. First, however, one needs to recall that in order to be useful
metabolically, oxygen must occur within the body of a fish, i.e. it must have
passed across its gills. Gills, being a surface area, cannot grow, for insurmount-
able geometric reasons, as fast as the volume they are meant to supply with
oxygen. Indeed, in most fish, gill surface area, and hence metabolic rate,
increases in proportion to a power of weight equal to 0·7–0·8. Lower values
(down to 0·5) are typical of fish that remain small; higher values (up to 0·9) occur
in tuna and presumably in other large, metabolically active fishes such as pelagic
sharks (Pauly, 1981, 1997).

One major implication of this is illustrated in Fig. 10, which also explains why
tropical fish, which have elevated metabolic rates (Fig. 9), would tend to remain
smaller than cold-water fishes, other things being equal. Figure 10 may be seen
as expressing the core of the theory of growth whose details are provided in
Pauly (1981, 1984), Longhurst & Pauly (1987), and restated in Pauly (1997,
1998). Until recently, that theory had been ignored, or rejected in passing, i.e.
without any tests of its corollaries (see e.g. Weatherley & Gill, 1987).
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F. 9. Mean metabolic rate of fish, by habitat temperature. Based on 3693 individual measurements
documented in Torres & Froese (1998); number of species are given for each of the temperature
regimes: cold (mean=7·6&5·0) C) includes species from deep-water, and polar habitats; temperate
refers to species from that zone in Fig. 1 (mean=15·6&4·8) C); warm includes species from
subtropical and tropical waters (mean=22·1&5·3) C). The high metabolic rates of warm-water
fishes reduces the size at which oxygen supplies become limiting to their growth (see text). Weight
classes (g): -, 0–0·9; ,, 1–9·9; ., 10–20; 4, 100–200; /, 1000–2000.
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F. 10. Schematic illustration of the effect of gills that increase in proportion to a power of weight <1,
given geometrical constraints. (a) as a fish grows, its gill area per unit weight declines, which
reduces the oxygen supply to its body. Hence a size can be defined at which oxygen supply is just
sufficient to cover routine metabolism (see downward-pointing arrow). This defines the maximum
(and the asymptotic) size of fish. (b) the elevated metabolic rates occurring in warmer habitats
(and/or other stressors, such as e.g. sparse food, or competitive interactions) cause the limiting
effect in A to occur at a smaller size (from Pauly, 1984; see Longhurst & Pauly, 1987 for
modifications of this basic scheme).
DIGRESSION: THE EFFECT OF SWIMMING CAPACITY
Recently, Blier et al. (1997) suggested that the correlation in Pauly (1981)

between an index of the gill area of fishes, and an index of their growth
performance, besides being weak, was due to the fact that gill area correlates
with swimming capacity, which itself correlates with growth. In other words,
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they suggest that fish with large gills use them for fast swimming and not
necessarily for rapid growth. Indeed, when they removed what they
assumed were poor swimmers from a bivariate data set extracted from
Pauly (1981), the correlation between gill area and growth performance no
longer held.

There are 17 species in FishBase 98 for which independent estimates of
(sustained) swimming speed (an index of swimming capacity), of gill area (in
cm2), and of growth parameters are available. From these, one can compute a
gill area index (IGA), defined by

IGA=gill area/(body weight)d (1)

with d set at an average value of 0·8 for all species (Pauly, 1981), and individual
values of IGA averaged within species to obtain species-specific estimates.

Also, a growth performance index (ö) can be defined by

ö=logK+2/3 logW£ (2)

where K is the curvature parameter of the VBGF (year"1) and W£, the
asymptotic weight (Pauly, 1979; Pauly et al., 1996). Species-specific estimates
were derived by averaging in cases where several data sets were available for a
given species.

Finally, a swimming capacity index (IS) was derived from VL"1, where V is
the sustained swimming speed of a fish, in cm s"1, and L is its body length, in
cm. Again, means were taken when several records were available for a given
species.

The data in Table I allow following up on the point made by Blier et al. (1997).
These lead to "0·599, 0·590, and "0·558 for the correlations between growth
performance index and swimming index, growth performance index and gill area
index, and swimming capacity index and gill area index, respectively. However,
these values are pointless if gill area, swimming and growth interact with each
other. A multiple regression should be more useful, and indeed we obtained,
using the data in Table I:

ö=1·94+0·011 (IGA)"0·049 (IS) (3)

for which r=0·674 (r2=0·454), and which, with 15 d.f., is significant (P<0·02;
Fig. 11).

This finding is rather easy to interpret: given a specific gill area, fish can either
grow or swim a lot, but not both. Hence, considering swimming capacity does
not invalidate the contention that gill area is limiting for growth. Rather, the
relationship between gill area and growth performance becomes tighter once
swimming speed is considered (cf. the above-cited correlation of 0·590 with that
of 0·674 in Fig. 11).

And indeed, P. U. Blier (pers. comm.), who examined potentially limiting
factors for growth one at a time, under laboratory conditions where food was
provided ad libitum, suggests that ‘ under natural conditions, particularly when
fish have to move at the same time as they feed or digest, it remains very
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probable that aerobic scope, i.e., the oxygen supply through the gills, acts as a
limiting factor . . .’ (my translation from French).
T I. Data for establishing interrelationships between gill
surface area, swimming capacity and growth performance in fish
(extracted and/or computed from entries in FishBase 98; Froese

& Pauly, 1998)

No. Species* Gill
index†

Swim
index‡

Growth
index§

1 Katsuwonus pelamis 76·9 4·24 2·32
2 Thunnus thynnus 64·4 0·53 2·81
3 Thunnus albacares 59·0 1·77 2·90
4 Brevoortia tyrannus 46·1 2·04 1·32
5 Sarda sarda 27·7 13·6 2·20
6 Pomatomus saltator 26·1 8·32 1·80
7 Esox lucius 23·7 10·5 1·73
8 Coryphaena hippurus 23·6 1·25 2·98
9 Scomber scombrus 19·9 11·5 1·41

10 Merlangius merlangus 19·0 7·65 1·43
11 Pollachius virens 17·4 9·19 1·95
12 Perca fluviatilis 15·5 20·0 1·06
13 Morone saxatilis 15·0 8·55 1·97
14 Clupea harengus 12·9 9·63 1·02
15 Salmo trutta 12·0 7·94 1·54
16 Zeus faber 5·54 8·42 1·86
17 Carassius auratus 3·32 6·62 1·18

*Only 17 species included records for all three measures.
†The gill area index (IGA: for gill in cm2, and body weight in g) is defined

by gill area=IGA (weight)d, d was set at 0·8 for all species (see Fig. 10), and
estimates of IGA were averaged when several gill area records were available
for a given species.

‡The swimming capacity index is based on V L"1 where V is the sustained
swimming speed in cm s"1 and L the body length in cm. Means were taken
when several records were available.

§The growth performance index is defined as ö=log K+2/3 log W£ where
K is the curvature parameter of the VBGF (year"1) and W£ the asymptotic
weight (g).
CLOSING THE LOOP: PATTERNS OF GROWTH AND GILL AREA
Having dealt with swimming capacity as a potentially disrupting factor, one

can return now to what was referred above as the key exhibits of this
contribution, the auximetric plots in Fig. 4.

There are 52 species in FishBase 98 for which both estimates of gill area and
growth parameters are available. From these 52 sets of estimates of mean gill
area index, as defined above, mean asymptotic weight (for all cases with more
than one set of growth parameters) and mean K [estimated via mean values of ö,
see equation (2) above] were derived. They led to the multiple regression

logK= "0·273"0·415 log W£+0·268 log (IGAW£
0·8) (4)
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F. 11. Plot of the predicted v. the observed growth performance of 17 species of fish [data from
Table I and equation (1)]. r2=0·674.
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F. 12. Plot of the parameter K of the VBGF v. the corresponding estimate of asymptotic weight (W£)
in 2948 species of fish, with superimposed isolines [from equation (3)] predicting K, given W£ and
gill area index (IGA; in cm2 g"1) values. This plot suggests that fish of a given size can exhibit rapid
growth (=high K values) only if they have large gills.
for which r=0·640 (r2=0·410), and for whose regression coefficients are both
significantly different from zero (P<0·001).

Solving this equation for different values of IGA, and superimposing the
resulting isolines onto the auximetric plot in Fig. 4(b) leads to Fig. 12.

As might be seen, this graph explains the pattern formed by the growth
parameters in Fig. 12 in terms of the gill area of the species in question, with
large-gilled species exhibiting high values of K (i.e. rapid growth) for a given
asymptotic size.
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DISCUSSION

Now one can return to the graphs presented so far, and discuss the
propensities illustrated by the different patterns.

Given the climate definitions in Fig. 1, tropical fishes are exposed, throughout
their lives, to temperatures >20) C. This implies, given that metabolic rates
increase with temperature (Fig. 9), and that growth is limited by respiratory
metabolism (Fig. 10), that tropical fishes should generally remain small. And
indeed, in spite of a wider variety of size-specific niches having been colonized in
the tropics than elsewhere (Fig. 2), the fish there tend to be smaller than their
cold-water counterparts (Fig. 3).

The scheme in Fig. 10 also implies that K, in tropical fishes, should tend to be
higher than for their cold-water counterparts, while their asymptotic sizes should
tend to be smaller. This is indeed the case [Fig. 4(a) and (b)]. The specific location
of a given taxon in growth space (see examples in Fig. 5) is then a matter of their
gill area [equation (3)], and of their level of (swimming) activity [equation (1)].

Swimming activity, and growth (and size) jointly define the niche of a species
(e.g. small or large, and pelagic; small or large, and benthic). Body size and
habitat thus defined provide different type of refuges from predators (large size
is an anatomical refuge; benthic structures provide physical refuges). In either
case, the effect of the refuge must be sufficient to allow the natural mortality
caused by prevailing predation levels to remain low, such that a sufficient
number of recruits grow into adults, and reproduce. Species which, over
evolutionary time, do not manage to keep their natural mortality down to that
level go extinct. Species which succeed initially in keeping their natural mortality
below that critical level will increase in abundance, and thus attract new
predators. Hence natural mortality will tend to be coupled with growth, given
that adult size will tend also to correlate with fecundity. Therefore, there is a
tight fit between growth parameters and M in Fig. 6.

As food consumption increases with temperature, prevailing predation rates
also generate the relation between temperature and M or put differently, the
natural mortality of fish is higher in the tropics because their predators (mainly
fish; see Christensen, 1996) must consume more prey per unit time than their cold
water counterparts (see also Fig. 8).

The question may now be asked why fish, if their gill surface area is limiting,
simply do not grow bigger gills, i.e. evolve around this contraint. Some answers
to this are as follows. Fishes have indeed evolved larger gills since their sluggish
ancestors first appeared in the fossil record (Pauly, 1981). Large-gilled fish such
as tuna took a long time to evolve, and their open ocean niche was empty until
the required gills and associated adaptations evolved. Fishes have the gills they
need to reach maturity, in their optimal habitat, within a time span short enough
for the surviving adults to generate sufficient number of recruits. When adult fish
get older and larger, and/or move outside their optimum habitat, respiratory
stress can quickly become constraining (Sharp, 1978). Geometric constraints
prevent surfaces from growing as fast as volumes. When the body that is
supplied by a given set of gills grows, gill area per unit weight declines (see
Fig. 10), until a level is reached where routine metabolism is just met—at which
point growth must cease.
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A comprehensive theory can be articulated about Fig. 10 (Pauly, 1981, 1997)
and a number of corollaries have been tested, notably concerning fish reproduc-
tion (Pauly, 1984), their swimming speed (see Table I, and above text) and
distribution in depth and space (Longhurst & Pauly, 1987), the growth of
gill-breathing invertebrates such as squids and other cephalopods (Pauly, 1998),
the growth of fishes under aquaculture conditions (van Dam & Pauly, 1995), and
even the (calm) behaviour of Nile tilapia Oreochromis niloticus L., bred selec-
tively for fast growth, compared with that of slower-growing, wild controls
(Bozynski, 1998).

As illustrated here, this theory can be used to explain the propensities behind
the patterns in the above plots. Given the data it contains, FishBase 98 can
generate many more plots than shown above, documenting different aspects of
this theory. I invite readers to evaluate its explanatory power when applied to
the fish they know best.

This contribution would not have been possible, had not two friends come to the
rescue: R. Froese, for implementing in FishBase a rather sophisticated scheme for
automatic identification of the climatic zone to which different fish species may be
assigned (this choice is now a field of FishBase 98), and for useful comments on the
draft; and D. Palomares, for performing the rather complex FishBase searches behind,
e.g. Fig. 12 and Table I, and for regenerating the graphs, kindly finalized by A. Atanacio.
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1991, Abidjan, Côte d’Ivoire (Pullin, R. S. V., Lazard, J., Legendre, M., Amon
Kothias, J. B. & Pauly, D., eds), pp. 433–441. Manila: ICLARM Conference
Proceedings 41.

Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. C., Jr (1998). Fishing
down marine food webs. Science 279, 860–863.

Popper, K. R. (1990). A World of Propensities. Bristol: Thoemmes.
Sharp, G. (1978). Behavioural and physiological properties of tuna and their effects on

vulnerability of fishing gear. In The Physiological Ecology of Tunas (Sharp, G. &
Dizon, A. E., eds), pp. 397–449. New York: Academic Press.

Sheldon, R. W. & Kerr, S. R. (1972). The population density of monsters in Loch Ness.
Limnology & Oceanography 17, 796–798.



       17
Thiebaux, M. L. & Dickie, L. M. (1993). Structure of the body-size spectrum of the
biomass in aquatic ecosystems: a consequence of allometry in predator-prey
interactions. Canadian Journal of Fisheries & Aquatic Sciences 50, 1308–1317.

Torres, A. & Froese, R. (1998). The Oxygen Table. In FishBase 98: Concepts, Design and
Data Sources (Froese, R. & Pauly, D., eds), Manila: ICLARM.

van Dam, A. A. & Pauly, D. (1995). Simulation of the effects of oxygen on food
consumption and growth of Nile tilapia, Oreochromis niloticus (L.). Aquaculture
Research 26, 427–440.

Weatherley, A. H. & Gill, H. S. (1987). The Biology of Fish Growth. London: Academic
Press.


	Tropical fishes: patterns and propensities
	INTRODUCTION
	MATERIALS AND METHODS
	OBSERVED PATTERNS
	MAXIMUM SIZE
	GROWTH
	NATURAL MORTALITY
	FOOD CONSUMPTION
	METABOLISM AND GILL SURFACE AREA
	DIGRESSION: THE EFFECT OF SWIMMING CAPACITY
	CLOSING THE LOOP: PATTERNS OF GROWTH AND GILL AREA

	DISCUSSION
	References




