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Abstract 1 

During the Last Glacial Maximum, continental ice sheets isolated Beringia 2 

(northeast Siberia and northwest North America) from unglaciated North 3 

America. By around 15 to 14 thousand calibrated radiocarbon years before 4 

present (cal. kyr BP), glacial retreat opened an approximately 1,500-km-long 5 

corridor between the ice sheets. It remains unclear when plants and animals 6 

colonized this corridor and it became biologically viable for human migration. 7 

We obtained radiocarbon dates, pollen, macrofossils and metagenomic DNA 8 

from lake sediment cores in a bottleneck portion of the corridor. We find 9 

evidence of steppe vegetation, bison and mammoth by approximately 12.6 cal. 10 

kyr BP, followed by open forest, with evidence of moose and elk at about 11.5 cal. 11 

kyr BP, and boreal forest approximately 10 cal. kyr BP. Our findings reveal that 12 

the first Americans, whether Clovis or earlier groups in unglaciated North 13 

America before 12.6 cal. kyr BP, are unlikely to have travelled by this route into 14 

the Americas. However, later groups may have used this north–south 15 

passageway. 16 

  17 
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Introduction 1 

 2 

Understanding the postglacial emergence of an unglaciated and biologically viable 3 

corridor between the retreating Cordilleran and Laurentide ice sheets is a key part of 4 

the debate on human colonization of the Americas1, 2, 3. The opening of the ice-free 5 

corridor, long considered the sole entry route for the first Americans, closely precedes 6 

the ‘abrupt appearance’ of Clovis, the earliest widespread archaeological complex 7 

south of the ice sheets at ~13.4 cal. kyr BP4, 5. This view has been challenged by recent 8 

archaeological evidence that suggests people were in the Americas by at least 14.7 9 

cal. kyr BP6, 7, and possibly several millennia earlier8. Whether this earlier presence 10 

relates to Clovis groups remains debated9. Regardless, as it predates all but the oldest 11 

estimates for the opening of the ice-free corridor10, 11, archaeological attention has 12 

shifted to the Pacific coast as an alternative early entry route into the Americas1, 11. 13 

Yet, the possibility of a later entry in Clovis times through an interior ice-free corridor 14 

remains open1, 9, 12. 15 

 16 

Whether the ice-free corridor could have been used for a Clovis-age migration 17 

depends on when it became biologically viable. However, determining this has proven 18 

difficult because radiocarbon and luminescence dating of ice retreat yield conflicting 19 

estimates for when the corridor opened, precluding precise reconstruction of 20 

deglaciation chronology10, 13, 14, 15, 16, 17. Once the landscape was free of ice and 21 

meltwater, it was open for occupation by plants and animals, including those 22 

necessary for human subsistence. On the basis of studies on modern glaciers18, the 23 

onset of biological viability could have been brief (for example, a few decades) if 24 

 3 



propagules were available in adjacent areas, and assuming they were capable of 1 

colonizing what would have been a base-rich (high pH) and nitrogen-poor, soil 2 

substrate (such as nitrogen-fixing plants like Shepherdia canadensis (buffaloberry)). 3 

 4 

Establishment of biota within the corridor region must have varied locally depending 5 

on the rate and geometry of ice retreat, the extent of landscape flooding under 6 

meltwater lakes, and the proximity of plant and animal taxa and their dispersal 7 

mechanisms1, 19, 20. Some areas were habitable long before others. Although the 8 

corridor’s deglaciation history was complex, broadly speaking it first opened from its 9 

southern and northern ends, leaving a central bottleneck that extended from 10 

approximately 55 °N to 60 °N1, 10, 13, 14, 15, 21. On the basis of currently available 11 

geological evidence, this was the last segment to become ice free and re-colonized by 12 

plants and animals1, 13, 22, 23, 24. 13 

 14 

Although palynological and palaeontological data can be used to help study the 15 

opening of the corridor region, these are limited in several respects. First, not all 16 

vegetation, particularly pioneering forbs and shrubs, produce pollen and macrofossils 17 

with good preservation potential that will be detectable in available depositional 18 

locales. Hence, timing of plants’ appearance may be underestimated. Second, pollen 19 

can disperse over long distances and have limited taxonomic resolution, differential 20 

preservation, and variable production rates, all of which can bias vegetation 21 

reconstruction25. Third, fossil evidence for initial large mammal populations that 22 

dispersed into the newly opened corridor is sparse. The fossil remains suggest the 23 

presence of bison, horse and mammoth, and probably some camel, muskox and 24 
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caribou26, 27. Yet, the oldest vertebrate remains after the Last Glacial Maximum are no 1 

older than ~13.5 cal. kyr BP2, and those specimens are found outside the bottleneck 2 

region1, 3, 26, 28, 29. These animals would have been the source populations to recolonize 3 

the newly opened landscape, and thus their presence within the bottleneck region can 4 

indicate when the corridor became a viable passageway over its entirety.  5 

 6 

Samples and analytical approaches  7 

To overcome current limitations of the palaeoecological record, and develop a more 8 

precise chronology for the opening and biological viability of corridor’s bottleneck 9 

region, we collected nine lake sediment cores from Charlie Lake and Spring Lake in 10 

the Peace River drainage basin (Fig. 1). These are remnants of Glacial Lake Peace, 11 

which formed as the Laurentide Ice Sheet began to retreat in this region around 15 to 12 

13.5 cal. kyr BP and blocked eastward draining rivers10, 13, 14, 15, 21 (Extended Data Fig. 13 

1). Glacial Lake Peace flooded the gap between the ice fronts until about 13 cal. kyr BP, 14 

sometime after which Charlie and Spring lakes became isolated13. Thus, this area was 15 

amongst the last segments of the corridor to open and is pivotal to understanding its 16 

history as a biogeographic passageway1, 13, 14, 16, 22, 24.  17 

Of the nine cores obtained from Charlie Lake and Spring Lake, one from each lake 18 

predates the Pleistocene to Holocene transition, the oldest dating to ∼12.9 cal. kyr BP 19 

(modelled age). We sampled the cores from both lakes for magnetic susceptibility, 20 

pollen30, 31, micro- and macrofossils, including 14C-dateable material for subsequent 21 

robust Bayesian age-depth modelling (Fig. 2, Methods, Extended Data Figs 2, 3, 4 and 22 

Supplementary Information). In addition, we obtained environmental DNA (eDNA)32, 23 

representing molecular fossils of local organisms derived from somatic tissues, urine 24 
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and faeces33, but rarely pollen34. eDNA complements traditional pollen and macrofossil 1 

studies35, and is especially useful for establishing the likelihood that a taxon occurred 2 

within a particular time period36, 37. Furthermore, eDNA enables identification of taxa 3 

even in the absence of micro- and macrofossil material, thus improving the resolution 4 

of taxonomic richness surveys36. However, amplification of short and taxonomically 5 

informative DNA metabarcodes38 can be biased towards taxa targeting35. We used 6 

shotgun sequencing of the full metagenome in the DNA extracts to reveal the whole 7 

diversity of taxonomic groups present in the sediment39 (Fig. 2, Methods, Extended 8 

Data Figs 5 and 6 and Supplementary Information). We confirmed the sequences 9 

identified as ancient by quantifying DNA damage40, and found the DNA damage levels 10 

to accumulate with age (Pearson correlation coefficient = 0.663, P value = 0.00012) 11 

(Methods and Extended Data Fig. 7a, b). 12 

 13 

Biological succession within the corridor bottleneck 14 

The basal deposit in the Charlie Lake core is proglacial gravel, previously reported from 15 

the area22, above which are laminated lacustrine sediments, principally composed of 16 

silt-sized grains24 (Extended Data Fig. 2). We interpret these as deposits from Glacial 17 

Lake Peace Stage IV (ref. 13), the >15,000 km2 proglacial lake that covered the Peace 18 

River area of northeastern British Columbia and northwestern Alberta. A subsequent 19 

lithological change from silt to sandy organic rich mud (gyttja) at the onset of Holocene, 20 

around 11.6 cal. kyr BP, reflects a change in sediment source and lake productivity we 21 

interpret as Charlie Lake becoming isolated from Glacial Lake Peace (Fig. 1). This is 22 

followed by a decrease in pollen influx in both lake records at ∼11.5 cal. kyr BP that 23 

coincides with an increase in pre-Quaternary palynomorphs. At Charlie Lake there is 24 

then a marked increase in pollen influx at ~11.3 cal. kyr BP. We interpret these 25 
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fluctuations as responses of a highly dynamic landscape to paraglacial and aeolian 1 

redepositional processes. 2 

 3 

Our palynological and eDNA-based taxonomic identifications, respectively, reveal the 4 

development of biota in the regional and local environment surrounding each lake (Fig. 5 

2, Extended Data Figs 3, 4, 5, 6). Prior to ∼12.6 cal. kyr BP (Charlie Lake, pollen zone 6 

I, ~13 to 12.6 cal. kyr BP), the bottleneck area appears to have been largely unvegetated, 7 

receiving low pollen influx (<50 grains cm−2 y−1) with little organic content 8 

(incoherent/coherent ratio) and low DNA concentrations (<5 ng per g of sediment). 9 

During the later phases of Glacial Lake Peace, both pollen and eDNA indicate grasses 10 

and sedges were early colonizers. Charlie Lake pollen zone II (~12.6 to 11.6 cal. kyr 11 

BP) contains evidence of steppe vegetation, including Artemisia (sagebrush), 12 

Asteraceae (sunflower family), Ranunculaceae (buttercup family), Rosaceae (rose 13 

family, rosids in eDNA), Betula (birch), and Salix (willow). A similar plant community 14 

is recorded at Spring Lake (pollen zone 1), with substantial abundances of Populus and 15 

S. canadensis, probably due to elevation differences and because by this time Spring 16 

Lake was no longer part of the Glacial Lake Peace system. 17 

 18 

eDNA indicates the steppe vegetation supported a variety of animals including Bison 19 

which appear at ∼12.5 cal. kyr BP, and Microtus (vole) and Lepus (jackrabbit) by ∼12.4 20 

cal. kyr BP (Fig. 3). After 12.4 cal. kyr BP, Populus trees became more dominant and 21 

Cervus (elk), Haliaeetus (bald eagle) and Alces (moose) appear in the eDNA record. 22 

The productivity of the bottleneck increased to a peak at ∼11.6 cal. kyr BP. The presence 23 

of Esox (pike), a top aquatic predator, implies that by ∼11.7 cal. kyr BP, a fish 24 

community was already established. After 11.6 cal. kyr BP, Picea (spruce), Pinus (pine) 25 
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and Betula pollen increased in the Charlie Lake pollen record, reflecting the 1 

establishment of boreal forest.  2 

Around 11.5 cal. kyr BP, a distinct decline occurred in pollen influx at both lakes. High 3 

abundance of Botryococcus (green algae) in each is probably a response to changing 4 

nutrient sources, lake chemistry, sediment input and possibly reduced turbidity 5 

following isolation of these basins from Glacial Lake Peace41. Botryococcus 6 

dominated the early Holocene sequence in Spring Lake (11.7–11.5 cal. kyr BP) but 7 

declined relative to Pediastrum (green algae) after 11.0 cal. kyr BP, consistent with 8 

eutrophication in a more productive ecosystem. Pollen and plant macrofossils indicate 9 

Alnus (alder) was in the vicinity of Spring Lake at about 7.0 cal. kyr BP, although it is 10 

not evident in eDNA until approximately 5.5 cal. kyr BP. 11 

 12 

We used non-metric multi-dimensional scaling (NMDS) based on Bray–Curtis 13 

similarity measures to explore whether the eDNA plant communities, excluding algae, 14 

reflect the pollen data (Fig. 2b, d). In eDNA samples, the first NMDS axis matches the 15 

clear separation between major pollen zones at Spring Lake and Charlie Lake. The only 16 

exception is represented by the 12.2 cal. kyr BP sample at Charlie Lake, which does not 17 

cluster with other samples of similar age (~12.6–11.6 cal. kyr BP) but is closer to the 18 

arboreal and younger samples from pollen zone I. Nevertheless, consistency between 19 

the main pollen zones and clustering of eDNA samples confirms that large ecological 20 

changes found in pollen records can be identified using eDNA. 21 

 22 

Despite good conformity between palynological and eDNA data, some discrepancies 23 

suggest these proxies are variably affected by a plant’s reproductive process and 24 

taphonomic history (see Supplementary Information). The most notable of these 25 
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discrepancies is the Populus record. In Charlie Lake, its pollen and eDNA signals are 1 

congruent from ~11.6–11.2 cal. kyr BP, whereas earlier (~12.4–12.1 cal. kyr BP) the 2 

eDNA signal for Populus is more pronounced. In Spring Lake, Populus pollen only 3 

occurs towards the base of the record and in upper zone III, whereas in the eDNA record 4 

it is abundant throughout. This discrepancy is probably due to Populus reproducing 5 

vegetatively, and its notoriously low detection rates and poor pollen preservation, 6 

which often render it palynologically ‘silent’42. The eDNA reveals that poplar was 7 

probably more abundant in the regional vegetation than has previously been shown with 8 

palynology. This has important implications for human occupation as poplar would 9 

have provided wood for fuel, shelter, and tools, as well as browse feeding for animals. 10 

 11 

The differences between the pollen and eDNA evidence for plants might also reflect 12 

dispersal factors. Wind-dispersed pollen is more likely to be encountered in lake-based 13 

pollen records, whereas predominantly insect-pollinated taxa are less likely to settle in 14 

lake sediments and be detected. Many willows (Salix spp.), for example, are insect 15 

pollinated. Their pollen is present in low percentage (5%) in zone II in Charlie Lake, 16 

but in higher abundance in zones II and III in the eDNA record (Extended Figs 5 and 17 

6). This suggests the eDNA comes more from macrofossils and plant debris than from 18 

pollen. 19 

 20 

The eDNA record also detects taxa not present in fossil bone assemblages, including 21 

terrestrial and aquatic vertebrates. In particular, it identifies top-level aquatic (Esox) 22 

and avian (Haliaeetus) predators, which indicate a rich supporting community at lower 23 

trophic levels. Cervus is evident in the Charlie Lake record at about 11.5 cal. kyr BP, 24 

whereas its earliest fossil remains from the area date to about 10.2 cal. kyr BP43. Small 25 
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mammals, such as Microtus are documented in the Charlie Lake eDNA at 12.4 cal. kyr 1 

BP confirming the Microtus colony found just west of Charlie Lake, at Bear Flats43. 2 

Yet, there are also notable absences in eDNA compared to the vertebrate record. For 3 

example, faunal remains from the adjacent Charlie Lake Cave, dated to ~12.4 cal. kyr 4 

BP44 are rich in waterfowl and other birds and fish not detected by eDNA. In the Spring 5 

Lake eDNA record, Castor (beaver) appears between 5.4 and 3 cal. kyr BP, whereas 6 

evidence from Wood Bog45 ~60 km to the south suggests that the beaver was part of 7 

the local fauna since at least 11 cal. kyr BP. 8 

 9 

When the evidence from these multiple proxies is combined, it provides a more robust 10 

record of the presence of plants and animals than any single indicator. It is, of course, 11 

possible that some taxa arrived on the landscape earlier and escaped detection, thus 12 

appearing absent. However, there was only a narrow window of time between when the 13 

bottleneck region was beneath the waters of Glacial Lake Peace and impassable, and 14 

when these proxies first detect the presence of plants and animals. The eDNA data are 15 

particularly important for indicating the earliest occurrence of terrestrial fauna in the 16 

bottleneck region, particularly the game animals that would have been key subsistence 17 

resources for hunter-gatherers46. 18 

 19 

Discussion  20 

 21 

Although ice sheet retreat led to the corridor physically opening in the bottleneck region 22 

starting around 15–14 cal. kyr BP10, deglaciation was followed by regional inundation 23 

below the waters of Glacial Lake Peace for perhaps up to 2,000 years13. By around 12.6 24 

cal. kyr BP the ice sheets were several hundred kilometres apart and the landscape had 25 
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become vegetated. Large and small animals came in soon thereafter, around 12.5 cal. 1 

kyr BP, making the corridor capable of supplying the biotic resources, including high-2 

ranked prey such as bison, required by human foragers for the 1,500 km traverse47. This 3 

result is consistent with the recent finding that the oldest of the southern bison clade 4 

specimens (clades 1a and 2b) found north of the bottleneck region postdates 12.5 cal. 5 

kyr BP, though not with the finding that it opened earlier3 (see Supplementary 6 

Information). 7 

 8 

From our findings, it follows that an ice-free corridor was unavailable to those groups 9 

who appear to have arrived in the Americas south of the continental ice sheets by 14.7 10 

cal. kyr BP6, 7, and also opened too late to have served as an entry route for the ancestors 11 

of Clovis who were present by 13.4 cal. kyr BP1, 9. Not surprisingly, the earliest 12 

archaeological presence in the Peace River region, at Charlie Lake Cave (Fig. 3) and 13 

Saskatoon Mountain45, 47, postdates 12.6 cal. kyr BP. More striking, once opened, the 14 

corridor was not used just for southbound movement: archaeological evidence suggests 15 

that people were moving north as well, potentially renewing contact between groups 16 

that had been separated for millennia1, 9. Bison3 were also colonizing the corridor and 17 

moving north and south; it is uncertain whether other species, such elk2 and brown 18 

bears48, were moving similarly. 19 

 20 

More broadly, although Clovis people may yet be shown to represent an independent 21 

migration separate from the peoples present here by 14,700 cal. kyr BP, they must have 22 

descended from a population that entered the Americas via a different route than the 23 

ice-free corridor. This conclusion is relevant to the recent finding49 that ancestral Native 24 

Americans diverged into southern and northern branches ~13 cal. kyr BP (95% 25 
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confidence interval of 14.5–11.5 cal. kyr BP). This implies that if that split occurred 1 

north of the ice sheets, there must have been two pulses of migration to the south. As 2 

the Anzick infant’s genome, dated to 12.6 cal. kyr BP and associated with Clovis 3 

artefacts, is part of the southern branch50, its ancestors must have travelled via the coast. 4 

However, this does not preclude the possibility that ancestors of the northern branch 5 

left Alaska later, through a then-viable ice-free corridor. Alternatively, if the divergence 6 

occurred in unglaciated North America, as recently proposed49, it implies a single 7 

ancestral population came via the coast. It further raises the possibility that the northern 8 

branch—the descendants occupying Alaska today—made their way north to Alaska via 9 

the corridor after 12.6 cal. kyr BP. Further investigations of ancient DNA may help 10 

resolve this issue.  11 

 12 

Methods 13 

 14 

Sediment sampling. We obtained 23 sediment cores from 8 different lakes by using a 15 

percussion corer deployed from the frozen lake surface51. To prevent eventual internal 16 

mixing, we discarded all upper suspended sediments and only kept the compacted 17 

sediment for further investigation. Cores were cut into smaller sections to allow 18 

transport and storage. All cores were taken to laboratories at the University of Calgary 19 

and were stored cold at 5 °C until subsequent subsampling. Cores were split using an 20 

adjustable tile saw, cutting only the PVC pipe. The split half was taken into a positive 21 

pressure laboratory for DNA subsampling. DNA samples were taken wearing full body 22 

suit, mask and sterile gloves; the top 10 mm were removed using two sterile scalpels 23 

and samples were taken with a 5 ml sterile disposable syringe (3–4 cm2) and transferred 24 

to a 15 ml sterile spin tube. Caution was taken not to cross-contaminate between layers 25 
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or to sample sediments in contact with the inner side of the PVC pipe. Samples were 1 

taken every centimetre in the lowest 1 m of the core (except for Spring Lake, the lowest 2 

2 m), then intervals of 2 cm higher up, and finally samples were taken every 5 cm, and 3 

subsequently frozen until analysed. Pollen samples were taken immediately next to the 4 

DNA samples, while macrofossil samples were cut from the remaining layer in 1 cm or 5 

2 cm slices. Following sampling, the second intact core halves were visually described 6 

and wrapped for transport. All cores were stored at 5 °C before, during and after 7 

shipment to the University of Copenhagen (Denmark).  8 

 9 

Core logging and scanning. An ITRAX core scanner was used to take high-resolution 10 

images and to measure magnetic susceptibility at the Department of Geoscience, 11 

Aarhus University. Magnetic susceptibility52 was measured every 0.5 cm using a 12 

Bartington Instruments MS2 system (Extended Data Fig. 2).  13 

 14 

Pollen and macrofossil extraction and identification. Pollen was extracted using a 15 

standard protocol30. Lycopodium markers were added to determine pollen 16 

concentrations53 (see Supplementary Information). Samples were mounted in (2000 cs) 17 

silicone oil and pollen including spores were counted using a Leica Laborlux-S 18 

microscope at 400× magnification and identified using keys30, 53, 54 as well as reference 19 

collections of North American and Arctic pollen housed at the University of Alberta 20 

and the Danish Natural History Museum, respectively. Pollen and pteridophyte spores 21 

were identified at least to family level and, more typically, to genera. Green algae 22 

coenobia of Pediastrum boryanum and Botryococcus were recorded to track changes 23 

in lake trophic status. Pollen influx values were calculated using pollen concentrations 24 

divided by the deposition rate (see Supplementary Information). Microfossil diagrams 25 
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were produced and analysed using PSIMPOLL 4.10 (ref. 31). The sequences were zoned 1 

with CONIIC31, with a stratigraphy constrained clustering technique using the 2 

information statistic as a distance measure. All macrofossils were retrieved using a 3 

100 μm mesh size and were identified but not quantified. 4 

 5 

Radiocarbon dating and age-depth modelling. Plant macrofossils identified as 6 

terrestrial taxa (or unidentifiable macrofossils with terrestrial characteristics where no 7 

preferable material could be identified) were selected for radiocarbon (14C) dating of 8 

the lacustrine sediment. All macrofossils were subjected to a standard acid-base-acid 9 

(ABA) chemical pre-treatment at the Oxford Radiocarbon Accelerator Unit (ORAU), 10 

following a standard protocol55, with appropriate ‘known age’ (that is, independently 11 

dendrochronologically-dated tree-ring) standards run alongside the unknown age plant 12 

macrofossil samples56. Specifically, this ABA chemical pre-treatment (ORAU 13 

laboratory pre-treatment code ‘VV’) involved successive 1 M HCl (20 min, 80 °C), 14 

0.2 M NaOH (20 min, 80 °C) and 1 M HCl (1 h, 80 °C) washes, with each stage 15 

followed by rinsing to neutrality (≥3 times) with ultrapure MilliQ deionised water. The 16 

three principal stages of this process (successive ABA washes) are similar across most 17 

radiocarbon laboratories and are, respectively, intended to remove: (i) sedimentary- and 18 

other carbonate contaminants; (ii) organic (principally humic- and fulvic-) acid 19 

contaminants; and (iii) any dissolved atmospheric CO2 that might have been absorbed 20 

during the preceding base wash. Thus, any potential secondary carbon contamination 21 

was removed, leaving the samples pure for combustion and graphitisation. Accelerator 22 

mass spectrometry (AMS) 14C dating was subsequently performed on the 2.5 MV 23 

HVEE tandem AMS system at ORAU57. As is standard practice, measurements were 24 

corrected for natural isotopic fractionation by normalizing the data to a standard δ13C 25 
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value of −25‰ VPDB, before reporting as conventional 14C ages before present (BP, 1 

before ad 1950)58. 2 

 3 

These 14C data were calibrated with the IntCal13 calibration curve59 and modelled using 4 

the Bayesian statistical software OxCal v. 4.2 (ref. 60). Poisson process 5 

(‘P_Sequence’) deposition models were applied to each of the Charlie and Spring 6 

Lake sediment profiles61, with objective ‘Outlier’ analysis applied to each of the 7 

constituent 14C determinations62. The P_Sequence model takes into account the 8 

complexity (randomness) of the underlying sedimentation process, and thus provides 9 

realistic age-depth models for the sediment profiles on the calibrated radiocarbon 10 

(IntCal) timescale. The rigidity of the P_Sequence (the regularity of the 11 

sedimentation rate) is determined iteratively within OxCal through a model averaging 12 

approach, based upon the likelihood (calibrated 14C) data included within the model60. 13 

A prior ‘Outlier’ probability of 5% was applied to each of the 14C determinations, 14 

because there was no reason, a priori, to believe that any samples were more likely to 15 

be statistical outliers than others. All 14C determinations are provided in Extended Data 16 

Table 1; OxCal model coding is provided in the Supplementary Information; and plots 17 

of the age-depth models derived for Spring and Charlie Lakes are given in Extended 18 

Data Fig. 2. 19 

 20 

DNA analysis. All DNA extractions and pre-PCR analyses were performed in the 21 

ancient DNA facilities of the Centre for GeoGenetics, Copenhagen. Total genomic 22 

DNA was extracted using a modified version of an organic extraction protocol63. We 23 

used a lysis buffer containing 68 mM N-lauroylsarcosine sodium salt, 50 mM Tris-HCl 24 

(pH 8.0), 150 mM NaCl, and 20 mM EDTA (pH 8.0) and, immediately before 25 
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extraction, 1.5 ml 2-mercaptoethanol and 1.0 ml 1 M DTT were added for each 30 ml 1 

lysis buffer. Approximately 2 g of sediment was added, and 3 ml of buffer, together 2 

with 170 μg of proteinase K, and vortexed vigorously for 2× 20 s using a FastPrep-24 3 

at speed 4.0 m s−1. An additional 170 μg of proteinase K was added to each sample and 4 

incubated, gently rotating overnight at 37 °C. For removal of inhibitors we used the 5 

MOBIO (MO BIO Laboratories, Carlsbad, CA) C2 and C3 buffers following the 6 

manufacturer’s protocol. The extracts were further purified using phenol-chloroform 7 

and concentrated using 30 kDa Amicon Ultra-4 centrifugal filters as described in the 8 

Andersen extraction protocol63. Our extraction method was changed from this protocol 9 

with the following modifications: no lysis matrix was added due to the minerogenic 10 

nature of the samples and the two phenol, one chloroform step was altered, thus both 11 

phenol:chloroform:supernatant were added simultaneously in the respective ratio 12 

1:0.5:1, followed by gentle rotation at room temperature for 10 min and spun for 5 min 13 

at 3,200g. For dark-coloured extracts, this phenol:chloroform step was repeated. All 14 

extracts were quantified using Quant-iT dsDNA HS assay kit (Invitrogen) on a Qubit 15 

2.0 Fluorometer according to the manufacturer’s manual. The measured concentrations 16 

were used to calculate the total ng DNA extracted per g of sediment (Fig. 2). 32 samples 17 

were prepared for shotgun metagenome sequencing64 using the NEBNext DNA Library 18 

Prep Master Mix Set for 454 (New England BioLabs) following the manufacturer’s 19 

protocol with the following modifications: (i) all reaction volumes (except for the end 20 

repair step) were decreased to half the size as in the protocol, and (ii) all purification 21 

steps were performed using the MinElute PCR Purification kit (Qiagen). Metagenome 22 

libraries were amplified using AmpliTaq Gold (Applied Biosystems), given 14–20 23 

cycles following and quantified using the 2100 BioAnalyser chip (Agilent). All libraries 24 

were purified using Agencourt AMPure XP beads (BeckmanCoulter), quantified on the 25 
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2100 BioAnalyzer and pooled equimolarly. All pooled libraries were sequenced on an 1 

Illumina HiSeq 2500 platform and treated as single-end reads.  2 

 3 

Bioinformatics. Metagenomic reads were demultiplexed and trimmed using 4 

AdapterRemoval 1.5 (ref. 65) with a minimum base quality of 30 and minimum length 5 

of 30 BP66. All reads with poly-A/T tails ≥ 4 were removed from each sample. Low-6 

quality reads and duplicates were removed using String Graph Assembler (SGA)67 7 

setting the preprocessing tool dust-threshold = 1, index algorithm = ‘ropebwt’ and using 8 

the SGA filter tool to remove exact and contained duplicates. Each quality-controlled 9 

(QC) read was thereafter allowed equal change to map to reference sequences using 10 

Bowtie2 version 2.2.4 (ref. 68) (end-to-end alignment and mode –k 50 for example, 11 

reads were allowed a total of 500 hits before being parsed). A few reads with more than 12 

500 matches were confirmed by checking that the best blast hit belonged to this taxon, 13 

and that alternative hits have lower e-values and alignment scores. We used the full 14 

nucleotide database (nt) from GenBank (accessed 4 March 2015), which due to size 15 

and downstream handling was divided into 9 consecutive equally sized databases and 16 

indexed using Bowtie2-build. All QC checked fastq files were aligned end-to-end using 17 

Bowtie2 default settings. Each alignment was merged using SAMtools69, sorted 18 

according to read identifier and imported to MEGAN v. 10.5 (ref. 70). We performed 19 

a lowest common ancestor (LCA) analysis using the built-in algorithm in MEGAN and 20 

computed the taxonomic assignments employing the embedded NCBI taxonomic tree 21 

(March 2015 version) on reads having 100% matches to a reference sequence. We call 22 

this pipeline ‘Holi’ because it takes a holistic approach because it has no a priori 23 

assumption of environment and the read is given an equal chance to align against the 24 

nt database containing the vast majority of organismal sequences (see Supplementary 25 

 17 



Information). In silico testing of ‘Holi’ sensitivity (see Supplementary Information) 1 

revealed 0.1% as a reliable minimum threshold for Viridiplantae taxa. For metazoan 2 

reads, which were found to be under-represented in our data, we set this threshold to 3 3 

unique reads in one sample or 3 unique reads in three different samples from the same 4 

lake. In addition, we confirmed that each read within the metazoans by checking that 5 

the best blast hit belonged to this taxon, and that alternative hits have lower e-values 6 

and alignment scores71. We merged all sequences from all blanks and subtracted this 7 

from the total data set (instead of pairing for each extract and library build), using 8 

lowest taxonomic end nodes. Candidate detection was performed by decreasing the 9 

detection threshold in ‘Holi’ from 0.1% to 0.01% to increase the detection of 10 

contaminating plants, and similar for metazoans, we decreased the detection level and 11 

subtracted all with 2 or more reads per taxa (see Supplementary Information). We 12 

performed a series of in silico tests to measure the sensitivity and specificity of our 13 

assignment method and to estimate likelihood of false-positives (see Supplementary 14 

Information). 15 

 16 

We generated 1,030,354,587 Illumina reads distributed across 32 sediment samples and 17 

used the dedicated computational pipeline (‘Holi’) for handling read de-multiplexing, 18 

adaptor trimming, control quality, duplicate and low-complexity read removal (see 19 

Supplementary Information). The 257,890,573 reads parsing filters were further 20 

aligned against the whole non-redundant nucleotide (nt) sequence database72. Hereafter, 21 

we used a lowest common ancestor approach70 to recover taxonomic information from 22 

the 985,818 aligning reads. Plants represented by less than 0.1% of the total reads 23 

assigned were discarded to limit false positives resulting from database mis-annotations, 24 

PCR and sequencing errors (see Supplementary Information). Given the low number 25 
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of reads assigned to multicellular, eukaryotic organisms (metazoans), we set a minimal 1 

threshold of 3 counts per sample or 1 count in each of three samples. For plants and 2 

metazoans this resulted in 511,504 and 2,596 reads assigned at the family or genus 3 

levels, respectively. The read counts were then normalized for generating plant and 4 

metazoan taxonomic profiles (Extended Data Figs 5 and 6). Taxonomic profiles for 5 

reads assigned to bacteria, archaea, fungi and alveolata were also produced (see 6 

Supplementary Information). 7 

 8 

DNA damage and authenticity. We estimated the DNA damage levels using the 9 

MapDamage package 2.0 (ref. 40) for the most abundant organisms (Extended Data 10 

Fig. 7b). These represent distinctive sources, which help to account for potential 11 

differences between damage accumulated from source to deposition or during 12 

deposition. Input SAM files were generated for each sample using Bowtie2 (ref. 68) to 13 

align all QC reads from each sample against each reference genome. All aligning 14 

sequences were converted to BAM format, sorted and parsed through MapDamage by 15 

running the statistical estimation using only the 5’-ends (–forward) for single reads. All 16 

frequencies of cytosine to thymine mutations per position from the 5’ ends were parsed 17 

and the standard deviation was calculated to generate DNA damage models for each 18 

lake (Extended Data Fig. 7a and Supplementary Information).  19 
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Figure captions 1 

 2 

Figure 1 | Setting and study area. During the Last Glacial Maximum, the Laurentide 3 

Ice Sheet and the Cordilleran Ice Sheet coalesced in western mid-Canada creating a 4 

physical barrier to north–south migration. Following the Last Glacial Maximum, the 5 

ice retreated creating an ice-free corridor (IFC). a, Ice extent10 during two periods, Last 6 

Glacial Maximum 21.4 cal. kyr BP (off-white) and Late Pleistocene 14.1 cal. kyr BP 7 

(light-blue). b, Topography of the Peace River basin with Glacial Lake Peace Phase III 8 

(white lines with blue outlines) and Phase IV13 with ice extent10 (light-blue and dark-9 

blue) at around 14.1 cal. kyr BP and 13 cal. kyr BP, respectively. The red and white lines 10 

mark topographic transects of the lakes which in relation to the four phases of Glacial 11 

Lake Peace13 is found in Extended Data Fig. 1.  12 

 13 

Figure 2 | Selected pollen, DNA and biometrical results. a, c, Pollen are presented 14 

as influx (area) and DNA taxa presented with normalized counts (bars). HS asteraceae, 15 

high spike asteraceae. Metazoans are presented with bullet points indicating their 16 

presence. The 5 point average (5p) of the incoherent/coherent (incoh/coh) ratio is 17 

derived from the X-ray fluorescence results and an increasing ratio represents increased 18 

organic content. b, d, Non-metric multi-dimensional scaling plots; grey ellipses marked 19 

I, II, and III encircle the samples corresponding to the respective CONIIC pollen 20 

zonation. Coloured dots indicate each taxon identified. The coloured categories are 21 

identical to the pollen and DNA taxa in Charlie Lake (a), and Spring Lake (c).  22 

 23 

Figure 3 | Ecological interpretation and implications of this study. 24 

 31 



Timeline of the biology in the bottleneck area linking it with evidence of human 1 

occupation and the first appearance of Clovis technology (see also Fig. 4). Grey animal 2 

silhouettes are vertebrate genera that were identified by environmental DNA in both 3 

lake cores. 4 

 5 

Figure 4 | Colonization models. Comparison of models of Paleoindian colonization 6 

(number of pulses, timing, and route(s)) that are supported or rejected by our data. All 7 

ages are in calibrated years before present. 8 

 9 

Extended Data Figures 10 

 11 

Extended Data Figure 1: Topographic transects. 12 

The red and white lines on Fig. 1b mark topographic transects of Charlie Lake and 13 

Spring Lake in relation to the four phases of Glacial Lake Peace13. CIC, Cordilleran 14 

ice complex; m.a.s.l., metres above sea level. 15 

 16 

Extended Data Figure 2: Visual and physical descriptions and age-depth model 17 

for the studied lake sediments. 18 

a, b, Charlie Lake (a) and Spring Lake (b) span the Pleistocene to Holocene transition 19 

(dotted grey line); magnetic susceptibility (continuous black line); and compressed 20 

high-resolution images from the ITRAX core scanner and the sedimentary log are 21 

shown. Age-depth models for Charlie Lake (a) and Spring Lake (b) were generated 22 

with P_Sequence deposition models in OxCal v. 4.2 using the IntCal13 radiocarbon 23 

calibration curve57, 59, 61. The probability envelopes represent the 68.2% and 95.4% 24 

confidence ranges, respectively (see Methods and Supplementary Information). 25 
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 1 

Extended Data Figure 3: Charlie Lake pollen and macrofossil diagrams. 2 

a, Pollen are presented as influx and bullet points indicate taxa with less than 2 grains 3 

cm−2 year−1. The diagram was zoned using CONIIC31 with a stratigraphically 4 

constrained cluster analysis on the information statistic. b, Relative proportions of 5 

ecologically important taxa. c, Macrofossils were identified but not enumerated. Bullet 6 

points represent presence. 7 

 8 

Extended Data Figure 4: Spring Lake pollen and macrofossil diagrams. 9 

a, Pollen are presented as influx and bullet points represent taxa with less than 50 grains 10 

cm−2 year−1. The diagram was zoned using CONIIC31 with a stratigraphically 11 

constrained cluster analysis on the information statistic. b, Relative proportions of 12 

ecologically important taxa. c, Macrofossils were identified but not enumerated. Bullet 13 

points represent presence. 14 

 15 

Extended Data Figure 5: Charlie Lake DNA diagram. 16 

DNA results are presented as normalized counts to allow comparison on the temporal 17 

scale for each taxon. All are unique sequences with 100% sequence identity to taxa. 18 

Histogram width equals the accumulation period. a, Viridiplantae, bullet points 19 

represent counts less than 50. b, Algae, bullet points represent counts less than 50. c, 20 

Metazoans, bullet points represent counts equal to 1. 21 

 22 

Extended Data Figure 6: Spring Lake DNA diagram. 23 

DNA results are presented as normalized counts to allow comparison on the temporal 24 

scale for each taxon. All are unique sequences with 100% sequence identity to taxa. 25 
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Histogram width equals the accumulation period. a, Viridiplantae, bullet points 1 

represent counts less than 50. b, Algae, bullet points represent counts less than 50. c, 2 

Metazoans, bullet points represent counts equal to 1. 3 

 4 

Extended Data Figure 7: DNA damage accumulation model. 5 

Maximum-likelihood DNA damage rates were estimated from nucleotide 6 

misincorporation patterns using MapDamage2.0 (ref. 40). a, Each full circle is the mean 7 

of cytosine to thymine mutation frequencies at the first position (n ≥ 2 species) with 8 

above 500 reads aligned to reference bars that represent ± 1 s.d. b, Table of species used 9 

for determining the DNA damage rates. 10 

 11 

Extended Data Tables 12 

 13 

Extended Data Table 1: AMS 14C determinations of terrestrial plant macrofossil 14 

samples from Charlie and Spring Lakes. 15 

 16 
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