www.fgks.org   »   [go: up one dir, main page]

Skip to main content
Log in

Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polyethylene (PE) is one of the major persistent plastic that is not biodegradable at considerable rates in most environments, and is the major source of unceasing environmental pollution. Recently, biodegradation of plastic wastes through waxworms and mealworms were reported. The present study focuses on the high-density polyethylene (HDPE) degradation capabilities of the larvae of Achroia grisella (lesser waxworm) and its ability to complete its life cycle when fed with HDPE. Effects of added nutrition on PE degradation were assessed, providing wax comb as co-feed (PE-WC). The egested frass of the waxworm fed on waxcomb (WC), PE, and PE-WC were studied by analyzing the changes in physiochemical properties through FTIR and 1H NMR techniques in addition to weight loss percentage of PE and survival rates of the tested lesser waxworms. The post-degradation studies of WC and PE showed 90.5 ± 1.2% and 43.3 ± 1.6% weight loss, respectively, by a group of 100 lesser waxworms. Over an 8-day period, PE consumption increased with an ingestion of 1.83 mg of PE per day per larvae. Supplementing the PE feed of lesser waxworms with WC facilitated enhanced PE degradation showing 69.6 ± 3.2% weight loss. Twenty-eight day survival rates for lesser waxworms fed on WC, PE, and PE-WC were 91.3 ± 1.01%, 74.6 ± 2.9%, and 86 ± 1.4%, respectively. The FTIR and 1H NMR analysis of egested frass indicated formation of new functional organic groups, supporting biodegradation of PE in lesser waxworms. The frass of the lesser waxworm fed on PE samples shows the presence of new carbonyl and alcoholic groups with increase in unsaturated hydrocarbon indicating formation of biodegraded intermediates. Lesser waxworms fed with WC, PE, and PE-WC completed all life cycle stages (larvae, pupae, moth, and egg) developing into a second generation. The second generation of PE-WC fed larvae of A. grisella efficiently degrades PE at par with first generation counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham J, Ghosh E, Mukherjee P, Gajendiran A (2017) Microbial degradation of low density polyethylene. Environ Prog Sustain Energy 36:147–154

    Article  CAS  Google Scholar 

  • Albertsson AC, Andersson SO, Karlsson S (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    Article  CAS  Google Scholar 

  • Ali SS, Qazi IA, Arshad M, Khan Z, Voice TC, Mehmood CT (2016) Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environ Nanotechnol Monit Manage 5:44–53

    Article  CAS  Google Scholar 

  • Andrady AL, Pegram JE, Tropsha Y (1993) Changes in carbonyl index and average molecular weight on embrittlement of enhanced-photodegradable polyethylenes. J Polym Environ 1:171–179

    Article  CAS  Google Scholar 

  • Asgari P, Moradi O, Tajeddin B (2014) The effect of nanocomposite packaging carbon nanotube base on organoleptic and fungal growth of Mazafati brand dates. Int Nano Lett 4:98

    Article  CAS  Google Scholar 

  • Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998

    Article  CAS  Google Scholar 

  • Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293

    Article  CAS  Google Scholar 

  • Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452

    Article  CAS  Google Scholar 

  • Brandon AM, Gao SH, Tian R, Ning D, Yang S, Zhou J, Wu WM, Criddle CS (2018) Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environ Sci Technol 52:6526–6533

    Article  CAS  Google Scholar 

  • Briassoulis D (2006) Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym Degrad Stab 91:1256–1272

    Article  CAS  Google Scholar 

  • Briassoulis D, Aristopoulou A, Bonora M, Verlodt I (2004) Degradation characterisation of agricultural low-density polyethylene films. Biosyst Eng 88:131–143

    Article  Google Scholar 

  • Bugada DC, Rudin A (1987) Branching in low density polyethylene by 13C-NMR. Eur Polym J 23:809–818

    Article  CAS  Google Scholar 

  • Chandel YS, Sharma S, Verma KS (2003) Comparative biology of the greater waxmoth, Galleria mellonella L., and lesser waxmoth, Achoria grisella. F Pest Manage Econ Zool 11:69–74

    Google Scholar 

  • Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, Fernández-de-Puelles ML (2014) Plastic debris in the open ocean. Proc Natl Acad Sci 111:10239–10244

    Article  CAS  Google Scholar 

  • Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5:81–86

    Article  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Article  CAS  Google Scholar 

  • Dunshea G, Barros NB, Wells RS, Gales NJ, Hindell MA, Jarman SN (2008) Pseudogenes and DNA-based diet analyses: a cautionary tale from a relatively well sampled predator-prey system. Bull Entomol Res 98:239–248

    Article  CAS  Google Scholar 

  • Ellis JD, Graham JR, Mortensen A (2013) Standard methods for wax moth research. J Apic Res 52:1–17

    Article  Google Scholar 

  • Eyheraguibel B, Traikia M, Fontanella S, Sancelme M, Bonhomme S, Fromageot D, Lemaire J, Lauranson G, Lacoste J, Delort AM (2017) Characterization of oxidized oligomers from polyethylene films by mass spectrometry and NMR spectroscopy before and after biodegradation by a Rhodococcus rhodochrous strain. Chemosphere 184:366–374

    Article  CAS  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  CAS  Google Scholar 

  • Guillot J, Deville M, Berthelemy M, Provost F, Guého E (2000) A single PCR-restriction endonuclease analysis for rapid identification of Malassezia species. Lett Appl Microbiol 31:400–403

    Article  CAS  Google Scholar 

  • Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21:557–563

    Article  CAS  Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  CAS  Google Scholar 

  • Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106

    Article  CAS  Google Scholar 

  • Ibiene AA, Stanley HO, Immanuel OM (2013) Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger delta mangrove swamp. Nigerian J Biotechnol 26:68–78

    Google Scholar 

  • Ingavale RR, Raut PD (2018) Comparative biodegradation studies of LDPE and HDPE using Bacillus weihenstephanensis isolated from garbage soil. Nat Environ Pollut Technol 17:649–655

    CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  Google Scholar 

  • Karlsson S, Ljungquist O, Albertsson AC (1988) Biodegradation of polyethylene and the influence of surfactants. Polym Degrad Stab 21:237–250

    Article  CAS  Google Scholar 

  • Kathiresan K (2003) Polythene and plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:629–633

    CAS  Google Scholar 

  • Khabbaz F, Albertsson AC, Karlsson S (1999) Chemical and morphological changes of environmentally degradable polyethylene films exposed to thermo-oxidation. Polym Degrad Stab 63:127–138

    Article  CAS  Google Scholar 

  • Kumar S, Hatha AAM, Christi KS (2007) Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev Biol Trop 55:777–786

    Article  Google Scholar 

  • Kutyshenko VP, Beskaravayny P, Uversky VN (2015) “In-plant” NMR: analysis of the intact plant Vesicularia dubyana by high resolution NMR spectroscopy. Molecules 20:4359–4368

    Article  CAS  Google Scholar 

  • Kyaw BM, Champakalakshmi R, Sakharkar MK, Lim CS, Sakharkar KR (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419

    Article  CAS  Google Scholar 

  • Law KL, Morét-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188

    Article  CAS  Google Scholar 

  • Lee B, Pometto AL, Fratzke A, Bailey TB (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    CAS  Google Scholar 

  • Mahgoub MO, Lau WH, Omar DB (2015) Observations on the biology and larval instars discrimination of wax moth Achroia grisella F. (Pyralidae: Lepidoptera). J Entomol 12:1–11

    Article  Google Scholar 

  • Mamoor GM, Qamar N, Farooq M (2011) Free radical graft modification of polyethylene with methacrylic acid and styrene monomer. Chem Eng Res Bull 15:34–38

    Google Scholar 

  • Mehmood CT, Qazi IA, Hashmi I, Bhargava S, Deepa S (2016) Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. Int Biodeterior Biodegrad 113:276–286

    Article  CAS  Google Scholar 

  • Mohammadi D, Abad RFP, Rashidi MR, Mohammadi SA (2010) Study of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) using Dyar’s rule. Munis Entomol Zool 5:216–224

    Google Scholar 

  • Muhonja CN, Makonde H, Magoma G, Imbuga M (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 13:e0198446

    Article  CAS  Google Scholar 

  • Mukherjee S, RoyChaudhuri U, Kundu PP (2018) Biodegradation of polyethylene via complete solubilization by the action of Pseudomonas fluorescens, biosurfactant produced by Bacillus licheniformis and anionic surfactant. J Chem Technol Biotechnol 93:1300–1311

    Article  CAS  Google Scholar 

  • Nakao M, Waki T, Sasaki M, Anders JL, Koga D, Asakawa M (2017) Brachylaima ezohelicis sp. nov.(Trematoda: Brachylaimidae) found from the land snail Ezohelix gainesi, with a note of an unidentified Brachylaima species in Hokkaido, Japan. Parasitol Int 66:240–249

    Article  Google Scholar 

  • Nanda S, Sahu S, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manag 14. https://doi.org/10.4314/jasem.v14i2.57839

  • Novotný Č, Malachová K, Adamus G, Kwiecień M, Lotti N, Soccio M, Fava F (2018) Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. Int Biodeterior Biodegrad 132:259–267

    Article  CAS  Google Scholar 

  • Paço A, Duarte K, da Costa JP, Santos PS, Pereira R, Pereira ME, Freitas AC, Duarte AC, Rocha-Santos TA (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ 586:10–15

    Article  CAS  Google Scholar 

  • Pramila R, Ramesh KV (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. Afr J Bacteriol Res 7:24–28

    CAS  Google Scholar 

  • Restrepo-Flórez JM, Bassi A, Thompson MR (2014) Microbial degradation and deterioration of polyethylene—a review. Int Biodeterior Biodegrad 88:83–90

    Article  CAS  Google Scholar 

  • Robertson HE, Lapraz F, Egger B, Telford MJ, Schiffer PH (2017) The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae. Sci Rep 7:1847

    Article  CAS  Google Scholar 

  • Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, TaKada H, The S, Thompson RC (2013) Policy: classify plastic waste as hazardous. Nature 494:169–171

    Article  CAS  Google Scholar 

  • Sak O (2018) Effects of 5-aza-2′-deoxycytidine on biological parameters of Achroia grisella F. (Lepidoptera: Pyralidae). Arch Biol Sci 70:149–158

    Article  Google Scholar 

  • Shearer GL (1989) An evaluation of Fourier transform infrared spectroscopy for the characterization of organic compounds in art and archaeology (Doctoral dissertation, University of London)

  • Silva GGD, Sobral PJA, Carvalho RA, Bergo PVA, Mendieta-Taboada O, Habitante AMQB (2008) Biodegradable films based on blends of gelatin and poly (vinyl alcohol): effect of PVA type or concentration on some physical properties of films. J Polym Environ 16:276–285

    Article  CAS  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352

    Article  CAS  Google Scholar 

  • Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Marine microbe-mediated biodegradation of low-and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–213

    Article  CAS  Google Scholar 

  • Volke-Sepúlveda T, Saucedo-Castañeda G, Gutiérrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314

    Article  Google Scholar 

  • Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, Rodriguez-Mozaz S (2014) Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26:12

    Article  Google Scholar 

  • Worm B, Lotze HK, Jubinville I, Wilcox C, Jambeck J (2017) Plastic as a persistent marine pollutant. Annu Rev Environ Resour 42:1–26

    Article  Google Scholar 

  • Xu J, Yang W, Zhang C, Dong X, Luo Y (2018) Photo-oxidation and biodegradation of polyethylene films containing polyethylene glycol modified TiO2 as pro-oxidant additives. Polym Compos 39:E531–E539

    Article  CAS  Google Scholar 

  • Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani Y (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab 72:323–327

    Article  CAS  Google Scholar 

  • Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD (2011) Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 119:989–996

    Article  CAS  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  CAS  Google Scholar 

  • Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015a) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086

    Article  CAS  Google Scholar 

  • Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015b) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol 49:12087–12093

    Article  CAS  Google Scholar 

  • Yang SS, Brandon AM, Flanagan JCA, Yang J, Ning D, Cai SY, Fan HQ, Wang ZY, Ren J, Benbow E, Ren NQ (2018) Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 191:979–989

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central Instrumentation Facility, Pondicherry University, India, for providing the instrumentation facility for characterization. The financial support from Maulana Azad National Fellowship program, University Grants Commission, India (F1-17.1/2015-16/MANF-2015-17-KER-65616) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suja Purushothaman Devipriya.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundungal, H., Gangarapu, M., Sarangapani, S. et al. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ Sci Pollut Res 26, 18509–18519 (2019). https://doi.org/10.1007/s11356-019-05038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05038-9

Keywords

Navigation