www.fgks.org   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Assessment of non-point source of pollution using chemical mass balance approach: a case study of River Alaknanda, a tributary of River Ganga, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The low ionic concentration meltwaters of the rivers originating from the Himalayan glaciers play a significant role in diluting the high solute load emanating from Ganga plain catchments. Hence, any change in the qualitative and quantitative characteristics of the Himalayan tributaries of River Ganga under the changing climatic scenario will impact the hydrochemical parameters of River Ganga as well. Hydrochemical investigations have been carried out in the River Alaknanda, a tributary of River Ganga during the period September 2016–May 2018 and revealed that TSS and COD values were observed above the prescribed criteria limit of 10 mg/L for drinking purpose for river as prescribed by CPCB. The anions for all sampling sites and seasons were observed to be in decreasing order of HCO3  > SO42−  > Cl  > NO3 and cations Ca2+  > Mg2+  > Na+  > K+. The weathering of rock forming minerals of drainage basin is responsible for the chemical composition of river water. HCO3 being the dominant anion in the study area accounts for its presence due to carbonate and silicate weathering. Ion exchange process controls the major ion chemistry of the river water. The assessment and management of non-point sources (NPS) pollution are difficult by any deterministic method and require a vast amount of data to compensate for their extent of contamination, in the account of their prevailing nature in response to hydrological processes and land use patterns. In the present investigation, the application of a simple chemical mass balance approach based on law of conservation of mass/matter has been applied on River Alaknanda, a tributary of River Ganga for measuring the chemical mass loadings of some selected water quality constituents, viz., major cations (sodium, potassium, calcium, magnesium, and ammonium) and major anions (chloride, sulfate, nitrate, and phosphate) at upstream and downstream of different point source locations for examining the contribution made by non-point sources of pollution to the river. Time series analysis of various ion concentrations at point source sites and upstream/downstream sites inferred that the fluvial variations pertaining to ion concentration and flux are strongly dependent on the seasonal changes. More contribution (> 30–50%) for almost all constituents from uncharacterized sources was observed in the months of November to February, which may be attributed to intensified agricultural activities during the winter months particularly cereals and vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source loadings of various constituents

Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The analysis of major cations and anions was carried on Ion Chromatograph (Metrohm, Switzerland). Details of the analysis are given in Sharma et al. (2019) cited in the reference list and maintained analytical precision for all the analytes (anions and cations) < 5% and accuracy < 5%. The corresponding author confirms that he had full access to all the data used in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Discharge data used in the study was provided by Central Water Commission, Ministry of Jal Shakti, Govt. of India, New Delhi, and is thankfully acknowledged. The analytical data that support the findings of this study will be available from the corresponding author upon reasonable request.

References

  • Adu, J. T., & Kumarasamy, M. V. (2018). Assessing non-point source pollution models: A review. Polish Journal of Environmental Studies27(5).

  • Amin, M. M., Veith, T. L., Collick, A. S., Karsten, H. D., & Buda, A. R. (2017). Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agricultural Water Management, 180, 212–223.

    Article  Google Scholar 

  • Archibald, T. W., & Marshall, S. E. (2018). Review of mathematical programming applications in water resource management under uncertainty. Environmental Modelling & Assessment, 23, 753–777. https://doi.org/10.1007/s10666-018-9628-0

    Article  Google Scholar 

  • Berndtsson, R. (1990). Transport and sedimentation of pollutants in a river reach: A chemical mass balance approach. Water Resources Research, 26(7), 1549–1558.

    CAS  Google Scholar 

  • Berner, E. K., & Berner, R. A. (2012). Global environment: Water, air, and geochemical cycles. Princeton University Press.

    Book  Google Scholar 

  • BIS, (2012). Bureau of Indian Standards, New Delhi. 2–3.

  • Bouchez, J., Moquet, J. S., Espinoza, J. C., Martinez, J. M., Guyot, J. L., Lagane, C., Filizola, N., Noriega, L., Sanchez, L. H., & Pombosa, R. (2017). River mixing in the Amazon as a driver of concentration-discharge relationships. Water Resources Research, 53(11), 8660–8685.

    Article  Google Scholar 

  • Bowes, M. J., Jarvie, H. P., Halliday, S. J., Skeffington, R. A., Wade, A. J., Loewenthal, M., Gozzard, E., Newman, J. R., & Palmer-Felgate, E. J. (2015). Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration–flow relationships. Science of the Total Environment, 511, 608–620.

    Article  CAS  Google Scholar 

  • Brown, T. C., & Froemke, P. (2012). Nationwide assessment of nonpoint source threats to water quality. BioScience, 62(2), 136–146.

    Article  Google Scholar 

  • Bukaveckas, P. A., Guelda, D. L., Jack, J., Koch, R., Sellers, T., & Shostell, J. (2005). Effects of point source loadings, sub-basin inputs and longitudinal variation in material retention on C, N and P delivery from the Ohio River Basin. Ecosystems, 8, 825–840.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Non point pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

    Article  Google Scholar 

  • Chakrapani, G. J. (2005). Major and trace element geochemistry in upper Ganga River in the Himalayas, India. Environmental Geology, 48(2), 189–201.

    Article  CAS  Google Scholar 

  • Chakrapani, G. J., Saini, R. K., & Yadav, S. K. (2009). Chemical weathering rates in the Alaknanda-Bhagirathi river basins in Himalayas, India. Journal of Asian Earth Sciences, 34(3), 347–362.

    Article  Google Scholar 

  • Chen, D., Hu, M., Guo, Y., & Dahlgren, R. A. (2015). Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China. Science of the Total Environment, 533(15), 196–204.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., & Wang, J. (2013). Load estimation and source apportionment of nonpoint source nitrogen and phosphorus based on integrated application of SLURP model, ECM, and RUSLE: A case study in the Jinjiang River, China. Environmental Monitoring and Assessment, 185(2), 2009–2021.

    Article  CAS  Google Scholar 

  • Dolan, D. M., & El-Shaarawi, A. H. (1989). Inferences about point source loadings from upstream/downstream river monitoring data. Environmental and Monitoring Assessment, 12, 343–357.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • Godsey, S. E., Kirchner, J. W., & Clow, D. W. (2009). Concentration–discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes: An International Journal, 23(13), 1844–1864.

    Article  CAS  Google Scholar 

  • Hasnain, S. I., & Thayyen, R. J. (1999). Controls on the major-ion chemistry of the Dokriani glacier meltwaters, Ganga basin, Garhwal Himalaya, India. J. Glaciol., 45(149), 87–92.

    Article  CAS  Google Scholar 

  • Hooper, R. P., Aulenbach, B. T., & Kelly, V. J. (2001). The National Stream Quality Accounting Network: A flux-based approach to monitoring the water quality of large rivers. Hydrological Processes, 15(7), 1089–1106.

    Article  Google Scholar 

  • Iqbal, A. S. H. S. (2001). Dudu Glacier, an alpine meltwater stream in Ganga headwater, Garhwal Himalaya. Journal of China University of Geosciences, 12(1), 75–83.

    Google Scholar 

  • Ismail, W. R., Siow, A. Y., & Ali, A. (2005). Water quality and chemical mass balance of tropical freshwater wetland, Beriah Swamp, Perak. Jurnal Teknologi (f), 43, 65–84.

    Google Scholar 

  • Jain, C. K. (1996). Application of chemical mass balance approach to upstream/downstream river monitoring data. Journal of Hydrology, 182, 105–115.

    Article  CAS  Google Scholar 

  • Jain, C. K., Bhatia, K. K. S., & Seth, S. M. (1998). Assessment of point and non-point sources of pollution using a chemical mass balance approach. Hydrological Sciences, 43(3).

  • Jain, C. K. (2000). Application of chemical mass balance approach to determine nutrient loading. Hydrological Sciences Journal, 45(4), 577–588.

    Article  CAS  Google Scholar 

  • Jain, C. K. (2002). A hydro-chemical study of a mountainous watershed: The Ganga, India. Water Research, 36(5), 1262–1274.

    Article  CAS  Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2007). Estimating nutrient loadings using chemical mass balance approach. Environmental Monitoring and Assessment, 134, 385–396.

    Article  CAS  Google Scholar 

  • Kelley, D. W., & Nater, E. A. (2000). Source apportionment of lake bed sediments to watersheds in an Upper Mississippi basin using a chemical mass balance method. CATENA, 41(4), 277–292.

    Article  CAS  Google Scholar 

  • Khan, M. Y. A., Hu, H., Tian, F., & Wen, J. (2020). Monitoring the spatio-temporal impact of small tributaries on the hydrochemical characteristics of Ramganga River, Ganges Basin, India. International Journal of River Basin Management, 18(2), 231–241.

    Article  Google Scholar 

  • Khanna, D. R., Bhutiani, R., Matta, G., Singh, V., & Bhadauriya, G. (2011). Physico-chemical property of River Ganga flatfoot hills of Garhwal Himalayas. Environment Conservation Journal, 12(3), 163–168.

    Google Scholar 

  • Kotnala, G., Dobhal, S., & Chauhan, J. S. (2016). Monitoring the self-purification capacity of the River Alaknanda stretch at Srinagar, Uttarakhand, India. International Journal of River Basin Management, 14(4), 491–498.

    Article  Google Scholar 

  • Kumar, K., Miral, M. S., Joshi, S., Pant, N., Joshi, V., & Joshi, L. M. (2009). Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environmental Geology, 58(6), 1151–1159.

    Article  CAS  Google Scholar 

  • Lai, Y. C., Yang, C. P., Hsieh, C. Y., Wu, C. Y., & Kao, C. M. (2011). Evaluation of non-point source pollution and river water quality using a multimedia two-model system. Journal of Hydrology, 409(3–4), 583–595.

    Article  CAS  Google Scholar 

  • Leon, L. F., Soulis, E. D., Kouwen, N., & Farquhar, G. J. (2001). Nonpoint source pollution: A distributed water quality modeling approach. Water Research, 35(4), 997–1007.

    Article  CAS  Google Scholar 

  • Liu, X., Li, D., Zhang, H., Cai, S., Li, X., & Ao, T. (2015). Research on nonpoint source pollution assessment method in data sparse regions: a case study of Xichong River Basin, China. Advances in Meteorology2015.

  • Mackenzie, F. T., & Garrels, R. M. (1971). Evolution of sedimentary rocks. Norton.

    Google Scholar 

  • Mosley, L. M., Zammit, B., Leyden, E., Heneker, T. M., Hipsey, M. R., Skinner, D., & Aldridge, K. T. (2012). The impact of extreme low flows on the water quality of the Lower Murray River and Lakes (South Australia). Water Resources Management, 26, 3923–3946.

    Article  Google Scholar 

  • Paudyal, R., Kang, S., Sharma, C. M., Tripathee, L., Huang, J., Rupakheti, D., & Sillanpää, M. (2016). Major ions and trace elements of two selected rivers near Everest region, southern Himalayas, Nepal. Environmental Earth Sciences, 75(1), 46.

    Article  CAS  Google Scholar 

  • Raiswell, R. (1984). Chemical models of solute acquisition in glacial melt waters. Journal of Glaciology, 30(104), 49–57.

    Article  CAS  Google Scholar 

  • Rao, G. S., & Nageswararao, G. (2010). Study of groundwater quality in Greater Visakhapatnam City, Andhra Pradesh (India). Journal of Environmental Science & Engineering, 52(2), 137–146.

    CAS  Google Scholar 

  • Rudra, R. P., Mekonnen, B. A., Shukla, R., Shrestha, N. K., Goel, P. K., Daggupati, P., & Biswas, A. (2020). Currents status, challenges, and future directions in identifying critical source areas for non-point source pollution in Canadian conditions. Agriculture, 10(10), 468.

    Article  CAS  Google Scholar 

  • Sarin, M. M., Krishnaswami, S., Dilli, K., Somayajulu, B. L. K., & Moore, W. S. (1989). Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal. Geochimica Cosmochimica Acta, 53, 997–1009.

    Article  CAS  Google Scholar 

  • Sarin, M. M., Krishnaswami, S., Trivedi, J. R., & Sharma, K. K. (1992). Major ion chemistry of the Ganga source waters: Weathering in the high altitude Himalaya. Proceedings – Earth and Planetary Sciences, 101(1), 89–98.

  • Semwal, N., & Akolkar, P. (2006). Water quality assessment of sacred Himalayan rivers of Uttaranchal. Current Science, 91(4), 486–496.

    CAS  Google Scholar 

  • Seth, R., Mohan, M., Singh, P., Singh, R., Dobhal, R., Singh, K. P., & Gupta, S. (2016). Water quality evaluation of Himalayan rivers of Kumaun region, Uttarakhand, India. Applied Water Science, 6(2), 137–147.

    Article  CAS  Google Scholar 

  • Sharma, M. K., Thayyen, R. J., Jain, C. K., Arora, M., & Lal, S. (2019). Assessment of system characteristics of Gangotri glacier headwater stream. Science of the Total Environment, 662, 842–851.

    Article  CAS  Google Scholar 

  • Sharma, M. K., Thayyen, R. J., & Lal, S. (2020). Role of sediment in solute acquisition in the Himalayan Glacier meltwater stream‐Gangotri Glacier, Uttarakhand, India. Hydrological Processes, https://doi.org/10.1002/hyp.14018

  • Shen, Z., Hong, Q., Yu, H., & Liu, R. (2008). Parameter uncertainty analysis of the non-point source pollution in The Daning River watershed of the Three Gorges Reservoir Region, China. Science of the Total Environment, 405, 195–205.

    Article  CAS  Google Scholar 

  • Shen, Z., Zhong, Y., Huang, Q., & Chen, L. (2015). Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Research, 68(1), 563–571.

    Article  CAS  Google Scholar 

  • Silveira, R. P., Rodregues, A. P. C., Santelli, R. E., Cordeiro, R. C., & Bidone, E. D. (2011). Mass balance in the monitoring of pollutants in tidal rivers of the Guanabara Bay, Rio de Janeiro, Brazil. Environmental Monitoring and Assessment, 181, 165–173.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Hasnain, S. I. (1998). Major ion chemistry and weathering control in a high altitude basin: Alaknanda River, Garhwal Himalaya, India. Hydrological Sciences, 43(6), 825–843.

    Article  CAS  Google Scholar 

  • Singh, A. K., & Hasnain, S. I. (2002). Aspects of weathering and solute acquisition processes controlling chemistry of sub-Alpine proglacial streams of Garhwal Himalaya, India. Hydrological Processes, 16(4), 835–849.

    Article  Google Scholar 

  • Singh, A. P., Dhadse, K., & Ahalawat, J. (2019). Managing water quality of a river using an integrated geographically weighted regression technique with fuzzy decision-making model. Environmental Monitoring and Assessment, 191(6), 1–17.

    Article  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Pottakkal, J. G., Sharma, P., Linda, A., Azam, M. F., & Chatterjee, C. (2012). Chemical characterisation of meltwater draining from Gangotri Glacier, Garhwal Himalaya, India. Journal of Earth System Science, 121(3), 625–636.

    Article  CAS  Google Scholar 

  • Singh, V. B., Ramanathan, A. L., Pottakkal, J. G., & Kumar, M. (2014). Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, Central Himalaya, India. Journal of Asian Earth Science, 79, 224–234.

    Article  Google Scholar 

  • Srinivas, R., Singh, A. P., Dhadse, K., & Garg, C. (2019). An evidence based integrated watershed modelling system to assess the impact of non-point source pollution in the riverine ecosystem. Journal of Cleaner Production, 246, 118963.

  • Stachnik, Ł, Yde, J. C., Kondracka, M., Ignatiuk, D., & Grzesik, M. (2016). Glacier naled evolution and relation to the subglacial drainage system based on water chemistry and GPR surveys (Werenskioldbreen, SW Svalbard). Annals of Glaciology, 57(72), 19–30.

    Article  Google Scholar 

  • Thayyen, R. J., Gergan, J. T., & Dobhal, D. P. (1999). Particle size characteristics of suspended sediments and subglacial hydrology of Dokriani Glacier, Garhwal Himalaya, India. Hydrological Sciences Journal, 44(1), 47–61.

    Article  Google Scholar 

  • Vega, E., Mugica, V., Carmona, R., & Valencia, E. (2000). Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model. Atmospheric Environment, 34(24), 4121–4129.

    Article  CAS  Google Scholar 

  • Wang, G., Li, J., Sun, W., Xue, B., Yinglan, A., & Liu, T. (2019). Non-point source pollution risks in a drinking water protection zone based on remote sensing data embedded within a nutrient budget model. Water Research, 157, 238–246.

    Article  CAS  Google Scholar 

  • Wu, L., Long, T., & Cooper, W. J. (2012). Temporal and Spatial Simulation of Adsorbed Nitrogen and Phosphorus Nonpoint Source Pollution Load in Xiaojiang Watershed of Three Gorges Reservoir Area. China. Environmental Engineering Science, 29(4), 238–247.

    Article  CAS  Google Scholar 

  • Wu, Y., & Chen, J. (2013). Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecological Indicators, 32, 294–304.

    Article  CAS  Google Scholar 

  • Yadav, A., & Pandey, J. (2017). Contribution of point sources and non-point sources to nutrient and carbon loads and their influence on the trophic status of the Ganga River at Varanasi, India. Environmental Monitoring and Assessment, 189(9), 1–19.

    Google Scholar 

  • Zhai, X., Zhang, Y., Wang, X., Xia, J., & Liang, T. (2012). Non-point source pollution modelling using Soil and Water Assessment Tool and its parameter sensitivity analysis in Xin’anjiang catchment, China. Hydrological Processes, 28(4), 1627–1640.

    Article  CAS  Google Scholar 

  • Zhang, Q., Blomquist, J. D., Moyer, D. L., & Chanat, J. G. (2019). Estimation bias in water-quality constituent concentrations and fluxes: A synthesis for chesapeake bay rivers and streams. Frontiers in Ecology and Evolution, 7, 109.

    Article  Google Scholar 

Download references

Acknowledgements

This research work is a part of NMSHE project titled “Integrated Hydrological Studies for Upper Ganga Basin up to Rishikesh” sponsored by Department of Science & Technology, Govt. of India, New Delhi vide DST Sanction No. DST/SPLICE/CCP/NMSHE/TF-4/NIH/2015-G and hereby acknowledged. The authors are thankful to the Director, National Institute of Hydrology, Roorkee, for providing analytical facilities and financial support for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.K., Kumar, P., Bhanot, K. et al. Assessment of non-point source of pollution using chemical mass balance approach: a case study of River Alaknanda, a tributary of River Ganga, India. Environ Monit Assess 193, 424 (2021). https://doi.org/10.1007/s10661-021-09203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09203-x

Keywords

Navigation