www.fgks.org   »   [go: up one dir, main page]

Skip to main content

The Extravagant Physical Geography of Chile

  • Chapter
  • First Online:
Plant Geography of Chile

Part of the book series: Plant and Vegetation ((PAVE,volume 5))

Abstract

Current Chilean vascular flora and its biogeographical patterns are strongly related to the geographical features of the territory, past and present. Main characteristics of the physical geography of Chile are described, with emphasis on the geologic and climatic changes that affected the biome configuration since the Devonian onwards. Approaching the present time, the effects of the Pleistocene glaciations in the distribution of several communities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amigo J, Ramírez C (1998) A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol 136:9–26

    Google Scholar 

  • Andersen BG, Denton GH, Heusser CJ, Lowell TV, Moreno PI, Hauser A, Heusser LE, Schluchter C, Marchant D (1995) Climate, vegetation, and glacier fluctuations in Chile between 40°30 and 42°30s latitude: a short review of preliminary results. Quat Int 28:199–201

    Google Scholar 

  • Anderson JM, Anderson HM, Archangelsky S, Bamford M, Chandra S, Dettmann M, Hill R, McLoughlin S, Rösler O (1999) Patterns of Gondwana plant colonisation and diversification. J Afr Earth Sci 28:145–167

    Google Scholar 

  • Artabe AE, Morel EM, Spalletti LA (2003) Characterization of the phytogeographic Triassic provinces from extratropical Gondwana. Ameghiniana 40:387–405

    Google Scholar 

  • Artabe AE, Ganuza DG, Spalletti LA, Zúñiga A, Morel EM (2005) Revisión de la paleoflora del cerro La Brea (Jurásico Temprano), provincia de Mendoza, Argentina. Ameghiniana 42: 429–442

    Google Scholar 

  • Ashworth AC, Markraf V, Villagrán C (1991) Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analysis, with an analysis of the modern vegetation and pollen rain. J Quat Sci 6:279–291

    Google Scholar 

  • Astini RA, Benedetto JL, Vaccari NE (1995) The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: a geodynamic model. Geol Soc Am Bull 107:253–273

    Google Scholar 

  • Barichivich J, Sauchyn DJ, Lara A (2009) Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: responses to regional and large-scale variability. Palaeogeogr Palaeoclimatol Palaeoecol 281:320–333

    Google Scholar 

  • Barreda V, Archangelsky S (2006) The southernmost record of tropical pollen grains in the mid-Cretaceous of Patagonia, Argentina. Cretaceous Res 27:778–787

    Google Scholar 

  • Barreda VD, Anzótegui LA, Prieto AR, Aceñolaza PG, Bianchi MM, Borromei AM, Brea M et al. (2007) Diversificación y cambios de las angiospermas durante el Neógeno en Argentina. In: Archangelsky S, Sánchez T, Tonni EP (eds) Ameghiniana 50° aniversario, Publicación Especial 11:173–191

    Google Scholar 

  • Barrientos SE (2007) Earthquakes in Chile. In: Moreno T, Gibbons W, (eds) The geology of Chile. Geological Society, London, pp 263–287

    Google Scholar 

  • Beerling DJ (2002) Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids. Proc Natl Acad Sci 99:12567–12571

    CAS  PubMed  Google Scholar 

  • Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365

    Google Scholar 

  • Berry EW (1922a) Contributions to the paleobotany of Peru, Bolivia and Chile. The John Hopkins Press, Baltimore.

    Google Scholar 

  • Berry EW (1922b) The flora of Concepción-Arauco coal measures of Chile. Stud Geol (John Hopkins Univ) 4:73–142

    Google Scholar 

  • Betancourt JL, Saavedra B (2002) Rodent middens, a new method for Quaternary research in arid zones of South America. Rev Chil Hist Nat 75:527–546

    Google Scholar 

  • Brea M, Zucol AF (2006) Leños fósiles de Boraginaceae de la Formación Peñas Coloradas (Paleoceno superior), Puerto Visser, Chubut, Argentina. Ameghiniana 43:139–146

    Google Scholar 

  • Cecioni G, (ed) (1968) El Terciario de Chile: zona central. Editorial Andrés Bello, Santiago.

    Google Scholar 

  • Charrier R (1988) Condiciones Paleoclimáticas para el Carbonífero Superior y Pérmico Inferior en la mitad austral de América del Sur. Bol Mus Nac Hist Nat (Chile) 41:105–116

    Google Scholar 

  • Charrier R, Pinto L, Rodríguez M (2007) Tectono-stratigraphic evolution of the Andean orogen in Chile. In: Moreno T, Gibbons W, (eds) The geology of Chile. The Geological Society, London, pp 21–116

    Google Scholar 

  • Chumakov NM, Zharkov MA (2003) Climate of the Late Permian and Early Triassic: general inferences. Stratigr Geol Correl 11:361–375

    Google Scholar 

  • Convey P, Gibson JAE, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life – challenging the history of the frozen continent? Biol Rev 83:103–117

    PubMed  Google Scholar 

  • Cúneo RC (1989) Phytogeography and paleoecology of Late Paleozoic Floras from Southern South America and their relationship with other floral realms. Abstracts, 28th International Geological Congress, p 351

    Google Scholar 

  • Cúneo RN, Johnson K, Wilf P, Gandolfo MA, Iglesias A (2007) A preliminary report on the diversity of Latest Cretaceous floras from Northern Patagonia, Argentina. Abstract GSA Denver Annual Meeting

    Google Scholar 

  • Denton GH, Heusser CJ, Lowell TV, Moreno PI, Andersen BG, Heusser LE, Schlüchter C, Marchant DR (1999) Interhemispheric linkage of paleoclimate during the last glaciation. Geogr Ann 81A:107–153

    Google Scholar 

  • Di Castri F (1968) Esquisse écologique du Chili. In: Delamanre-Debouteville C, Rapoport E, (eds) Biologie del’ Amérique Australe, 4. Editions du Centre National de la Recherce Scientfique, Paris, pp 6–52

    Google Scholar 

  • Di Castri F (1981) Mediterranean-type shrublands of the world. In: Di Castri F, Goodall DW, Specht RL, (eds) Mediterranean-type Shrublands. Ecosystems of the World vol 11. Elsevier, Amsterdam, pp 1–52

    Google Scholar 

  • Di Castri F, Hajek E (1976) Bioclimatología de Chile. Vicerrectoría Académica, Universidad Católica de Chile, Santiago.

    Google Scholar 

  • DiMichele WA, Pfefferkorn HW, Gastaldo RA (2001) Response of late carboniferous and early permian plant communities to climate change. Annu Rev Earth Planet Sci 29:461–487

    CAS  Google Scholar 

  • Dowsett HJ, Barron JA, Poore RZ, Thompson RS, Cronin TM, Ishman SE, Willard DA (1999) Middle pliocene paleoenvironmental reconstruction: PRISM2. US Geological Survey Open File Report, 99–535. http://pubs.usgs. gov/of/1999/of99-535/

  • Dunai TJ, González López GA, Juez-Larré J (2005) Oligocene–Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33:321–324

    Google Scholar 

  • Dusén P (1907) Über die Tertiäre Flora der Magellansländer. In: Nordenskjold O (ed) Wissenschaftlichen Ergebnisse der Schwedischen Expedition nach der Magellansländern, 1895–1897, vol I, pp 84–108

    Google Scholar 

  • Emck P, Moreira-Muñoz A, Richter M (2006) El clima y sus efectos en la vegetación. In: Moraes M, Øllgaard B, Kvist LP, Borchsenius F, Balslev H, (eds) Botánica Económica de los Andes Centrales, Universidad Mayor de San Andrés, La Paz, pp 11–36

    Google Scholar 

  • Encinas A, Maksaev V, Pinto L, Le Roux JP, Munizaga F, Zentilli M (2006) Pliocene lahar deposits in the Coastal Cordillera of central Chile: implications for uplift, avalanche deposits, and porphyry copper systems in the Main Andean Cordillera. J S Am Earth Sci 20:369–381

    Google Scholar 

  • Endlicher W, Santana A (1988) El clima del sur de la Patagonia y sus aspectos ecológicos: un siglo de mediciones climatológicas en Punta Arenas. An Inst De La Patagonia (Chile) 18:57–86

    Google Scholar 

  • Engelhardt H (1891) Über Tertiärpflanzen von Chile. Abh Senckenb Naturforsch Ges 16:629–692

    Google Scholar 

  • Fickert T, Friend D, Grüninger F, Molnia B, Richter M (2007) Did debris covered glaciers serve as Pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on Glacier surfaces. Arct Antarct Alp Res 39:245–257

    Google Scholar 

  • Fosdick JC (2007) Late Miocene exhumation of the Magallanes Basin and sub-Andean fold belt, southern Chile: new constraints from apatite U-Th/He thermochronology. Abstracts 2007 GSA Denver Annual Meeting

    Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic. Cambridge University Press, Cambridge.

    Google Scholar 

  • Fuenzalida H (1938) Las capas de Los Molles. Bol Mus Nac Hist Nat 16:67–92

    Google Scholar 

  • Fuenzalida H (1966) Historia vegetacional de Chile. Estudios geográficos . Facultad de Filosofía y Educación, Universidad de Chile, Santiago, pp 21–39

    Google Scholar 

  • Gajardo R (1994) La vegetación natural de Chile: clasificación y distribución geográfica. Ed. Universitaria, Santiago.

    Google Scholar 

  • Gallagher SJ, Wagstaff BE, Baird JG, Wallace MW, Li CL (2008) Southern high latitude climate variability in the Late Cretaceous greenhouse world. Glob Planet Change 60:351–364

    Google Scholar 

  • Gandolfo MA, Zamaloa MC (2003) Evolution of Upper Cretaceous and Tertiary Angiosperm floras of Patagonia. 12°Simposio Argentino de Paleobotánica y Palinología (Buenos Aires), Resúmenes, pp 40–41

    Google Scholar 

  • Gandolfo MA, Gonzalez CC, Zamaloa MC, Cúneo NR, Wilf P, Johnson K (2007) Eucalyptus (Myrtaceae) macrofossils from the early Eocene of Patagonia, Argentina. 5° Southern Connection Conference, Adelaide, Australia, Abstracts p 32

    Google Scholar 

  • Garreaud RD, Aceituno P (2007) Atmospheric circulation over South America: mean features and variability. In: Veblen T, Young K, Orme A, (eds) The physical geography of South America. Oxford University Press, Oxford, pp 45–66

    Google Scholar 

  • Garreaud RD, Muñoz R (2004) The diurnal cycle of circulation and cloudiness over the subtropical southeast Pacific: a modeling study. J Clim 17:1699–1710

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Paleogeogr Paleoclimatol Paleoecol doi: 10.1016/j.palaeo.200710.032

    Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A (2008) Rise of the Andes. Science 320:1304–1307

    CAS  PubMed  Google Scholar 

  • Gayó E, Hinojosa LF, Villagrán C (2005) On the persistence of tropical paleofloras in central Chile during the Early Eocene. Rev Palaeobot Palynol 137:41–50

    Google Scholar 

  • Ghosh P, Garzione NC, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311:511–515

    CAS  PubMed  Google Scholar 

  • González CC, Gandolfo MA, Zamaloa MC, Cúneo NR, Wilf P, Johnson KR (2007) Revision of the Proteaceae macrofossil record from Patagonia, Argentina. Bot Rev 73:235–266

    Google Scholar 

  • González-Ferrán O (1994) Volcanes de Chile. Instituto Geográfico Militar (IGM), Santiago.

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG et al (2004) A geologic time scale 2004. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the central and northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Google Scholar 

  • Hartley AJ (2003) Andean uplift and climate change. J Geol Soc 160:7–10

    Google Scholar 

  • Hartley AJ, Chong G (2002) A late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:43–46

    CAS  Google Scholar 

  • Haywood AM, Francis JE, Sellwood BW (2002) Global middle Pliocene biome reconstruction: a data/model synthesis. Geochem Geophys Geosy 3:1–18

    Google Scholar 

  • Herbst R, Troncoso A (1996) La tafoflora de Juan de Morales del Jurásico Medio (Formación Chacarilla), Región de Tarapacá, Chile. Rev Geol Chile 23:3–15

    Google Scholar 

  • Hesse M, Zetter R (2005) Ultrastructure and diversity of recent and fossil zona-aperturate pollen grains. Plant Syst Evol 255:145–176

    Google Scholar 

  • Heusser CJ (1997) Deglacial setting of the southern andes following the last glacial maximum: a short review. An Inst Patagonia Serie Cienc Nat 25:89–103

    Google Scholar 

  • Heusser CJ (2003) Ice age southern andes: a chronicle of paleoecological events. Developments in Quaternary Science 3. Elsevier, Amsterdam.

    Google Scholar 

  • Hinojosa LF (2005) Cambios climáticos y vegetacionales inferidos a partir de paleofloras cenozoicas del sur de Sudamérica. Rev Geol Chile 32:95–115

    Google Scholar 

  • Hinojosa LF, Armesto JJ, Villagrán C (2006) Are Chilean coastal forests pre-Pleistocene relicts? Evidence from foliar physiognomy, paleoclimate, and paleobiogeography. J Biogeogr 33: 331–341

    Google Scholar 

  • Hoke GD, Garzione CN (2008) Paleosurfaces, paleoelevation, and the mechanisms for the late Miocene topographic development of the Altiplano plateau. Earth Planet Sci Lett 271:192–201

    CAS  Google Scholar 

  • Holderegger R, Thiel-Egenter C (2009) A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. J Biogeogr 36:476–480

    Google Scholar 

  • Iglesias A, Wilf P, Johnson KR, Zamuner AB, Matheos SD, Cúneo RN (2007) Rediscovery of Paleocene Macrofloras in Central Patagonia, Argentina. GSA Denver Annual Meeting (28–31 October 2007)

    Google Scholar 

  • IGM (2005) Atlas de Chile. Instituto Geográfico Militar, Santiago.

    Google Scholar 

  • Illies H (1959) Die Entstehungsgeschichte eines Maares in Süd-Chile: ein aktuo-geologischer Beitrag zum Problem des Maar-Vulkanismus. Int J Earth Sci 48:232–247

    Google Scholar 

  • Jasper A, Guerra-Sommer M, Cazzulo-Klepzig M, Iannuzzi R (2003) Biostratigraphic and paleoclimatic significance of Botrychiopsis fronds in the Gondwana realm. In: Wong TE (ed) Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, 10–16 August 2003

    Google Scholar 

  • Klicka J, Zink RM (1997) The importance of recent ice ages in speciation: a failed paradigm. Science 277:1666–1669

    CAS  Google Scholar 

  • Knapp S, Mallet J (2003) Refuting refugia? Science 300:71–72

    CAS  PubMed  Google Scholar 

  • Köppen W (1930) Die Klimagebiete nach Köppens Klassifikation. In: Knoch K (ed) Klimakunde von Südamerika vol. 2. Handbuch der Klimatologie (ed. by W Köppen, Geiger R), Berlin, part G, pp 242–329

    Google Scholar 

  • Looy CV, Twitchett RJ, Dilcher DL, Van Konijnenburg-Van Cittert JHA, Visscher H (2001) Life in the end-Permian dead zone. Proc Natl Acad Sci 14:7879–7883

    Google Scholar 

  • Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Denton GH, Heusser LE, Schluchter C, Marchant D (1995) Interhemispheric correlation of Late Pleistocene Glacial events. Science 269:1541–1549

    CAS  PubMed  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago.

    Google Scholar 

  • Maldonado A, Betancourt JL, Latorre C, Villagrán C (2005) Pollen analyses from a 50 000-yr rodent midden series in the southern Atacama Desert (25 degrees 30’s). J Quat Sci 20:493–507

    Google Scholar 

  • Massaferro JI, Moreno PI, Denton GH, Vandergoes M, Dieffenbacher-Krall A (2009) Chironomid and pollen evidence for climate fluctuations during the Last Glacial termination in NW Patagonia. Quat Sci Rev 28:517–525

    Google Scholar 

  • McAllister Rees P, Ziegler AM, Valdes PJ (2000) Jurassic phytogeography and climates: new data and model comparisons. In: Huber BT, Macleod KG, Wing SL, (eds) Warm climates in earth history. Cambridge University Press, Cambridge, pp 297–318

    Google Scholar 

  • McAllister Rees P, Ziegler AM, Gibbs MT, Kutzbach JE, Behling PJ, Rowley DB (2002) Permian phytogeographic patterns and climate data/model comparisons. J Geol 110:1–31

    Google Scholar 

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557

    PubMed  Google Scholar 

  • McLoughlin S (2001) The breakup history of gondwana and its impact on pre-Cenozoic floristic provincialism. Aust J Bot 49:271–300

    Google Scholar 

  • McLoughlin S, Carpenter RJ, Jordan GJ, Hill RS (2008) Seed ferns survived the end-Cretaceous mass extinction in tasmania. Am J Bot 95:465–471

    Google Scholar 

  • Milleron M, Gallo LA, Marchelli P (2008) The effect of volcanism and postglacial migration and seed dispersal. A case study in Southern South America. Tree Genet Genomes 4:435–444

    Google Scholar 

  • Moore DM (1983) Flora of Tierra del Fuego. Missouri Botanical Garden, St. Louis, MO.

    Google Scholar 

  • Moreno FP (1882) Patagonia, resto de un antiguo continente hoy sumergido. An Soc Cient Argent 14:97–131

    Google Scholar 

  • Moreno PI (2004) Millennial-scale climate variability in northwest Patagonia over the last 15 000 yr. J Quat Sci 19:35–47

    Google Scholar 

  • Moreno PI, Jacobson GL, Lowell TV, Denton GH (2001) Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature 409:804–808

    CAS  PubMed  Google Scholar 

  • Nalpas T, Dabard M-P, Ruffet G, Vernon A, Mpodozis C, Loi A, Hérail G (2008) Sedimentation and preservation of the Miocene Atacama Gravels in the Pedernales–Chañaral area, Northern Chile: climatic or tectonic control? Tectonophysics 459:161–173

    CAS  Google Scholar 

  • Nishida M (1984) The anatomy and affinities of the petrified plants from the tertiary of Chile, III. Petrified woods from Mocha Island, Central Chile. In: Nishida M, (ed). Contributions to the Botany in the Andes, I. Academia Scientific Books, Tokyo, pp 98–110

    Google Scholar 

  • Oberdorfer E (1960) Pflanzensoziologische Studien in Chile. Ein Vergleich mit Europa. Flora Et Vegetatio Mundi 2:1–208

    Google Scholar 

  • Ochsenius CC (1891) Über Tertiärpflanzen von Chile von H. Engelhardt (Nachtrag). Abh Senckenb Naturforsch Ges 16:1–4

    Google Scholar 

  • Okuda M, Nishida H, Uemura K, Yabe A (2006) Paleocene/Eocene pollen assemblages from the Ligorio Márquez Formation, Central Patagonia, XI Region, Chile. In: Nishida H, (ed) Post-Cretaceous floristic changes in southern patagonia, chile. Chuo University, Tokyo, pp 37–43

    Google Scholar 

  • Orme AR (2007) The tectonic framework of South America; tectonism, climate, and landscape change. In: Veblen TT, Young KR, Orme AR, (eds) The physical geography of South America. Oxford University Press, New York, NY, pp 3–44

    Google Scholar 

  • Palazzesi L, Barreda V (2007) Major vegetation trends in the Tertiary of Patagonia (Argentina): a quatitative paleoclimatic approach based on palynologial evidence. Flora 202:328–337

    Google Scholar 

  • Pankhurst RJ, Hervé F (2007) Introduction and overview. In: Moreno T, Gibbons W, (eds) The geology of Chile. The Geological Society, London, pp 1–4

    Google Scholar 

  • Pankhurst RJ, Rapela CW, Fanning CM, Márquez M (2006) Gondwanide continental collision and the origin of Patagonia. Earth Sci Rev 76:235–257

    Google Scholar 

  • Pastorino MJ, Gallo LA (2002) Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean–Patagonian forest. J Biogeogr 29:1167–1178

    Google Scholar 

  • Pisano E (1954) Fitogeografía. La vegetación de las distintas zonas geográficas chilenas. Rev Geogr Terra Australis 11:95–107

    Google Scholar 

  • Prámparo MB, Quattrocchio M, Gandolfo MA, Zamaloa MC, Romero E (2007) Historia evolutiva de las angiospermas (Cretácico-Paleógeno) en Argentina a través de los registros paleoflorísticos. In: Archangelsky S, Sánchez T, Tonni EP (eds) Ameghiniana 50° aniversario, Publicación Especial 11:157–172

    Google Scholar 

  • Premoli AC, Kitzberger T, Veblen TT (2000) Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. J Biogeogr 27:251–260

    Google Scholar 

  • Quattrocchio ME, Martínez MA, Volkheimer W (2007) Las floras jurásicas de la Argentina In: Archangelsky S, Sánchez T, Tonni EP (eds) Ameghiniana 50° aniversario, Publicación Especial 11: 87–100

    Google Scholar 

  • Quintanilla V (1974) La carta bioclimática de Chile Central. Rev Geogr Valparaíso 5:33–58

    Google Scholar 

  • Quintanilla V (1983) Biogeografía. Colección Geografía de Chile. Instituto Geográfico Militar (IGM), Santiago.

    Google Scholar 

  • Ramos VA (2008) Patagonia: a paleozoic continent adrift? J S Am Earth Sci 26:235–251

    CAS  Google Scholar 

  • Ramos VA (2009) Anatomy and global context of the Andes: main geological features and the Andean orogenic cycle. Gsa Memoirs 204:31–65

    Google Scholar 

  • Ramos VA, Aleman A (2000) Tectonic evolution of the Andes. In: Cordani UJ et al (eds) Tectonic evolution of South America, International Geological Congress, 31st, Rio de Janeiro (2000), pp 635–685

    Google Scholar 

  • Ranero CR, von Huene R, Weinrebe W, Reichert C (2006) Tectonic processes along the Chile convergent margin. In: Oncken O, Chong G, et al (eds) The Andes: Active Subduction Orogeny. Springer, Berlin, pp 91–121

    Google Scholar 

  • Rapalini AE (2005) The accretionary history of southern South America from the latest Proterozoic to the Late Palaeozoic: some palaeomagnetic constraints. In: Vaughan APM, Leat PT, Pankhurst RJ, (eds) Terrane processes at the margins of Gondwana, 246. Geological Society, London, Special Publications, pp 305–328

    Google Scholar 

  • Raymond A, Gensel PG, Stein WE (2006) Phytogeography of Late Silurian macrofloras. Rev Paleobot Palynol 142:165–192

    Google Scholar 

  • Reiche C (1907) Grundzüge der Pflanzenverbreitung in Chile. In Series: Engler A, Drude O, (eds) Die Vegetation der Erde: Sammlung Pflanzengeographischer Monographien, vol. VIII. Verlag von V. Engelmann, Leipzig.

    Google Scholar 

  • Rivas-Martínez S, Rivas-Sáenz S (1996–2009) World Bioclimatic Classification System. Phytosociological Research Center, Spain. http://www.globalbioclimatics.org

  • Romero EJ (1986) Paleogene phytogeography and climatology of South Maerica. Ann Mol Bot 73:449–461

    Google Scholar 

  • Romero EJ (1993) South American paleofloras. In: Goldblatt P, (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, CT/London, pp 62–85

    Google Scholar 

  • San Martín J, Donoso C (1996) Estructura florística e impacto antrópico en el bosque maulino de Chile. In: Armesto JJ, Villagrán C, Arroyo MK, (eds) Ecología de los bosques nativos chilenos. Editorial Universitaria, Santiago, pp 153–167

    Google Scholar 

  • Schmithüsen J (1956) Die räumliche Ordnung der chilenischen Vegetation. Bonn Geogr Abh 17:1–86

    Google Scholar 

  • Scotese CR, Boucot AJ, McKerrow WS (1999) Gondwanan palaeogeography and palaeoclimatology. J Afr Earth Sci 28:99–114

    Google Scholar 

  • Simpson BB (1971) Pleistocene changes in the fauna and flora of South America. Science 173:771–780

    Google Scholar 

  • Stern C, Moreno H, López-Escobar L, Clavero J, Lara LE, Naranjo JA, Parada MA, Skewes MA (2007) Chilean volcanoes. In: Moreno T, Gibson W, (eds) The geology of Chile. The Geological Society, London, pp 147–178

    Google Scholar 

  • Storey BC (1995) The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377:301–308

    CAS  Google Scholar 

  • Subercaseaux B (1940) Chile o una loca geografía. Ercilla S, (ed). English translation from 1943: Chile, a geographic extravaganza. Macmillan Co., New York, NY

    Google Scholar 

  • Thiel M, Macaya EC, Acuna E, Arntz WE, Bastias H et al. (2007) The humboldt current system of northern and central Chile. Oceanogr Mar Biol 45:195–344

    Google Scholar 

  • Torres T, Rallo M (1981) Anatomía de troncos fósiles del Cretácico Superior de Pichasca en el norte de Chile. Anais II Congreso Latinoaméricano Paleontología. Porto Alegre, Brasil 2: 385–398

    Google Scholar 

  • Tremetsberger K, Stuessy TF, Guo Y-P, Baeza CM, Weiss H, Samuel RM (2003) Amplified Fragment Length Polymorphism (AFLP) variation within and among populations of Hypochaeris acaulis (Asteraceae) of andean southern South America. Taxon 52:237–245

    Google Scholar 

  • Trewartha G (1961) The Earth’s problem climates. University of Wisconsin Press, Madison, WI.

    Google Scholar 

  • Troncoso A, Encinas A (2006) La tafoflora de cerro Centinela (Chile, VI Región): vegetación y clima de Chile central a fines del Mioceno-comienzos del Plioceno. Ameghiniana 43: 171–180

    Google Scholar 

  • Troncoso A, Romero EJ (1998) Evolución de las comunidades florísticas en el extremo sur de Sudamérica durante el Cenofítico. In: Fortunato R, Bacigalupo N (eds) Proceedings of the Congreso Latinoamericano de Botánica, Monographs in Systematic Botany from the Missouri Botanical Garden 6: 149–172

    Google Scholar 

  • Troncoso A, San Martín A (1999) Presencia del género Escallonia (Magnoliopsida, Escalloniaceae) en el Terciario de Chile Central. Bol Mus Nac Hist Nat (Chile) 48:29–36

    Google Scholar 

  • Troncoso A, Suarez M, De La Cruz R, Palma-Heldt S (2002) Paleoflora de la Formación Ligorio Márquez (XI Región, Chile) en su localidad tipo: sistemática, edad e implicancias paleoclimáticas. Rev Geol Chile 29:113–135

    Google Scholar 

  • Truswell EM (1990) Cretaceous and tertiary vegetation of Antarctica: a palynological perspective. In: Taylor TN, Taylor EL, (eds) Antarctic paleobiology: its role in the reconstruction of Gondwana. Springer-Verlag, New York, pp 71–88

    Google Scholar 

  • Veblen TT, Young KR, Orme AR, (eds) (2007) The physical geography of South America. Oxford University Press, Oxford.

    Google Scholar 

  • Vega JC, Archangelsky S (1997) The first Gondwana Carboniferous compound cupules and associated seeds. A preliminary note. Rev Palaeobot Palynol 99:55–59

    Google Scholar 

  • Villagrán C, Le-Quesne C, Aravena JC, Jiménez H, Hinojosa F (1998) El rol de los cambios de clima del Cuaternario en la distribución actual de la vegetación de Chile central-sur. Bamberg Geogr Schr 15:227–242

    Google Scholar 

  • Villagrán C, León A, Roig FA (2004) Paleodistribución del alerce y ciprés de las Guaitecas durante períodos interestadiales de la Glaciación Llanquihue: provincias de Llanquihue y Chiloé, Región de Los Lagos, Chile. Rev Geol Chile 31: 133–151

    Google Scholar 

  • Vuille M, Baumgartner MF (1998) Monitoring the regional and temporal variability of winter snowfall in the arid andes using digital NOAA/AVHRR data. Geocarto Int 13:59–67

    Google Scholar 

  • Weischet W (1970) Chile: seine länderkundliche individualität und struktur. Wissenschaftliche Buchgesellschaft, Darmstast.

    Google Scholar 

  • Wilf P, Johnson KR, Cúneo NR, Smith ME, Singer BS, Gandolfo MA (2005) Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. Am Nat 165:634–650

    PubMed  Google Scholar 

  • Wilf P, Gandolfo MA, Johnson KR, Cúneo R (2007) Biogeographic significance of the Laguna del Hunco flora, Early Eocene of Patagonia, Argentina. Abstract GSA Denver Annual Meeting (28–31 October 2007)

    Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, Oxford.

    Google Scholar 

  • Willis KJ, Niklas KJ (2004) The role of Quaternary environmental change in plant macroevolution: the exception or the rule? Philos Trans R Soc Lond B 359:159–172

    Google Scholar 

  • Windhausen A (1931) Geología Argentina. Geología Histórica y Regional del Territorio Argentino, Buenos Aires.

    Google Scholar 

  • Wnuk C (1996) The development of floristic provinciality during the Middle and Late Paleozoic. Rev Palaeobot Palynol 90:5–40

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Moreira-Muñoz .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moreira-Muñoz, A. (2011). The Extravagant Physical Geography of Chile. In: Plant Geography of Chile. Plant and Vegetation, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8748-5_1

Download citation

Publish with us

Policies and ethics