www.fgks.org   »   [go: up one dir, main page]

Skip to main content
Log in

Decolorization and detoxification of different azo dyes by Phanerochaete chrysosporium ME-446 under submerged fermentation

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Azo dyes are widely used in the textile industry due to their resistance to light, moisture, and oxidants. They are also an important class of environmental contaminant because of the amount of dye that reaches natural water resources and because they can be toxic, mutagenic, and carcinogenic. Different technologies are used for the decolorization of wastewater containing dyes; among them, the biological processes are the most promising environmentally. The aim of this study was to evaluate the potential of Phanerochaete chrysosporium strain ME-446 to safely decolorize three azo dyes: Direct Yellow 27 (DY27), Reactive Black 5 (RB5), and Reactive Red 120 (RR120). Decolorization efficiency was determined by ultraviolet-visible spectrophotometry and the phytotoxicity of the solutions before and after the fungal treatment was analyzed using Lactuca sativa seeds. P. chrysosporium ME-446 was highly efficient in decolorizing DY27, RB5, and RR120 at 50 mg L1, decreasing their colors by 82%, 89%, and 94% within 10 days. Removal of dyes was achieved through adsorption on the fungal mycelium as well as biodegradation, inferred by the changes in the dyes’ spectral peaks. The intensive decolorization of DY27 and RB5 corresponded to a decrease in phytotoxicity. However, phytotoxicity increased during the removal of color for the dye RR120. The ecotoxicity tests showed that the absence of color does not necessarily translate to an absence of toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37(4):315–377. https://doi.org/10.1080/10643380601174723

    Article  CAS  Google Scholar 

  2. Siddique K, Rizwan M, Shahid MJ, Ali S, Ahmad R, Rizvi H (2017) Textile wastewater treatment options: a critical review. In: Anjum N, Gill S, Tuteja N (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham, pp 183–207

    Chapter  Google Scholar 

  3. Kurade MB, Waghmode TR, Khandare RV, Jeon BH, Govindwar SP (2016) Biodegradation and detoxification of textile dye Disperse Red 54 by Brevibacillus laterosporus and determination of its metabolic fate. J Biosci Bioeng 121(4):442–449. https://doi.org/10.1016/j.jbiosc.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  4. Vijayalakshmidevi SR, Muthukumar K (2015) Improved biodegradation of textile dye effluent by coculture. Ecotoxicol Environ Saf 114:23–30. https://doi.org/10.1016/j.ecoenv.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  5. Liu W, Chao Y, Yang X, Bao H, Qian S (2004) Biodecolorization of azo, anthraquinonic and triphenylmethane dyes by white-rot fungi and a laccase-secreting engineered strain. J Ind Microbiol Biotechnol 31:127–132. https://doi.org/10.1007/s10295-004-0123-z

    Article  CAS  PubMed  Google Scholar 

  6. Saroj S, Kumar K, Pareek N, Prasad R, Singh RP (2014) Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum. Chemosph 107:240–248. https://doi.org/10.1016/j.chemosphere.2013.12.049

    Article  CAS  Google Scholar 

  7. Przystaś W, Zabłocka-Godlewska E, Grabińska-Sota E (2018) Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports. Braz J Microbiol 49(2):285–295. https://doi.org/10.1016/j.bjm.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Boyjoo Y, Choueib A, Zhu ZH (2005) Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39:129–138. https://doi.org/10.1016/j.watres.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  9. Suteu D, Zaharia C, Muresan A, Muresan R, Popescu A (2009) Using of industrial waste materials for textile wastewater treatment. Environ Eng Manag J 8(5):1097–1102. https://doi.org/10.30638/eemj.2009.160

    Article  CAS  Google Scholar 

  10. Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A (2009) Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ Eng Manag J 8(6):1359–1369. https://doi.org/10.30638/eemj.2009.199

    Article  CAS  Google Scholar 

  11. Hu TL, Wu SC (2001) Assessment of the effect of azo dye RP2B on the growth of a nitrogen fixing cyanobacterium – Anabaena sp. Bioresour Technol 77(1):93–95. https://doi.org/10.1016/S0960-8524(00)00124-3

    Article  CAS  PubMed  Google Scholar 

  12. Martins MAM, Ferreira IC, Santos IM, Queiroz MJ, Lima N (2001) Biodegradation of bioaccessible textile azo dyes by Phanerochaete chrysosporium. J Biotechnol 89:91–98. https://doi.org/10.1016/S0168-1656(01)00318-2

    Article  CAS  PubMed  Google Scholar 

  13. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. App Microbiol Biotechnol 56(1-2):69–80. https://doi.org/10.1007/s002530100686

    Article  CAS  Google Scholar 

  14. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  PubMed  Google Scholar 

  15. Singh R, Singh P, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes: a review. Int Biodeterior Biodegrad 104:21–31. https://doi.org/10.1016/j.ibiod.2015.04.027

    Article  CAS  Google Scholar 

  16. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye containing effluents: a review. Bioresour Technol 58(3):217–227. https://doi.org/10.1016/S0960-8524(96)00113-7

    Article  CAS  Google Scholar 

  17. Jadhav JP, Govindwar SP (2006) Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23(4):315–323. https://doi.org/10.1002/yea.1356

    Article  CAS  PubMed  Google Scholar 

  18. Sharma DK, Saini HS, Singh M, Chimni SS, Chandha BS (2004) Isolation and characterization of microorganisms capable of decolorizing various triphenylmethane dyes. J Basic Microbiol 44(1):59–65. https://doi.org/10.1002/jobm.200310334

    Article  CAS  PubMed  Google Scholar 

  19. Deng D, Guo J, Zeng G, Sun G (2008) Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11q. Int Biodeter Biodegr 62:263–269. https://doi.org/10.1016/j.ibiod.2008.01.017

    Article  CAS  Google Scholar 

  20. Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Yitzhak H (2012) Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS One 7(12):e52446. https://doi.org/10.1371/journal.pone.0052446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santos GC, Corso CR (2014) Comparative analysis of azo dye biodegradation by Aspergillus oryzae and Phanerochaete chrysosporium. Water Air Soil Pollut 225(7):2026. https://doi.org/10.1007/s11270-014-2026-6

    Article  CAS  Google Scholar 

  22. Asamudo N, Daba AS, Ezeronye OU (2006) Bioremediation of textile effluent using Phanerochaete chrysosporium. Afr J Biotechnol 4:1548–1553. https://doi.org/10.4314/ajfand.v4i13.71767

    Article  Google Scholar 

  23. Wang C, Xi JY, Hu HY, Wen XH (2008) Biodegradation of gaseous chlorobenzene by white-rot fungus Phanerochaete chrysosporium. Biomed Environ Sci 21:474–478. https://doi.org/10.1016/S0895-3988(09)60005-2

    Article  CAS  PubMed  Google Scholar 

  24. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. App Environ Microbiol 62:593–600. https://doi.org/10.1128/AEM.62.2.593-600.1996

    Article  CAS  Google Scholar 

  25. Arisoy M, Kolankaya N (1998) Biodegradation of heptachlor by Phanerochaete chrysosporium ME 446: the toxic effects of heptachlor and its metabolites on mice. Turkish J Biol 22:427–434

    CAS  Google Scholar 

  26. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    Article  CAS  Google Scholar 

  27. Capalash N, Sharma P (1992) Biodegradation of textile azodyes by Phanerochaete chrysosporium. World J Microbiol Biotechnol 8:309–312. https://doi.org/10.1007/BF01201886

    Article  CAS  PubMed  Google Scholar 

  28. Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45:4311–4340. https://doi.org/10.1016/j.watres.2011.05.035

    Article  CAS  PubMed  Google Scholar 

  29. Sen SK, Raut S, Bandyopadhyay P, Raut S (2016) Fungal decolouration and degradation of azo dyes: a review. Fungal Biol Rev 30(3):112–133. https://doi.org/10.1016/j.fbr.2016.06.003

    Article  Google Scholar 

  30. Wang L, Yan J, Hardy W, Mosley C, Wang S, Yu H (2005) Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3’-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks. Toxicol 207:411–418. https://doi.org/10.1016/j.tox.2004.10.010

    Article  CAS  Google Scholar 

  31. Al-Sabti K (2000) Chlorotriazine reactive azo Red 120 textile dyes induces micronuclei in fish. Ecotox Environ Saf 147:149–155. https://doi.org/10.1006/eesa.2000.1931

    Article  CAS  Google Scholar 

  32. Gottilieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourization. J Biotechnol 101:49–56. https://doi.org/10.1016/S0168-1656(02)00302-4

    Article  Google Scholar 

  33. Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

    Article  PubMed  Google Scholar 

  34. Yi H, Meng Z (2003) Genotoxicity of hydrated sulfur dioxide on root tips of Allium sativum and Vicia faba. Mutat Res 537:109–114. https://doi.org/10.1016/s1383-5718(03)00054-8

    Article  CAS  PubMed  Google Scholar 

  35. Sobrero MS, Ronco A (2004) Ensayo de toxidad aguda consemillas de lechuga (Lactuca sativa L). In: Castillo G (ed) Ensayos toxicológicos y métodos de evaluación de calidad de aguas. Estandarización, intercalibración, resultados y aplicaciones. IDRC, IMTA, Canadá, pp 71–79

    Google Scholar 

  36. Pramanik S, Chaudhuri S (2018) Laccase activity and azo dye decolorization potential of Podoscypha elegans. Mycobiol 46(1):79–83. https://doi.org/10.1080/12298093.2018.1454006

    Article  Google Scholar 

  37. Permpornsakul P, Prasongsuk S, Lotrakul P, Eveleigh DE, Kobayashi DY, Imai T, Punnapayak H (2016) Biological treatment of reactive black 5 by resupinate white rot fungus Phanerochaete sordida PBU 0057. Polish J Environ Stud 25(3):1167–1176. https://doi.org/10.15244/pjoes/61625

    Article  CAS  Google Scholar 

  38. Martínez-Sánchez J, Membrillo-Venegas I, Martínez-Trujillo A, García-Rivero AM (2018) Decolorization of reactive black 5 by immobilized Trametes versicolor. Rev Mex Ing Química 17(1):107–121. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Martinez

    Article  Google Scholar 

  39. Hanapi SZ, Abdelgalil SA, Hatti-Kaul R, Aziz R, El Enshasy HA (2018) Isolation of a new efficient dye decolorizing white rot fungus Cerrena sp. WICC F39. J Sci Ind Res 77:399–404 http://nopr.niscair.res.in/handle/123456789/44673

    CAS  Google Scholar 

  40. Ibrahim NN, Talib SA, Ismail HN, Tay CC (2017) Decolorization of reactive red-120 by using macrofungus and microfungus. J Fundam Appl Sci 9:6–954. https://doi.org/10.4314/jfas.v9i6s.11

    Article  CAS  Google Scholar 

  41. Yang S, Sodaneath H, Lee J, Jung H, Choi J, Ryu HW, Cho K (2017) Decolorization of acid, disperse and reactive dyes by Trametes versicolor CBR43. J Environ Sci Health 52:862–872. https://doi.org/10.1080/10934529.2017.1316164

    Article  CAS  Google Scholar 

  42. Ameen F, Alshehrei F (2017) Biodegradation optimization and metabolite elucidation of Reactive Red 120 by four different Aspergillus species isolated from soil contaminated with industrial effluent. Ann Microbiol 67(4):303–312. https://doi.org/10.1007/s13213-017-1259-1

    Article  CAS  Google Scholar 

  43. Harazono K, Watanabe Y, Nakamura K (2003) Decolorization of azo dye by the white-rot basidiomycete Phanerochaete sordida and by its manganese peroxidase. J Biosci Bioeng 95(5):455–459. https://doi.org/10.1016/S1389-1723(03)80044-0

    Article  CAS  PubMed  Google Scholar 

  44. Chen SH, Ting ASY (2015) Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J Environ Manage 150:274–280. https://doi.org/10.1016/j.jenvman.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  45. Bardi L, Marzona M (2010) Factors affecting the complete mineralization of azo dyes. In: Atacag Erkurt H (ed) Biodegradation of azo dyes. Springer, Berlin, pp 195–210

    Chapter  Google Scholar 

  46. Knapp JS, Newby PS, Reece LP (1995) Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb Technol 17:664–668. https://doi.org/10.1016/0141-0229(94)00112-5

    Article  CAS  Google Scholar 

  47. Dawkar VV, Jadhav UU, Telke AA, Govindwar SP (2009) Peroxidase from Bacillus sp. VUS and its role in the decolorization of textile dyes. Biotechnol Bioprocess Eng 14:361–368. https://doi.org/10.1007/s12257-008-0242-x

    Article  CAS  Google Scholar 

  48. Pasti-Grigsby MB, Paszczynski A, Goszczynski S, Crawford DL, Crawford RL (1992) Influence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium. Appl Environ Microbial 58:3605–3613. https://doi.org/10.1128/AEM.58.11.3605-3613.1992

    Article  CAS  Google Scholar 

  49. Shaffiqu TS, Roy JJ, Nair R, Abraham TE (2002) Degradation of textile dyes mediated by plant peroxidases. Appl Biochem 102:315–326. https://doi.org/10.1385/ABAB:102-103:1-6:315

    Article  Google Scholar 

  50. Chen CH, Chang CF, Liu SM (2010) Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J Haz Mat 177:281–289. https://doi.org/10.1016/j.jhazmat.2009.12.030

    Article  CAS  Google Scholar 

  51. Hsueh CC, Chen BY, Yen CY (2009) Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila. J Haz Mater 167:995–1001. https://doi.org/10.1016/j.jhazmat.2009.01.077

    Article  CAS  Google Scholar 

  52. Abedin RM (2008) Decolorization and biodegradation of crystal violet and malachite green by Fusarium solani (Martius) Saccardo. A comparative study on biosorption of dyes by the dead fungal biomass. Am-EurasJ Bot 12:17–31

    Google Scholar 

  53. Almeida EJR, Corso CR (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317–322. https://doi.org/10.1016/j.chemosphere.2014.04.060

    Article  CAS  PubMed  Google Scholar 

  54. Chaudhry MT, Zohaib M, Rauf N, Tahir SS, Parvez S (2014) Biosorption characteristics of Aspergillus fumigatus for the decolorization of triphenylmethane dye acid violet 49. Appl Microbiol Biotechnol 98:3133–3141. https://doi.org/10.1007/s00253-013-5306-y

    Article  CAS  PubMed  Google Scholar 

  55. Sivasamy A, Sundarabal N (2011) Biosorption of an azo dye by Aspergillus niger and Trichoderma sp. fungal biomasses. Current microbial 62(2):351–357. https://doi.org/10.1007/s00284-010-9713-3

    Article  CAS  Google Scholar 

  56. Balan DSL, Monteiro RTR (2001) Decolorization of textile indigo dye by ligninolytic fungi. J Biotechnol 89:141–145. https://doi.org/10.1016/S0168-1656(01)00304-2

    Article  CAS  PubMed  Google Scholar 

  57. Fu YZ, Viraraghavan T (2000) Removal of a dye from aqueous solution by the fungus Aspergillus niger. Wat Qual Res J Can 35:95–111. https://doi.org/10.2166/wqrj.2000.006

    Article  CAS  Google Scholar 

  58. Ali N, Hameed A, Ahmed S (2010) Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Braz J Microbiol 41(4):907–915. https://doi.org/10.1590/S1517-83822010000400009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sani RK, Azmi W, Banerjee UC (1998) Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysosporium. Folia Microbiol 43(1):85–88. https://doi.org/10.1007/BF02815550

    Article  CAS  Google Scholar 

  60. Blanquez P, Casas N, Font X, Gabarrell X, Sarra M, Caminal G, Vicent T (2004) Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res 38:2166–2172. https://doi.org/10.1016/j.watres.2004.01.019

    Article  CAS  PubMed  Google Scholar 

  61. Gutierrez LVG, Alatorre GG, Silva EME (2009) Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor. World J Microbiol Biotechnol 25:415–426. https://doi.org/10.1007/s11274-008-9906-0

    Article  CAS  Google Scholar 

  62. Silverstein RM, Bassler GC, Morril TC (1994) Identificação espectrométrica de compostos orgânicos, 5th edn. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  63. Wang N, Chu Y, Zhao Z, Xu X (2017) Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporiala cerata, from decayed mulberry branches. Int Biodeterior Biodegrad 117:236–244. https://doi.org/10.1016/j.ibiod.2016.12.015

    Article  CAS  Google Scholar 

  64. Zille A, Gornacka B, Rehorek A, Cavaco-Paulo A (2005) Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl Environ Microbiol 71(11):6711–6718. https://doi.org/10.1128/AEM.71.11.6711-6718.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the support from the National Council for Scientific and Technological Development (CNPq) and from the Coordination of Superior Level Staff Improvement (CAPES), Brazil’s Federal funding agencies.

Code availability

Not applicable.

Funding

This study was supported by the National Council for Scientific and Technological Development (CNPq) and by the Coordination of Superior Level Staff Improvement (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Alana Pereira. The first draft of the manuscript was written by Alana Pereira and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alana Pereira de Almeida.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Cyntia Canedo Silva

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, A.P., Macrae, A., Ribeiro, B.D. et al. Decolorization and detoxification of different azo dyes by Phanerochaete chrysosporium ME-446 under submerged fermentation. Braz J Microbiol 52, 727–738 (2021). https://doi.org/10.1007/s42770-021-00458-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00458-7

Keywords

Navigation