www.fgks.org   »   [go: up one dir, main page]

Tantalum pentoxide: Difference between revisions

Content deleted Content added
sentence case for subsection title
mNo edit summary
(41 intermediate revisions by 30 users not shown)
Line 4:
| verifiedrevid = 437221973
| Name = Tantalum pentoxide<!-- please replace if not identical with the pagename -->
| ImageFile2 = Tantalum(V) oxide sample.jpg
| ImageFile = Kristallstruktur Triuranoctoxid.png<!-- crystal structure is similar -->
| ImageCaption = {{Color box|#ffffff|border=blacksilver}} [[Tantalum|Ta]]<sup>5+</sup> {{Color box|#ee2010|border=blacksilver}} [[Oxygen|O]]<sup>2−</sup>
| IUPACName = Tantalum(V) oxide
| SystematicName = Ditantalum pentaoxide
Line 12 ⟶ 13:
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 1314-61-0
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = OEZ64Z53M4
| PubChem = 518712
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
Line 26 ⟶ 29:
| MeltingPtC = 1872
| Appearance = white, odorless powder
| BandGap = 3.8 - 58–5.3 eV
<!--| DielectricConstant = ~ 25 no such parameter-->
| RefractIndex = 2.275
| MagSus = &minus;{{val|-32.0·10<sup>−6</sup> 0e-6|u=cm<sup>3</sup>/mol}}
}}
}}
'''Tantalum pentoxide''', also known as [[tantalum]](V) oxide, is the [[inorganic compound]] with the [[chemical formula|formula]] {{chem|Ta|2|O|5}}. It is a white solid that is insoluble in all solvents but is attacked by strong bases and hydrofluoric acid. {{chem|Ta|2|O|5}} is an inert material with a high [[refractive index]] and low absorption (i.e. colourless), which makes it useful for coatings<!--one cannot really coat in a spectral region . in the near-[[ultraviolet|UV]] to [[infrared|IR]] spectra regions-->.<ref name=book>{{cite book |title= The Chemistry of Niobium and Tantalum|url= https://archive.org/details/chemistryofniobi0000fair|url-access= registration|last= Fairbrother|first= Frederick|year= 1967|publisher= Elsevier Publishing Company|location= New York|isbn= 978-0-444-40205-9|pages= 1–28[https://archive.org/details/chemistryofniobi0000fair/page/n14 1]–28}}</ref> It is also extensively used in the production of [[tantalum capacitor|capacitors]], due to its high [[dielectric constant]].
 
==Preparation==
 
===Occurrence and refining===
Tantalum occurs in the minerals [[tantalite]] and [[columbite]] (columbium being an archaic name for niobium), which occur in [[pegmatite]]s, an igneous rock formation. Mixtures of columbite and tantalite are called [[coltan]]. Tantalite was discovered by [[Anders Gustaf Ekeberg]]{{when|date=October 2022}} at [[Ytterby]], Sweden, and Kimoto, Finland. The minerals [[microlite]] and [[pyrochlore]] contain approximately 70% and 10% Ta, respectively.
 
===Refining===
Tantalum ores often contain significant amounts of [[niobium]], which is itself a valuable metal. As such, both metals are extracted so that they may be sold. The overall process is one of [[hydrometallurgy]] and begins with a [[Leaching (metallurgy)|leaching]] step; in which the ore is treated with [[hydrofluoric acid]] and [[sulfuric acid]] to produce water-soluble [[hydrogen fluoride]]s, such as the [[Potassium heptafluorotantalate|heptafluorotantalate]]. This allows the metals to be separated from the various non-metallic impurities in the rock.
 
Line 46 ⟶ 50:
The pure tantalum hydrogen fluoride solution is then neutralised with aqueous [[ammonia]] to give [[water of hydration|hydrated]] tantalum oxide (Ta<sub>2</sub>O<sub>5</sub>(H<sub>2</sub>O)<sub>x</sub>), which is [[calcination|calcinated]] to tantalum pentoxide (Ta<sub>2</sub>O<sub>5</sub>) as described in these idealized equations:<ref>{{cite book|author=Anthony Agulyanski|editor=Anatoly Agulyanski|chapter=Fluorine chemistry in the processing of tantalum and niobium|title=Chemistry of Tantalum and Niobium Fluoride Compounds|year=2004|publisher=Elsevier|location=Burlington|isbn=9780080529028|edition=1st}}</ref>
 
: H<sub>2</sub>[TaF<sub>7</sub>] + 5 H<sub>2</sub>O + 7 [[ammonia|NH<sub>3</sub>]] → 0.5{{sfrac|1|2}} Ta<sub>2</sub>O<sub>5</sub>(H<sub>2</sub>O)<sub>5</sub> + 7 [[Ammonium fluoride|NH<sub>4</sub>F]]
: Ta<sub>2</sub>O<sub>5</sub>(H<sub>2</sub>O)<sub>5</sub> → Ta<sub>2</sub>O<sub>5</sub> + 5 H<sub>2</sub>O
 
Natural pure tantalum oxide is known as the mineral [[tantite]], although it is exceedingly rare.<ref>{{cite web|url=http://www.mindat.org/min-3884.html |title=Tantite: Tantite mineral information and data |website=Mindat.org |accessdateaccess-date=2016-03-03}}</ref>
 
===From alkoxides===
Line 58 ⟶ 62:
 
== Structure and properties ==
The crystal structure of tantalum pentoxide has been the matter of some debate. The bulk material is [[Disordered phase|disordered]],<ref name=temp>{{cite journal|last=Askeljung|first=Charlotta|author2=Marinder, Bengt-Olov |author3=Sundberg, Margareta |title=Effect of heat treatment on the structure of L-Ta2O5:Ta<sub>2</sub>O<sub>5</sub>|journal=Journal of Solid State Chemistry|date=1 November 2003|volume=176|issue=1|pages=250–258|doi=10.1016/j.jssc.2003.07.003|bibcode = 2003JSSCh.176..250A }}</ref> being either [[amorphous]] or [[polycrystalline]]; with [[single crystal]]s being difficult to grow. As such [[Xray crystallography]] has largely been limited to [[powder diffraction]], which provides less structural information.
 
At least 2 [[polymorphism (materials science)|polymorphs]] are known to exist. A low temperature form, known as L- or β-Ta<sub>2</sub>O<sub>5</sub>, and the high temperature form known as H- or α-Ta<sub>2</sub>O<sub>5</sub>. The transition between these two forms is slow and reversible; taking place between 1000- and 1360&nbsp;°C, with a mixture of structures existing at intermediate temperatures.<ref name=temp /> The structures of both polymorphs consist of chains built from octahedral TaO<sub>6</sub> and pentagonal bipyramidal TaO<sub>7</sub> polyhedra sharing opposite vertices; which are further joined by edge-sharing.<ref>{{cite journal|last=Stephenson|first=N. C.|author2=Roth, R. S. |title=Structural systematics in the binary system Ta2O5–WO3Ta<sub>2</sub>O<sub>5</sub>–WO<sub>3</sub>. V. The structure of the low-temperature form of tantalum oxide L-Ta2O5Ta<sub>2</sub>O<sub>5</sub>|journal=Acta Crystallographica Section B|date=1971|volume=27|issue=5|pages=1037–1044|doi=10.1107/S056774087100342X|doi-access=|bibcode=1971AcCrB..27.1037S }}</ref><ref>{{cite book |title= Structural Inorganic Chemistry|last= Wells|first= A.F.|year= 1947|publisher= Clarendon Press|location= Oxford}}</ref> The overall crystal system is [[orthorhombic]] in both cases, with the [[space group]] of β-Ta<sub>2</sub>O<sub>5</sub> being identified as ''Pna2'' by single crystal X-ray diffraction.<ref>{{cite journal|last=Wolten|first=G. M.|author2=Chase, A. B. |title=Single-crystal data for β Ta<sub>2</sub>O<sub>5</sub> and A KPO<sub>3</sub>|journal=Zeitschrift für Kristallographie|date=1 August 1969|volume=129|issue=5-65–6|pages=365–368|doi=10.1524/zkri.1969.129.5-6.365|bibcode = 1969ZK....129..365W }}</ref>
A high pressure form (''Z''-Ta<sub>2</sub>O<sub>5</sub>) has also been reported, in which the Ta atoms adopt a 7 coordinate geometry to give a [[monoclinic]] structure (space group C2).<ref>{{cite journal|last=Zibrov|first=I. P.|author2=Filonenko, V. P. |author3=Sundberg, M. |author4= Werner, P.-E. |title=Structures and phase transitions of B-Ta2O5Ta<sub>2</sub>O<sub>5</sub> and Z-Ta2O5Ta<sub>2</sub>O<sub>5</sub>: two high-pressure forms of Ta<sub>2</sub>O<sub>5</sub>|journal=Acta Crystallographica Section B|date=1 August 2000|volume=56|issue=4|pages=659–665|doi=10.1107/S0108768100005462|pmid=10944257 |s2cid=22330435 |doi-access=}}</ref>
 
Purely amorphous tantalum pentoxide has a similar local structure to the crystalline polymorphs, built from TaO<sub>6</sub> and TaO<sub>7</sub> polyhedra, while the molten liquid phase has a distinct structure based on lower coordination polyhedra, mainly TaO<sub>5</sub> and TaO<sub>6</sub>.<ref>{{cite journal |last1=Alderman|first1=O. L. G.|last2=Benmore|first2=C.J.|last3=Neuefeind|first3=J.|last4=Coillet|first4=E.|last5=Mermet|first5=A.|last6=Martinez|first6=V.|last7=Tamalonis|first7=A.|last8=Weber|first8=R.|title=Amorphous tantala and its relationship with the molten state |journal=Physical Review Materials |date=2018 |volume=2 |issue=4 |page=043602 |doi=10.1103/PhysRevMaterials.2.043602 |bibcode=2018PhRvM...2d3602A |doi-access=free }}</ref>
The difficulty in forming material with a uniform structure has led to variations in its reported properties. Like many metal oxides Ta<sub>2</sub>O<sub>5</sub> is an [[Insulator (electricity)|insulator]] and its [[band gap]] has variously been reported as being between 3.8 and 5.3 eV, depending on the method of manufacture.<ref>{{cite journal|last=Kukli|first=Kaupo|author2=Aarik, Jaan |author3=Aidla, Aleks |author4=Kohan, Oksana |author5=Uustare, Teet |author6= Sammelselg, Väino |title=Properties of tantalum oxide thin films grown by atomic layer deposition|journal=Thin Solid Films|year=1995|volume=260|issue=2|pages=135–142|doi=10.1016/0040-6090(94)06388-5|bibcode = 1995TSF...260..135K }}</ref><ref>{{cite journal|last1=Fleming|first1=R. M.|last2=Lang|first2=D. V.|last3=Jones|first3=C. D. W.|last4=Steigerwald|first4=M. L.|last5=Murphy|first5=D. W.|last6=Alers|first6=G. B.|last7=Wong|first7=Y.-H.|last8=van Dover|first8=R. B.|last9=Kwo|first9=J. R.|last10=Sergent|first10=A. M.|title=Defect dominated charge transport in amorphous Ta<sub>2</sub>O<sub>5</sub> thin films|journal=Journal of Applied Physics|date=1 January 2000|volume=88|issue=2|pages=850|doi=10.1063/1.373747|bibcode = 2000JAP....88..850F }}</ref><ref>{{cite journal|last=Murawala|first=Prakash A.|author2=Sawai, Mikio |author3=Tatsuta, Toshiaki |author4=Tsuji, Osamu |author5=Fujita, Shizuo |author6= Fujita, Shigeo |title=Structural and Electrical Properties of Ta<sub>2</sub>O<sub>5</sub> Grown by the Plasma-Enhanced Liquid Source CVD Using Penta Ethoxy Tantalum Source|journal=Japanese Journal of Applied Physics|year=1993|volume=32|issue=Part 1, No. 1B|pages=368–375|doi=10.1143/JJAP.32.368|bibcode = 1993JaJAP..32..368M }}</ref> In general the more [[amorphous]] the material the greater its observed band gap.
It should be noted that these observed values are significantly higher than those predicted by [[computational chemistry]] (2.3 - 3.8 eV).<ref>{{cite journal|last=Ramprasad|first=R.|title=First principles study of oxygen vacancy defects in tantalum pentoxide|journal=Journal of Applied Physics|date=1 January 2003|volume=94|issue=9|pages=5609|doi=10.1063/1.1615700|bibcode = 2003JAP....94.5609R }}</ref><ref>{{cite journal|last=Sawada|first=H.|author2=Kawakami, K. |title=Electronic structure of oxygen vacancy in Ta<sub>2</sub>O<sub>5</sub>|journal=Journal of Applied Physics|date=1 January 1999|volume=86|issue=2|pages=956|doi=10.1063/1.370831|bibcode = 1999JAP....86..956S }}</ref><ref>{{cite journal|last=Nashed|first=Ramy|author2=Hassan, Walid M. I. |author3=Ismail, Yehea |author4= Allam, Nageh K. |title=Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta<sub>2</sub>O<sub>5</sub>)|journal=Physical Chemistry Chemical Physics|year=2013|doi=10.1039/C2CP43492J}}</ref>
 
The difficulty in forming material with a uniform structure has led to variations in its reported properties. Like many metal oxides Ta<sub>2</sub>O<sub>5</sub> is an [[Insulator (electricity)|insulator]] and its [[band gap]] has variously been reported as being between 3.8 and 5.3 eV, depending on the method of manufacture.<ref>{{cite journal|last=Kukli|first=Kaupo|author2=Aarik, Jaan |author3=Aidla, Aleks |author4=Kohan, Oksana |author5=Uustare, Teet |author6= Sammelselg, Väino |title=Properties of tantalum oxide thin films grown by atomic layer deposition|journal=Thin Solid Films|year=1995|volume=260|issue=2|pages=135–142|doi=10.1016/0040-6090(94)06388-5|bibcode = 1995TSF...260..135K }}</ref><ref>{{cite journal|last1=Fleming|first1=R. M.|last2=Lang|first2=D. V.|last3=Jones|first3=C. D. W.|last4=Steigerwald|first4=M. L.|last5=Murphy|first5=D. W.|last6=Alers|first6=G. B.|last7=Wong|first7=Y.-H.|last8=van Dover|first8=R. B.|last9=Kwo|first9=J. R.|last10=Sergent|first10=A. M.|title=Defect dominated charge transport in amorphous Ta<sub>2</sub>O<sub>5</sub> thin films|journal=Journal of Applied Physics|date=1 January 2000|volume=88|issue=2|pages=850|doi=10.1063/1.373747|bibcode = 2000JAP....88..850F }}</ref><ref>{{cite journal|last=Murawala|first=Prakash A.|author2=Sawai, Mikio |author3=Tatsuta, Toshiaki |author4=Tsuji, Osamu |author5=Fujita, Shizuo |author6= Fujita, Shigeo |title=Structural and Electrical Properties of Ta<sub>2</sub>O<sub>5</sub> Grown by the Plasma-Enhanced Liquid Source CVD Using Penta Ethoxy Tantalum Source|journal=Japanese Journal of Applied Physics|year=1993|volume=32|issue=Part 1, No. 1B|pages=368–375|doi=10.1143/JJAP.32.368|bibcode = 1993JaJAP..32..368M |s2cid=97813703 }}</ref> In general the more [[amorphous]] the material the greater its observed band gap.
Its [[dielectric constant]] is typically about ~25<ref>{{cite journal|last=Macagno|first=V.|author2=Schultze, J.W. |title=The growth and properties of thin oxide layers on tantalum electrodes|journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry|date=1 December 1984|volume=180|issue=1-2|pages=157–170|doi=10.1016/0368-1874(84)83577-7}}</ref> although values of over 50 have been reported.<ref>{{cite journal|last=Hiratani|first=M.|author2=Kimura, S. |author3=Hamada, T. |author4=Iijima, S. |author5= Nakanishi, N. |title=Hexagonal polymorph of tantalum–pentoxide with enhanced dielectric constant|journal=Applied Physics Letters|date=1 January 2002|volume=81|issue=13|pages=2433|doi=10.1063/1.1509861|bibcode = 2002ApPhL..81.2433H }}</ref> In general tantalum pentoxide is considered to be a [[high-k dielectric]] material.
It should be noted that theseThese observed values are significantly higher than those predicted by [[computational chemistry]] (2.3 - 3.8 eV).<ref>{{cite journal|last=Ramprasad|first=R.|title=First principles study of oxygen vacancy defects in tantalum pentoxide|journal=Journal of Applied Physics|date=1 January 2003|volume=94|issue=9|pages=56095609–5612|doi=10.1063/1.1615700|bibcode = 2003JAP....94.5609R }}</ref><ref>{{cite journal|last=Sawada|first=H.|author2=Kawakami, K. |title=Electronic structure of oxygen vacancy in Ta<sub>2</sub>O<sub>5</sub>|journal=Journal of Applied Physics|date=1 January 1999|volume=86|issue=2|pages=956|doi=10.1063/1.370831|bibcode = 1999JAP....86..956S }}</ref><ref>{{cite journal|last=Nashed|first=Ramy|author2=Hassan, Walid M. I. |author3=Ismail, Yehea |author4= Allam, Nageh K. |title=Unravelling the interplay of crystal structure and electronic band structure of tantalum oxide (Ta<sub>2</sub>O<sub>5</sub>)|journal=Physical Chemistry Chemical Physics|volume=15|issue=5|pages=1352–7|year=2013|doi=10.1039/C2CP43492J|pmid=23243661|bibcode=2013PCCP...15.1352N}}</ref>
 
Its [[dielectric constant]] is typically about ~25<ref>{{cite journal|last=Macagno|first=V.|author2=Schultze, J.W. |title=The growth and properties of thin oxide layers on tantalum electrodes|journal=Journal of Electroanalytical Chemistry and Interfacial Electrochemistry|date=1 December 1984|volume=180|issue=1-21–2|pages=157–170|doi=10.1016/0368-1874(84)83577-7}}</ref> although values of over 50 have been reported.<ref>{{cite journal|last=Hiratani|first=M.|author2=Kimura, S. |author3=Hamada, T. |author4=Iijima, S. |author5= Nakanishi, N. |title=Hexagonal polymorph of tantalum–pentoxide with enhanced dielectric constant|journal=Applied Physics Letters|date=1 January 2002|volume=81|issue=13|pages=2433|doi=10.1063/1.1509861|bibcode = 2002ApPhL..81.2433H }}</ref> In general tantalum pentoxide is considered to be a [[high-k dielectric]] material.
 
== Reactions ==
Ta<sub>2</sub>O<sub>5</sub> does not react appreciably with either HCl or HBr, however it will dissolve in [[hydrofluoric acid]], and reacts with [[potassium bifluoride]] and HF according to the following equation:<ref>{{cite journal | last1 = Agulyansky, | first1 = A. "| year = 2003| title = Potassium fluorotantalate in solid, dissolved and molten conditions" | journal = J. Fluorine ChemistryChem. 2003,| 155-161.volume {{doi= 123| issue = 2 | pages = 155–161 | doi = 10.1016/S0022-1139(03)00190-8 }}</ref><ref>{{cite book|last=Brauer|first=Georg|title=Handbook of preparative inorganic chemistry.|year=1965|publisher=Academic Press|location=[S.l.]|isbn=978-0-12-395591-3|pages=256}}</ref>
 
:Ta<sub>2</sub>O<sub>5</sub> + 4 KHF<sub>2</sub> + 6 HF → 2 [[Potassium heptafluorotantalate|K<sub>42</sub>[TaF<sub>7</sub>] ]] + 5 H<sub>2</sub>O
 
Ta<sub>2</sub>O<sub>5</sub> can be reduced to metallic Ta via the use of metallic reductants such as calcium and aluminium.
Line 77 ⟶ 83:
:Ta<sub>2</sub>O<sub>5</sub> + 5 Ca → 2 Ta + 5 [[Calcium oxide|CaO]]
 
[[Image:Tantalum capacitors.jpg|thumb|right|Several 10uF{{nowrap|10 xμF 30VDC× 30 V}} DC rated [[tantalum capacitor]]s, solid-bodied epoxy-dipped type. Polarity is explicitly marked.]]
 
== Uses ==
 
=== In electronics ===
Owing to its high [[band gap]] and [[dielectric constant]], tantalum pentoxide has found a variety of uses in electronics, particularly in [[tantalum capacitor]]s. These are used in [[automotive electronics]], cell phones, and pagers, electronic circuitry; thin-film components; and high-speed tools. In the 1990s, interest grew in the use of tantalum oxide as a [[high-k dielectric]] for [[DRAM]] capacitor applications.,<ref>
{{cite journal |author1=Ezhilvalavan, S. |author2=Tseng, T. Y. |year=1999
| title = Preparation and properties of tantalum pentoxide (Ta<sub>2</sub>O<sub>5</sub>) thin films for ultra large scale integrated circuits (ULSIs) application - a review
| url = http://link.springer.com/article/10.1023/A:1008970922635
| journal = Journal of Materials Science: Materials in Electronics
| volume = 10 |issue=1 |pages=9–31 |doi=10.1023/A:1008970922635|s2cid=55644772 }}
</ref><ref>
{{cite journal |author1=Chaneliere, C |author2=Autran, J L |author3=Devine, R A B |author4=Balland, B |year=1998
| title = Tantalum pentoxide (Ta<sub>2</sub>O<sub>5</sub>) thin films for advanced dielectric applications
| url = http://www.sciencedirect.com/science/article/pii/S0927796X97000235
| journal = Materials Science and Engineering: R
| volume = 22 |issue=6 |pages=269–322 |doi=10.1016/S0927-796X(97)00023-5}}</ref>
 
It is used in on-chip metal-insulator-metal capacitors for high frequency [[CMOS]] integrated circuits. Tantalum oxide may have applications as the charge trapping layer for [[Non-volatile memory|Nonnon-volatile memories]].,<ref>
{{cite journal |author=Wang, X|year=2004
| title = A Novel MONOS-Type Nonvolatile Memory Using High-<math>\kappa</math>''κ'' Dielectrics for Improved Data Retention and Programming Speed
| journal = IEEE Transactions on Electron Devices
| volume = 51 |issue=4 |pages=597597–602 |doi=10.1109/TED.2004.824684|display-authors=etal|bibcode = 2004ITED...51..597W }}</ref><ref>
{{cite journal |author=Zhu, H|year=2013
| title = Design and Fabrication of Ta<sub>2</sub>O<sub>5</sub> Stacks for Discrete Multibit Memory Application
| journal = [[IEEE Transactions on Nanotechnology]]
| volume = 12 |issue=6 |pages=1151–1157 |doi=10.1109/TNANO.2013.2281817|display-authors=etal|bibcode=2013ITNan..12.1151Z|s2cid=44045227
}}</ref> There are applications of tantalum oxide in [[Resistive random-access memory|resistive switching memories]].<ref>
{{cite journal |author=Lee, M-.J|year=2011
| title = A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta<sub>2</sub>O<sub>5−x5−''x''</sub>/TaO<sub>2−x2−''x''</sub> bilayer structures
| journal = [[Nature Materials]] |volume=10 |pagesissue=6258
|pages=625–630
| doi = 10.1038/NMAT3070|display-authors=etal|bibcode = 2011NatMa..10..625L }}</ref>
| doi = 10.1038/NMAT3070|pmid=21743450
| doi = 10.1038/NMAT3070|display-authors=etal|bibcode = 2011NatMa..10..625L }}</ref>
 
=== OtherIn usesoptics ===
Due to its high [[refractive index]], Ta<sub>2</sub>O<sub>5</sub> has been utilized in the fabrication of the [[glass]] of [[photographic lens]]es.<ref name=book /><ref>{{cite book|title = Optical Materials: An Introduction to Selection and Application|chapter = Optical Glas Composition|first = Solomon|last = Musikant|publisher = CRC Press|year = 1985|page = 28|isbn = 978-0-8247-7309-0|chapter-url = https://books.google.com/books?id=iJEXMF3JBtQC&pg=PA28}}</ref>
It can also be deposited as an [[optical coating]] with typical applications being antireflection and multilayer filter coatings in near [[ultraviolet|UV]] to near [[infrared]].
<ref name="Materion">{{cite web |url=https://materion.com/resource-center/product-data-and-related-literature/inorganic-chemicals/oxides/tantalum-oxide-ta205-for-optical-coating |title=Tantalum Oxide for Optical Coating Applications|author=<!--Not stated--> |website=Materion |publisher= |access-date= April 1, 2021}}</ref>
 
Ta<sub>2</sub>O<sub>5</sub> has also been found to have a high nonlinear [[refractive index]],<ref>{{cite journal |last1=Tai |first1=Chao-Yi |last2=Wilkinson |first2=James S. |last3=Perney |first3=Nicolas M. B. |last4=Netti |first4=M. Caterina |last5=Cattaneo |first5=F. |last6=Finlayson |first6=Chris E. |last7=Baumberg |first7=Jeremy J. |date=2004-10-18 |title=Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation |url=https://opg.optica.org/oe/abstract.cfm?uri=oe-12-21-5110 |journal=Optics Express |language=EN |volume=12 |issue=21 |pages=5110–5116 |doi=10.1364/OPEX.12.005110 |pmid=19484065 |bibcode=2004OExpr..12.5110T |issn=1094-4087|doi-access=free }}</ref><ref name=":0">{{cite journal |last1=Jung |first1=Hojoong |last2=Yu |first2=Su-Peng |last3=Carlson |first3=David R. |last4=Drake |first4=Tara E. |last5=Briles |first5=Travis C. |last6=Papp |first6=Scott B. |date=2021-06-20 |title=Tantala Kerr nonlinear integrated photonics |url=https://opg.optica.org/optica/abstract.cfm?uri=optica-8-6-811 |journal=Optica |language=EN |volume=8 |issue=6 |pages=811–817 |doi=10.1364/OPTICA.411968 |issn=2334-2536|arxiv=2007.12958 |bibcode=2021Optic...8..811J |s2cid=220793938 }}</ref> on the order of three times that of [[Silicon nitride|silicon nitiride]], which has led to interest in the utilization of Ta<sub>2</sub>O<sub>5</sub> in [[photonic integrated circuit]]s. Ta<sub>2</sub>O<sub>5</sub> has been recently utilized as the material platform for the generation of [[supercontinuum]]<ref>{{cite journal |last1=Woods |first1=Jonathan R. C. |last2=Daykin |first2=Jake |last3=Tong |first3=Amy S. K. |last4=Lacava |first4=Cosimo |last5=Petropoulos |first5=Periklis |last6=Tropper |first6=Anne C. |last7=Horak |first7=Peter |last8=Wilkinson |first8=James S. |last9=Apostolopoulos |first9=Vasilis |date=2020-10-12 |title=Supercontinuum generation in tantalum pentoxide waveguides for pump wavelengths in the 900 nm to 1500 nm spectral region |url=https://opg.optica.org/abstract.cfm?URI=oe-28-21-32173 |journal=Optics Express |language=en |volume=28 |issue=21 |pages=32173–32184 |doi=10.1364/OE.403089 |pmid=33115180 |bibcode=2020OExpr..2832173W |issn=1094-4087|doi-access=free }}</ref><ref>{{cite journal |last1=Fan |first1=Ranran |last2=Lin |first2=Yuan-Yao |last3=Chang |first3=Lin |last4=Boes |first4=Andreas |last5=Bowers |first5=John |last6=Liu |first6=Jia-Wei |last7=Lin |first7=Chao-Hong |last8=Wang |first8=Te-Keng |last9=Qiao |first9=Junpeng |last10=Kuo |first10=Hao-Chung |last11=Lin |first11=Gong-Ru |last12=Shih |first12=Min-Hsiung |last13=Hung |first13=Yung-Jr |last14=Chiu |first14=Yi-Jen |last15=Lee |first15=Chao-Kuei |date=2021-04-12 |title=Higher order mode supercontinuum generation in tantalum pentoxide (Ta2O5) channel waveguide |journal=Scientific Reports |language=en |volume=11 |issue=1 |pages=7978 |doi=10.1038/s41598-021-86922-8 |issn=2045-2322 |pmc=8042067 |pmid=33846403|bibcode=2021NatSR..11.7978F }}</ref> and [[Kerr frequency comb]]s<ref name=":0" /> in [[Waveguide (optics)|waveguides]] and [[optical ring resonators]]. Through the addition of [[Rare-earth element|rare-earth]] dopants in the deposition process, Ta<sub>2</sub>O<sub>5</sub> waveguide lasers have been presented for a variety of applications, such as remote sensing and [[Lidar|LiDAR]].<ref>{{cite journal |last1=Tong |first1=Amy S. K. |last2=Mitchell |first2=Colin J. |last3=Aghajani |first3=Armen |last4=Sessions |first4=Neil |last5=Senthil Murugan |first5=G. |last6=Mackenzie |first6=Jacob I. |last7=Wilkinson |first7=James S. |date=2020-09-01 |title=Spectroscopy of thulium-doped tantalum pentoxide waveguides on silicon |url=https://opg.optica.org/abstract.cfm?URI=ome-10-9-2201 |journal=Optical Materials Express |language=en |volume=10 |issue=9 |pages=2201 |doi=10.1364/OME.397011 |bibcode=2020OMExp..10.2201T |issn=2159-3930|doi-access=free }}</ref><ref>{{cite journal |last1=Aghajani |first1=A |last2=Murugan |first2=G S |last3=Sessions |first3=N P |last4=Apostolopoulos |first4=V |last5=Wilkinson |first5=J S |date=2015-06-17 |title=Spectroscopy of high index contrast Yb:Ta 2 O 5 waveguides for lasing applications |journal=Journal of Physics: Conference Series |volume=619 |issue=1 |pages=012031 |doi=10.1088/1742-6596/619/1/012031 |bibcode=2015JPhCS.619a2031A |issn=1742-6596|doi-access=free }}</ref><ref>{{cite journal |last1=Subramani |first1=Ananth Z. |last2=Oton |first2=Claudio J. |last3=Shepherd |first3=David P. |last4=Wilkinson |first4=James S. |date=November 2010 |title=Erbium-Doped Waveguide Laser in Tantalum Pentoxide |url=https://ieeexplore.ieee.org/document/5560730 |journal=IEEE Photonics Technology Letters |volume=22 |issue=21 |pages=1571–1573 |doi=10.1109/LPT.2010.2072495 |bibcode=2010IPTL...22.1571S |s2cid=28849615 |issn=1041-1135}}</ref>
=== Other uses ===
Due to its high [[refractive index]], Ta<sub>2</sub>O<sub>5</sub> has been utilized in the fabrication of the [[glass]] of [[photographic lens]]es.<ref name=book /><ref>{{cite book|title = Optical Materials: An Introduction to Selection and Application|chapter = Optical Glas Composition|first = Solomon|last = Musikant|publisher = CRC Press|year = 1985|page = 28|isbn = 978-0-8247-7309-0|url = https://books.google.com/books?id=iJEXMF3JBtQC&pg=PA28}}</ref>
 
==References==
{{reflist|230em}}
 
{{Tantalum compounds}}
Line 119 ⟶ 130:
 
{{DEFAULTSORT:Tantalum Pentoxide}}
[[Category:Tantalum(V) compounds]]
[[Category:OxidesHigh-κ dielectrics]]
[[Category:High-kTransition dielectricsmetal oxides]]