www.fgks.org   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Inhibitory effect of doxycycline against dengue virus replication in vitro

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DENV1-4:

Dengue virus serotypes 1, 2, 3 and 4

NS2B:

NS2B cofactor amino acid sequence 49-95 in DENV

NS3pro:

NS3 protease amino acid sequence 1-185 in NS3 protease

NS2B-NS3pro:

NS2B fused to NS3pro via 9 amino acids (G4-T-G4)

AMC:

Fluorogenic peptide substrate (Boc-Gly-Arg-Arg-AMC)

CPE:

Cytopathic effect

References

  1. Brinton MA (2002) The molecular biology of West Nile virus: a new invader of the Western hemisphere. Annu Rev Microbiol 56:371–402

    Article  PubMed  CAS  Google Scholar 

  2. Hayes EB, Gubler DJ (2006) West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med 57:181–194

    Article  PubMed  CAS  Google Scholar 

  3. Botting C, Kuhn RJ (2012) Novel approaches to flavivirus drug discovery. Expert Opin Drug Discov 7:417–428

    Article  PubMed  CAS  Google Scholar 

  4. Monath TP (1994) Dengue: the risk to developed and developing countries. Proc Natl Acad Sci USA 91:2395–2400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Gubler DJ, Clark GG (1995) Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1:55–57

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103

    Article  PubMed  CAS  Google Scholar 

  7. Muhammad Azami NA, Salleh SA, Neoh HM, Syed Zakaria SZ, Jamal R (2011) Dengue epidemic in Malaysia: not a predominantly urban disease anymore. BMC Res Notes 4:216

    Article  PubMed Central  PubMed  Google Scholar 

  8. Modis Y, Ogata S, Clements D, Harrison SC (2003) A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100:6986–6991

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Modis Y, Ogata S, Clements D, Harrison SC (2004) Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319

    Article  PubMed  CAS  Google Scholar 

  10. Tomlinson SM, Malmstrom RD, Watowich SJ (2009) New approaches to structure-based discovery of dengue protease inhibitors. Infect Disord Drug Targets 9:327–343

    Article  PubMed  CAS  Google Scholar 

  11. Orellana MA, Gomez-Lus ML (2011) Which is the best empirical treatment in patients with urethritis? Rev Esp Quimioter 24:136–142

    PubMed  CAS  Google Scholar 

  12. Polat KY, Tosun MS, Ertekin V, Aydinli B, Emre S (2012) Brucella infection with pancytopenia after pediatric liver transplantation. Transpl Infect Dis 14:326–329

    Article  PubMed  CAS  Google Scholar 

  13. Skulason S, Holbrook WP, Thormar H, Gunnarsson GB, Kristmundsdottir T (2012) A study of the clinical activity of a gel combining monocaprin and doxycycline: a novel treatment for herpes labialis. J Oral Pathol Med 41:61–67

    Article  PubMed  CAS  Google Scholar 

  14. James R, Wilcox RN et al (2012) Doxycycline as a modulator of inflammation in chronic wounds. Wounds 24:339–349

    Google Scholar 

  15. Buckingham SC (2005) Tick-borne infections in children: epidemiology, clinical manifestations, and optimal management strategies. Paediatr Drugs 7:163–176

    Article  PubMed  Google Scholar 

  16. Kirchner JT, Emmert DH (2000) Sexually transmitted diseases in women. Chlamydia trachomatis and herpes simplex infections. Postgrad Med 107(55–58):55–61

    PubMed  CAS  Google Scholar 

  17. Sturtz FG (1998) Antimurine retroviral effect of doxycycline. Methods Find Exp Clin Pharmacol 20:643–647

    Article  PubMed  CAS  Google Scholar 

  18. Yang JM, Chen YF, Tu YY, Yen KR, Yang YL (2007) Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS One 2:e428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Manning MW, Cassis LA, Daugherty A (2003) Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 23:483–488

    Article  PubMed  CAS  Google Scholar 

  20. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA et al (2012) Protegrin-1 inhibits dengue NS2B-NS3 serine protease and viral replication in MK2 cells. J Biomed Biotechnol 2012:251482

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Rothan HA, Han HC, Ramasamy TS, Othman S, Rahman NA et al (2012) Inhibition of dengue NS2B-NS3 protease and viral replication in Vero cells by recombinant retrocyclin-1. BMC Infect Dis 12:314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969

    Article  PubMed  CAS  Google Scholar 

  23. Yon C, Teramoto T, Mueller N, Phelan J, Ganesh VK et al (2005) Modulation of the nucleoside triphosphatase/RNA helicase and 5’-RNA triphosphatase activities of Dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J Biol Chem 280:27412–27419

    Article  PubMed  CAS  Google Scholar 

  24. Lin C, Amberg SM, Chambers TJ, Rice CM (1993) Cleavage at the novel site in the NS4A region by the yellow fever virus NS2B-3proteinase is a prerequisite for processing at the downstream 4A/4B signalase site. J Virol 67:2327–2335

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Arias CF, Preugschat F, Strauss JH (1993) Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193:888–899

    Article  PubMed  CAS  Google Scholar 

  26. Lobigs M (1993) Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci USA 90:6218–6222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Clum S, Ebner KE, Padmanabhan R (1997) Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3 (Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B. J Biol Chem 272:30715–30723

    Article  PubMed  CAS  Google Scholar 

  28. Teo KF, Wright PJ (1998) Internal proteolysis of the NS3 protein specified by dengue virus 2. J Gen Microbiol 78:337–341

    Google Scholar 

  29. Stocks CE, Lobigs M (1998) Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J Virol 72:2141–2149

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Geiss BJ, Stahla H, Hannah AM, Gari AM, Keenan SM (2009) Focus on flaviviruses: current and future drug targets Future. Med Chem 1:327–344

    CAS  Google Scholar 

  31. Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, Lim S et al (2006) Structural basis for the activation of flaviviralNS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373

    Article  PubMed  CAS  Google Scholar 

  32. Yang CC, Hsieh YC, Lee SJ, Wu SH, Liao CL, Tsao CH, Chao YS, Chern JH, Wu CP, Yueh A (2011) Novel dengue virus-specific NS2B/NS3 Protease Inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob Agents Chemother 55:229–238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Gilbertson-Beadling S, Powers EA, Stamp-Cole M, Scott PS, Wallace TL et al (1995) The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metalloproteinase-dependent mechanism. Cancer Chemother Pharmacol 36:418–424

    Article  PubMed  CAS  Google Scholar 

  34. Dong M, Zhong L, Chen WQ, Ji XP, Zhang M et al (2012) Doxycycline stabilizes vulnerable plaque via inhibiting matrix metalloproteinases and attenuating inflammation in rabbits. PLoS ONE 7(6):e39695

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I et al (1999) Dengue virus structural differences that correlate with pathogenesis. J Virol 73:4738–4747

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Halsey ES, Marks MA, Gotuzzo E, Fiestas V, Suarez L et al (2012) Correlation of serotype-specific dengue virus infection with clinical manifestations. PLoS Negl Trop Dis 6:e1638

    Article  PubMed Central  PubMed  Google Scholar 

  37. Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI et al (2006) Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 74:449–456

    PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the University of Malaya, UMRG grant no. RP002-2012 and ERGS grant no. ER016-2013A.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussin A. Rothan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothan, H.A., Mohamed, Z., Paydar, M. et al. Inhibitory effect of doxycycline against dengue virus replication in vitro . Arch Virol 159, 711–718 (2014). https://doi.org/10.1007/s00705-013-1880-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1880-7

Keywords

Navigation