www.fgks.org   »   [go: up one dir, main page]

Skip to main content
Log in

Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current study investigates the potential for discolouration and degradation of Reactive Blue 19 and Reactive Black 5 textile dyes by endophytic fungi Phlebia sp. and Paecilomyces formosus as well as the potential cytotoxicity of products or by-products generated by the treatments in fish erythrocytes. It was observed at 30 days that both endophytes showed biodegradation activity with 0.1 g mL−1 of dyes. P. formosus showed highest extracellular and intracellular protein content levels after the 15th day, and Phlebia sp. stands out for production of extracellular laccase, indicating that this enzyme may be associated with the decolouration capacity. The dyes showed toxic effects in fishes at 0.01 g mL−1 concentration, resulting in the appearance of micronuclei in erythrocyte cells. When degraded dyes treated by endophytes were tested, the frequency of micronuclei reduced approximately 20%, indicating the effectiveness of these endophytic in the treatment of textile dyes with less environmental impact, thus indicating a potential for application of these fungi in bioremediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afzal, M., Shabir, G., Tahseen, R., Islam, E. U., Iqbal, S., Khan, Q. M., & Khalid, Z. M. (2014). Endophytic Burkholderia sp. strain PsJN improves plant growth and phytoremediation of soil irrigated with textile effluent. CLEAN–Soil, Air, Water, 42(9), 1304–1310.

    Article  CAS  Google Scholar 

  • Al-Sabti, K. (2000). Chlorotriazine reactive azo red 120 textile dye induces micronuclei in fish. Ecotoxicology and Environmental Safety, 47(2), 149–155.

    Article  CAS  Google Scholar 

  • Avni, P., & Jagruti, B. (2016). Determination of genotoxic effect of azo dye CI RR 120 on fish Catla catla. Biotechnological Research, 2(2), 77–80.

    Google Scholar 

  • Azevedo, J. L., & Araújo, W. L. (2007). Diversity and applications of endophytic fungi isolated from tropical plants. In B. N. Ganguli & S. K. Deshmukh (Eds.), Fungi: multifaceted microbes (pp. 189–207). New Delhi: Anamaya Publishers.

    Google Scholar 

  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: a review. Bioresource Technology, 58(3), 217–227.

    Article  CAS  Google Scholar 

  • Bisschops, I., & Spanjers, H. (2003). Literature review on textile wastewater characterization. Environmental Technology, 24(11), 1399–1411.

    Article  CAS  Google Scholar 

  • Bongiorno, V. A., Rhoden, S. A., Garcia, A., Polonio, J. C., Azevedo, J. L., Pereira, J. O., & Pamphile, J. A. (2016). Genetic diversity of endophytic fungi from Coffea arabica cv. IAPAR-59 in organic crops. Annals of Microbiology, 66, 855–865.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  • Cañamares, M. V., Reagan, D. A., Lombardi, J. R., & Leona, M. (2014). TLC-SERS of mauve, the first synthetic dye. Journal of Raman Spectroscopy, 45(11–12), 1147–1152.

    Article  Google Scholar 

  • Chung, K. T. (2016). Azo dyes and human health: a review. Journal of Environmental Science and Health, Part C, 34(4), 233–261.

    Article  CAS  Google Scholar 

  • Eggert, C., Temp, U., & Eriksson, K. E. L. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4), 1151–1158.

    CAS  Google Scholar 

  • Gill, P. K., Arora, D. S., & Chander, M. (2002). Biodecolourization of azo and triphenylmethane dyes by Dichomitus squales and Phlebia spp. Journal of Industrial Microbiology and Biotechnology, 28(4), 201–203.

    Article  CAS  Google Scholar 

  • Grisolia, C. K., Rivero, C. L. G., Starling, F. L. R. M., Silva, I. C. R., Barbosa, A. C., & Dorea, J. G. (2009). Profile of micronucleus frequencies and DNA damage in different species of fish in a eutrophic tropical lake. Genetics and Molecular Biology, 32(1), 138–143.

    Article  CAS  Google Scholar 

  • Hooftman, R. N., & De Raat, W. K. (1982). Induction of nuclear anomalies (miconuclei) in the peripheral blood erythrocytes of the eastern mudminnow Umbra pygmaea by ethyl methanesulphonate. Mutation Research Letters, 104(1), 147–152.

    Article  CAS  Google Scholar 

  • Hunger, K., Gregory, P., Miederer, P., Berneth, H., Heid, C., & Mennicke, W. (2004). Important chemical chromophores of dye classes. In K. Hunger (Ed.), Industrial Dyes: Chemistry, Properties, Applications (pp. 13–112). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  • Kamida, H., & Durrant, L. R. (2005). Biodegradation of textile effluents by Pleurotus sajor-caju. Quimica Nova, 28(4), 629–632.

    Article  CAS  Google Scholar 

  • Kaur, R., & Dua, A. (2016). Fish liver and gill cells as cytogenotoxic indicators in assessment of water quality. Environmental Science and Pollution Research, 23(18), 18892–18900.

    Article  CAS  Google Scholar 

  • Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: recent advances and future potential. Environment International, 35(1), 127–141.

    Article  CAS  Google Scholar 

  • Khatri, A., Peerzada, M. H., Mohsin, M., & White, M. (2015). A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. Journal of Cleaner Production, 87, 50–57.

    Article  CAS  Google Scholar 

  • Kusari, S., Hertweck, C., & Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, 19(7), 792–798.

    Article  CAS  Google Scholar 

  • Lima, R. O. A., Bazo, A. P., Salvadori, D. M. F., Rech, C. M., Oliveira, D. P., & Umbuzeiro, G. A. (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant that impacts a drinking water. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 626(1), 53–60.

    Article  Google Scholar 

  • Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174, 14–25.

    Article  CAS  Google Scholar 

  • Machado, K. M. G., & Matheus, D. R. (2006). Biodegradation of Remazol Brilliant Blue R by ligninolytic enzymatic complex produced by Pleurotus ostreatus. Brazilian Journal of Microbiology, 37(4), 468–473.

    Article  CAS  Google Scholar 

  • Manai, I., Miladi, B., El Mselmi, A., Smaali, I., Hassen, A. B., Hamdi, M., & Bouallagui, H. (2016a). Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923. Journal of Environmental Management, 170, 8–14.

    Article  CAS  Google Scholar 

  • Manai, I., Miladi, B., El Mselmi, A., Hamdi, M., & Bouallagui, H. (2016b). Improvement of activated sludge resistance to shock loading by fungal enzyme addition during textile wastewater treatment. Environmental Technology, 1–11.

  • Mcmullan, G., Mehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., Banat, I. M., Marchant, R., & Smyth, W. F. (2001). Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 56(1–2), 81–87.

    Article  CAS  Google Scholar 

  • Meehan, C., Banat, I. M., Mcmullan, G., Nigam, P., Amyth, F., & Marchant, R. (2006). Descolorization of Remazol Black B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environment International, 26(1), 75–79.

    Google Scholar 

  • Niebisch, C. H., Malinowski, A. K., Schadeck, R., Mitchell, D. A., Kava-Cordeiro, V., & Paba, J. (2010). Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracelular extract. Journal of Hazardous Materials, 180(1), 316–322.

    Article  CAS  Google Scholar 

  • Orlandelli, R. C., Alberto, R. N., Rubin-Filho, C. J., & Pamphile, J. A. (2012). Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves. Genetics and Molecular Research, 11(2), 1575–1585.

    Article  CAS  Google Scholar 

  • Pamphile, J. A., & Azevedo, J. L. (2002). Molecular characterization of endophytic strains of Fusarium verticillioides (=Fusarium moniliforme) from maize (Zea mays L). World Journal of Microbiology and Biotechnology, 18(5), 391–396.

    Article  CAS  Google Scholar 

  • Polonio, J.C., Polli, A.D., Azevedo, J.L., & Pamphile, J.A. (2016). RNA applications for endophytic research. Genetics and Molecular Research: GMR 15(3), gmr.15038879.

  • Raeder, U., & Broda, P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology, 1(1), 17–20.

    Article  CAS  Google Scholar 

  • Samsin, R. A., Houbraken, J., Varga, J., & Frisvad, J. C. (2009). Polyphasic taxonomy of the heat resistant ascomycete genus Byssochlamys and its Paecilomyces anamorphs. Persoonia-Molecular Phylogeny and Evolution of Fungi, 22(1), 14–27.

    Article  Google Scholar 

  • Saotome, K., & Hayashi, M. (2003). Application of a sea urchin micronucleus assay to monitoring aquatic pollution: influence of sample osmolality. Mutagenesis, 18(1), 73–76.

    Article  CAS  Google Scholar 

  • Silva, M. C., Corrêa, A. D., Torres, J. A., & Amorim, M. T. S. P. (2012). Descoloration of industrial dyes and simulated textile effluents dyes by turnip peroxidase. Química Nova, 35(5), 889–894.

    Article  CAS  Google Scholar 

  • Singh, R., Singh, P., & Sharma, R. (2014). Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proceedings of the International Academy of Ecology and Environmental Sciences, 4(1), 1–6.

    CAS  Google Scholar 

  • Solís, M., Solís, A., Perez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolourization of azo dyes: a review. Process Biochemistry, 47(12), 1723–1748.

    Article  Google Scholar 

  • Urra, J., Sepúlveda, L., Contreras, E., & Palma, C. (2006). Screening of static culture and comparison of batch and continuous culture for the textile dye biological decolorization by Phanerochaete chrysosporium. Brazilian Journal of Chemical Engineering, 23(3), 281–290.

    Article  CAS  Google Scholar 

  • Van Den Ende, A. H. G., & De Hoog, G. S. (1999). Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Studies in Mycology, 43, 151–162.

    Google Scholar 

  • Verma, S. K., Kumar, A., Lal, M., & Debnath, M. (2015). Biodegradation of synthetic dye by endophytic fungal isolate in Calotropis procera root. International Journal of Applied Sciences and Biotechnology, 3(3), 373–380.

    Article  Google Scholar 

  • Von Ledebur, M., & Schmid, W. (1973). The micronucleus test methodological aspects. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 19(1), 109–117.

    Article  CAS  Google Scholar 

  • Wang, C., Yediler, A., Lienert, D., Wang, Z., & Kettrup, A. (2003). Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere, 52(7), 1225–1232.

    Article  CAS  Google Scholar 

  • Welham, A. (2000). The theory of dyeing (and the secret of life). Journal of the Society of Dyers and Colourists, 116(5), 140–143.

    CAS  Google Scholar 

  • Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22(1), 161–187.

    Article  CAS  Google Scholar 

  • White Jr., J. F., Morrow, A. C., & Morgan-Jones, G. (1990). Endophyte-host associations in forage grasses. XII. A fungal endophyte of Trichachne insularis belongin to Psedocercosporella. Mycologia, 82, 218–226.

    Article  Google Scholar 

  • Rhoden, S. A., Garcia, A., Rubin-Filho, C. J., Azevedo, J. L., & Pamphile, J. A. (2012). Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genetics Molecular Research, 11(3), 2513–2522.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Complexo Central de Apoio à Pesquisa (COMCAP/UEM), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship and the CNPq (311534/2014-7; 447265/2014-8) and Fundação Araucária (FA) (276/2014) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alencar Pamphile.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulla, L.M.C., Polonio, J.C., Portela-Castro, A.L.d. et al. Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes. Environ Monit Assess 189, 88 (2017). https://doi.org/10.1007/s10661-017-5790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5790-0

Keywords

Navigation