www.fgks.org   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Cultural Heritage Science ((CUHESC))

Abstract

The Radiocarbon method, which allows analysis of carbon bearing material and its potential for dating artwork is reviewed. The development of the 14C measurement techniques (conventional and AMS) and its significance for dating art is discussed. This includes the present state-of-the-art of the Radiocarbon dating method on timescale calibration, sample quality aspects, and sample pretreatment. Dating of paintings and textiles are discussed as case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Becquerel (Bq) per gram Carbon; 1 Bq equals 1 decay per second.

References

  • Arnold, J.R., Libby, W.F.: Age determinations by radiocarbon content: checks with samples of known age. Science. 110, 678–680 (1949)

    Article  Google Scholar 

  • Baker, S.M., Armitage, R.A.: Cueva La Conga: first Karst Cave Archaeology in Nicaragua. Lat. Am. Antiq. 24, 309–329 (2013)

    Article  Google Scholar 

  • Bayliss, A., McCormac, G., van der Plicht, J.: An illustrated guide to measuring radiocarbon from archaeological samples. Phys. Educ. 39, 137–144 (2004)

    Article  Google Scholar 

  • Bennett, C.L., Beukens, R.P., Clover, M.R., Gove, H.E., Liebert, R.B., Litherland, A.E., et al.: Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science. 198, 508–510 (1977)

    Article  Google Scholar 

  • Bonneau, A., Brock, F., Higham, T., Pearce, D.G., Pollard, A.M.: An improved pretreatment protocol for radiocarbon dating black pigments in San Rock Art. Radiocarbon. 53, 419–428 (2011)

    Article  Google Scholar 

  • Bonneau, A., Staff, R.A., Higham, T., Brock, F., Pearce, D.G., Mitchell, P.J.: Successfully dating rock art in Southern Africa using improved sampling methods and new characterization and pretreatment protocols. Radiocarbon. 59, 1–19 (2016)

    Google Scholar 

  • Bour, A.L., Walker, B.D., Broek, T.A.B., McCarthy, M.D.: Radiocarbon analysis of individual amino acids: carbon blank quantification for a small-sample high-pressure liquid chromography purification method. Anal. Chem. 88, 3521–3528 (2016)

    Article  Google Scholar 

  • Brock, F., Higham, T., Ditchfield, P., Bronk Ramsey, C.: Current pretreatment methods for Ams radiocarbon dating at the oxford radiocarbon accelerator Unit (Orau). Radiocarbon. 52, 103–112 (2010)

    Article  Google Scholar 

  • Brock, F., Dee, M., Hughes, A., Snoeck, C., Staff, R., Bronk Ramsey, C.: Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon. 60, 35–50 (2018)

    Article  Google Scholar 

  • Bronk Ramsey, C., Hedges, R.E.M.: A gas ion source for radiocarbon dating. Nucl. Inst. Methods Phys. Res. B. 1-2, 45–49 (1987)

    Article  Google Scholar 

  • Bronk Ramsey, C., van der Plicht, J., Weninger, B.: ‘Wiggle matching’ radiocarbon dates. Radiocarbon. 43, 381–389 (2001)

    Article  Google Scholar 

  • Bronk Ramsey, C., Ditchfield, P., Humm, M.: Using a gas ion source for radiocarbon AMS and GC-AMS. Radiocarbon. 46, 25–32 (2004)

    Article  Google Scholar 

  • Bronk Ramsey, C., Buck, C.E., Manning, S.W., Reimer, P., van der Plicht, J.: Developments in radiocarbon calibration for archaeology. Antiquity. 80, 783798 (2006)

    Google Scholar 

  • Bronk Ramsey, C., Staff, R.A., Bryant, C.L., Brock, F., Kitagawa, H., van der Plicht, J., et al.: A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr BP. Science. 338, 370–374 (2012)

    Article  Google Scholar 

  • Brown, T.A., Southon, J.R.: Corrections for contamination background in AMS C-14 measurements. Nucl. Inst. Methods Phys. Res. B. 123, 208–213 (1997)

    Article  Google Scholar 

  • Bruhn, F., Duhr, A., Grootes, P.M., Mintrop, A., Nadeau, M.J.: Chemical removal of conservation substances by ‘soxhlet’-type extraction. Radiocarbon. 43, 229–237 (2001)

    Article  Google Scholar 

  • Bucha V. Influence of the earth’s magnetic field on radiocarbon dating. In: Olsson IU, editor. Radiocarbon Variations and Absolute Chronology, Proceedings of the 12th Nobel Symposium. Stockholm: Almquist and Wiksells; 1970. P. 501-512.

    Google Scholar 

  • Caforio, L., Fedi, M., Mando, P., Minarelli, F., Peccenini, E., Pellicori, V., Petrucci, F., Schwartzbaum, P., Taccetti, F.: Discovering forgeries of modern art by the C-14 Bomb Peak. Eur. Phys. J. Plus. 129, 1 (2014)

    Article  Google Scholar 

  • Casanova, E., Knowles, T.D.J., Bayliss, A., Dunne, J., Baranski, M.Z., Denaire, A., Lefranc, P., di Lernia, S., Roffet-Salque, M., Smyth, J., Barclay, A., Gillard, T., Classen, E., Coles, B., Ilett, M., Jeunesse, C., Krueger, M., Marciniak, A., Minnitt, S., Rotunno, R., van de Velde, P., van Wijk, I., Cotton, J., Daykin, A., Evershed, R.P.: Accurate compound-specific C-14 dating of archaeological pottery vessels. Nature. 580, 506–510 (2020)

    Article  Google Scholar 

  • Chlenova, L.G.: Masterpieces of Ukrainian Iconpainting of the 12th–19th Centuries. Kiev (1999) ISBN 966-577-035-7

    Google Scholar 

  • Cook GT, van der Plicht J. Radiocarbon dating. In: Elias S, Mock CJ, editors. Encyclopedia of Quaternary Science. 2nd ed. Elsevier Amsterdam; 2013. p.305-315.

    Google Scholar 

  • Craig, H.: The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta. 3, 53–92 (1953)

    Article  Google Scholar 

  • Damon, P.E., Donahue, D.J., Gore, B.H., Hatheway, A.L., Jull, A.J.T., Linick, T.W., Sercel, P.J., Toolin, L.J., Bronk Ramsey, C., Hall, E.T.: Radiocarbon dating of the Shroud of Turin. Nature. 337, 611–615 (1989)

    Article  Google Scholar 

  • de Vries, H.: Variation in concentration of Radiocarbon with time and location on earth. KNAW Proc. Ser. B. 61, 1–9 (1958)

    Google Scholar 

  • Dee, M., Brock, F., Bowles, A., Bronk Ramsey, C.: Using a silica substrate to monitor the effectiveness of radiocarbon pretreatment. Radiocarbon. 53, 705–711 (2011)

    Article  Google Scholar 

  • Dee, M.W., Palstra, S.W.L., Aerts-Bijma, A.T., Bleeker, M.O., de Bruijn, S., Ghebru, F., et al.: Radiocarbon dating at Groningen: new and updated chemical pretreatment procedures. Radiocarbon. 62, 63–74 (2020)

    Article  Google Scholar 

  • Eglinton, T.I., Pearson, A., McNichol, A.P., Currie, L.A., Benner, B.A., Wise, S.A.: Compound specific radiocarbon analysis as a tool to quantitatively apportion modern and fossil sources of polycyclic aromatic hydrocarbons in environmental matrices. In: Abstracts of Papers of the American Chemical Society, vol. 212, p. 65, ENVR (1996)

    Google Scholar 

  • Elmore, D., Phillips, F.M.: Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science. 236, 543–550 (1987)

    Article  Google Scholar 

  • Fedi, M., Caforio, L., Mando, P., Petrucci, F., Taccetti, F.: May 14C be used to date contemporary art? Nucl. Instr. Meth. Phys. Res. Sect. Phys. Res. B. 294, 662–665 (2013)

    Google Scholar 

  • Fiorillo, F., Hendriks, L., Hajdas, I., Vandini, M., Huysecom, E.: The rediscovery of Jan Ruyscher and its consequence. J. Am. Inst. Conserv. (2021). https://doi.org/10.1080/01971360.2020.1822702

  • Flint, R.S., Deevey, E.S.: Editorial statement. Radiocarbon. 1962, 4 (1962)

    Google Scholar 

  • Graven, H.D.: Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Natl. Acad. Sci. 112, 9542–9545 (2015)

    Article  Google Scholar 

  • Haghipour, N., Ausin, B., Usman, M.O., Ishikawa, L., Wacker, L., Welte, K., et al.: Compound specific radiocarbon: analysis by elemental analysis accelerator mass spectrometry: precision and limitations. Anal. Chem. 91, 2042–2049 (2019)

    Article  Google Scholar 

  • Hajdas, I.: The radiocarbon dating method and its applications in quaternary studies. Eiszeit. Gegenw. 57, 2–24 (2008)

    Google Scholar 

  • Hajdas, I.: Radiocarbon: calibration to absolute time scale. In: Turekian, H.D.H.K. (ed.) Treatise on Geochemistry, 2nd edn, pp. 37–43. Elsevier, Oxford (2014)

    Chapter  Google Scholar 

  • Hajdas, I., Bonani, G., Thut, H., Leone, G., Pfenninger, R., Maden, C.: A report on sample preparation at the ETH/PSI AMS facility in Zurich. Nucl. Inst. Methods Phys. Res. B. 223, 267–271 (2004)

    Article  Google Scholar 

  • Hajdas, I., Cristi, C., Bonani, G., Maurer, M.: Textiles and radiocarbon dating. Radiocarbon. 56, 637–643 (2014)

    Article  Google Scholar 

  • Hajdas, I., Jull, A.J.T., Huysecom, E., Mayor, A., Renold, M.A., Synal, H.A., et al.: Radiocarbon dating and the protection of cultural heritage. Radiocarbon. 61, 1133–1134 (2019a)

    Article  Google Scholar 

  • Hajdas, I., Koutouzis, P., Tai, K., Hendriks, L., Maurer, M., Rottig, M.B.: Bomb C-14 on paper and detection of the forged paintings of T’ang Haywen. Radiocarbon. 61, 1905–1912 (2019b)

    Article  Google Scholar 

  • Hendriks, L., Hajdas, I., McIntyre, C., Küffner, M., Scherrer, N.C., Ferreira, E.S.B.: Microscale radiocarbon dating of paintings. Appl. Phys. A. 122, 167 (2016)

    Article  Google Scholar 

  • Hendriks, L., Hajdas, I., Ferreira, E.S.B., Scherrer, N.C., Zumbühl, S., Küffner, M., et al.: Selective dating of paint components: radiocarbon dating of lead white pigment. Radiocarbon. 61, 473–493 (2018)

    Article  Google Scholar 

  • Hendriks, L., Hajdas, I., Ferreira, E.S.B., Scherrer, N.C., Zumbuhl, S., Smith, G.D., et al.: Uncovering modern paint forgeres by radiocarbon dating. Proc. Natl. Acad. Sci. 116, 13210–13214 (2019)

    Article  Google Scholar 

  • Hendriks, L., Kradolfer, S., Lombardo, T., Hubert, V., Küffner, M., Khandekar, N., et al.: Dual isotope system analysis of lead white in artworks. Analyst. 145, 1310–1318 (2020a)

    Article  Google Scholar 

  • Hendriks, L., Caseri, W., Ferreira, E.S., Scherrer, N.C., Zumbühl, S., Küffner, M., et al.: The ins and outs of 14C dating lead white paint for artworks application. Anal. Chem. 92, 7674–7682 (2020b)

    Article  Google Scholar 

  • Hogg, A., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C., Southon, J.S., et al.: SHCal20 Southern Hemisphere calibration, 0-55,000 years cal BP. Radiocarbon. 62, 759–778 (2020)

    Article  Google Scholar 

  • Horie, C.V.: Materials for Conservation: Organic Consolidants, Adhesives and Coatings. Routledge (2010) ISBN 0750669055

    Google Scholar 

  • Hua, Q., Barbetti, M., Rakowski, A.Z.: Atmospheric radiocarbon for the period 1950-2010. Radicoarbon. 55, 2059–2072 (2013)

    Article  Google Scholar 

  • Huysecom, E., Hajdas, I., Renold, M.A., Synal, H.A., Mayor, A.: The “enhancement” of cultural heritage by AMS dating: ethical questions and practical proposals. Radiocarbon. 59, 559–563 (2017)

    Article  Google Scholar 

  • Jull AJT. AMS radiocarbon dating. In: Elias SA, Mock CJ, editors. Encyclopedia of Quaternary Science (2nd ed.). Elsevier: Amsterdam; 2013. ISBN 9780444536433. p.316-323.

    Google Scholar 

  • Jull, A.J.T., Burr, G.: Some interesting applications of radiocarbon dating to art and archaeology. Archeometriai Muhely. 11, 139–148 (2014)

    Google Scholar 

  • Jull, A.J.T., Pearson, C.L., Taylor, R.E., Southon, J.R., Santos, G.M., Kohl, C.P., et al.: Radiocarbon dating and intercomparison of some early historical radiocarbon samples. Radiocarbon. 60, 535–548 (2018)

    Article  Google Scholar 

  • Keisch, B., Miller, H.H.: Recent art forgeries – detection by C-14 measurements. Nature. 240, 491–492 (1972)

    Article  Google Scholar 

  • Kovalyukh, N., van der Plicht, J., Possnert, G., Skripkin, V., Chlenova, L.: Dating of ancient icons from Kiev art collections. Radiocarbon. 43, 1065–1075 (2001)

    Article  Google Scholar 

  • Krzemnicki, M.S., Hajdas, I.: Age determination of pearls: a new approach for pearl testing and identification. Radiocarbon. 55, 1801–1809 (2013)

    Article  Google Scholar 

  • Kutschera, W.: Applications of accelerator mass spectrometry. Int. J. Mass Spectrom. 349/350, 203–218 (2013)

    Article  Google Scholar 

  • Kutschera, W.: The half-life of 14C – why is it so long? Radiocarbon. 61, 1135–1142 (2019)

    Article  Google Scholar 

  • Lanting, J.N., van der Plicht, J.: 14C-AMS: Pros and cons for archaeology. Palaeohistoria 35/36, 1–12 (1994)

    Google Scholar 

  • Levin, I., Hesshaimer, V.: Radiocarbon, a unique tracer of global carbon cycle dynamics. Radiocarbon. 42, 69–80 (2000)

    Article  Google Scholar 

  • Li, R., Baker, S., DeRoo, C.S., Armitage, R.A.: Characterization of the binders and pigments in the rock paintings of Cueva la Conga, Nicaragua. Coll. Endeavors Chem. Anal. Art Cult. Herit. Mater. 1103, 75–89 (2012)

    Google Scholar 

  • Libby, W.F.: Radiocarbon Dating. University of Chicago press (1952)

    Google Scholar 

  • Litherland, A.E., Zhao, X.L., Kieser, W.E.: Mass spectrometry with accelerators. Mass Spectrom. Rev. 30, 1037–1072 (2010)

    Article  Google Scholar 

  • Messager, C., Beck, L., De Viguerie, L., Jaber, M.: Thermal analysis of carbonate pigments and linseed oil to optimize CO2 extraction for radiocarbon dating of lead white paintings. Microchem. J. 154, 104637 (2020)

    Article  Google Scholar 

  • Middleton, R.: A review of ion sources for accelerator mass spectrometry. Nucl. Inst. Methods Phys. Res. B. 5, 193–199 (1984)

    Article  Google Scholar 

  • Mollenhauer, G., Rethemeyer, J.: Compound-specific radiocarbon analysis – analytical challenges and applications. IOP Conf. Ser. Earth Environ. Sci. 5, 012006 (2009)

    Article  Google Scholar 

  • Mook, W.G.: Archaeological and geological interest in applying 14C AMS to small samples. Nucl. Inst. Methods Phys. Res. B. 5, 297–302 (1984)

    Article  Google Scholar 

  • Mook, W.G.: Business meeting, 12th international radiocarbon conference. Radiocarbon. 28, 799 (1986)

    Article  Google Scholar 

  • Mook, W.G.: Introduction to Isotope Hydrology. Taylor and Francis, London (2006) ISBN 0415381975

    Google Scholar 

  • Mook, W.G., Grootes, P.M.: The measuring procedure and corrections for the high-precision mass spectrometric analysis of isotopic abundance ratios, especially referring to carbon, oxygen and nirrogen. Int. J. Mass Spectrom. 12, 273–298 (1973)

    Google Scholar 

  • Mook, W.G., Streurman, H.J.: Physical and chemical aspects of radiocarbon dating. PACT Publ. 8, 31–55 (1983)

    Google Scholar 

  • Mook, W.G., van der Plicht, J.: Reporting 14C activities and concentrations. Radiocarbon. 41, 227–239 (1999)

    Article  Google Scholar 

  • Nelson, D.E., Korteling, R.G.: Carbon-14: direct detection at natural concentrations. Science. 198, 507–508 (1977)

    Article  Google Scholar 

  • Nemec, M., Wacker, L., Hajdas, I., Gaggeler, H.: Alternative methods for cellulose preparation for AMS measurement. Radiocarbon. 52, 1358–1370 (2010)

    Article  Google Scholar 

  • Olsson, I.U.: Radiocarbon variations and absolute chronology. In: Proceedings of the 12th Nobel Symposium, Uppsala University. Almquist and Wiksells, Stockholm (1970)

    Google Scholar 

  • Park, W.K., Kim, Y., Jeong, A.R., Kim, S.K., Oh, J.A., Park, S.Y., et al.: Tree-ring dating and AMS wiggle matching of wooden statues at Neunggasa Temple in South Korea. Radiocarbon. 52, 924–932 (2010)

    Article  Google Scholar 

  • Purser, K.H.: A high throughput 14C accelerator mass spectrometer. Radiocarbon. 34, 459–467 (1992)

    Article  Google Scholar 

  • Purser, K.H., Smick, T.H., Purser, R.K.: A precision 14C accelerator mass spectrometer. Nucl. Instr. Meth. Phys. Res. Sect. Phys. Res. B. 52, 263–268 (1990)

    Google Scholar 

  • Quarta, G., D’Elia, M., Paparella, S., Serra, A., Calcagnile, L.: Characterisation of lead carbonate white pigments submitted to AMS radiocarbon dating. J. Cult. Herit. 46, 102–107 (2020)

    Article  Google Scholar 

  • Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., et al.: The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon. 62, 725–757 (2020)

    Article  Google Scholar 

  • Richardin, P., Gandolfo, N.: Radiocarbon dating and authentication of ethnographic objects. Radiocarbon. 55, 1810–1818 (2013)

    Article  Google Scholar 

  • Ruff, M., Fahrni, S., Gaggeler, H.W., Hajdas, I., Suter, M., Synal, H.A., et al.: On-line radiocarbon measurements of small samples using elemental analyzer and micadas gas ion source. Radiocarbon. 52, 1645–1656 (2010)

    Article  Google Scholar 

  • Santos, G.M., Southon, J.R., Griffin, S., Beaupre, S.R., Druffel, E.R.M.: Ultra small-mass AMS C-14 sample preparation and analyses at KCCAMS/UCI facility. Nucl. Inst. Methods Phys. Res. B. 259, 293–302 (2007)

    Article  Google Scholar 

  • Scott, E.M.: The Third International Radiocarbon Intercomparison (TIRI). Radiocarbon. 45, 293–328 (2003)

    Article  Google Scholar 

  • Shah, S.R., Pearson, A.: Ultra-scale analysis of individuallipids by 14C AMS: assessment and correction for sample processing blanks. Radiocarbon. 49, 69–82 (2007)

    Article  Google Scholar 

  • Stuiver, M.: Carbon-14 content of 18th and 19th century wood: variations correlated with sunspot activity. Science. 149, 533–535 (1965)

    Article  Google Scholar 

  • Stuiver, M., Quay, P.: Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet. Sci. Lett. 53, 349–362 (1981)

    Article  Google Scholar 

  • Suess, H.E.: The radiocarbon record in tree rings of the last 8000 years. Radiocarbon. 22, 200–209 (1980)

    Article  Google Scholar 

  • Synal, H.A.: Developments in accelerator mass spectrometry. Int. J. Mass Spectrom. 349–350, 192–202 (2013)

    Article  Google Scholar 

  • Synal, H.A., Wacker, L.: AMS measurement technique after 30 years: possibilities and limitations of low energy systems. Nucl. Inst. Methods Phys. Res. B. 268, 701–707 (2010)

    Article  Google Scholar 

  • Synal, H.A., Stocker, M., Suter, M.: MICADAS: a new compact rediocarbon AMS system. Nucl. Inst. Methods Phys. Res. B. B259, 7–13 (2007)

    Article  Google Scholar 

  • Taylor, R.E., Aitken, M.J.: Chronometric Dating in Archaeology, New York, Springer (1997) ISBN 9781475796964

    Google Scholar 

  • Tuniz, C., Bird, J.R., Fink, D., Herzog, G.F.: Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science. CRC Press, Boca Raton (1998) ISBN 9780849345388

    Google Scholar 

  • Uhl, T., Kretschmer, W., Luppold, W., Scharf, A.: Direct coupling of an elemental analyzer and a hybrid ion source for AMS measurements. Radiocarbon. 46, 65–75 (2004)

    Article  Google Scholar 

  • van der Plicht J. 2013. Variations in atmospheric 14C. In: Elias SA, Mock CJ, Encyclopedia of Quaternary Science (2nd ed.). Elsevier: Amsterdam; ISBN 9780444536433. p.329-335.

    Google Scholar 

  • van der Plicht, J., Bruins, H.J.: Radiocarbon dating in Near-Eastern Mediterranean contexts: confusion and quality control. Radiocarbon. 43, 1155–1166 (2001)

    Article  Google Scholar 

  • van der Plicht, J., Mook, W.G.: 1987. Automatic Radiocarbon calibration: illustrative examples. Palaeohistoria. 29, 173–182 (1987)

    Google Scholar 

  • van der Plicht, J., Bronk Ramsey, C., Heaton, T.J., Scott, E.M., Talamo, S.: Recent developments in calibration for archaeological and environmental samples. Radiocarbon. 62, 1095–1117 (2020)

    Article  Google Scholar 

  • Van Strydonck, M., Masschelein-Kleiner, L., Alderliesten, C., de Jong, A.F.M.: Radiocarbon dating of canvas paintings: 2 case studies. Stud. Conserv. 43, 209–214 (1998)

    Article  Google Scholar 

  • van Strydonck, M., Nelson, D.E., Combre, P., Bronk Ramsey, C., Scott, E.M., van der Plicht, J., et al.: What’s in a 14C date. In: Proceedings of the third conference on 14C and Archaeology (1998). Lyon, pp. 433–440 (1999)

    Google Scholar 

  • Vogel, J.S., Southon, J.R., Nelson, D.E., Brown, T.A.: Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nucl. Inst. Methods Phys. Res. B. 233, 289–293 (1984)

    Article  Google Scholar 

  • Vogel, J.S., Turteltaub, K.W., Finkel, R., Nelson, D.E.: Accelerator mass spectrometry: isotope quantification at attomole sensitivity. Anal. Chem. 67, 353A–359A (1995)

    Article  Google Scholar 

  • Wacker, L., Christl, M., Synal, H.A.: Bats: a new tool for AMS data reduction. Nucl. Inst. Methods Phys. Res. B. 268(7–8), 976–979 (2010a)

    Article  Google Scholar 

  • Wacker, L., Nemec, M., Bourquin, J.: A revolutionary graphitisation system: fully automated, compact and simple. Nucl. Inst. Methods Phys. Res. B. 268, 7–8 (2010b)., 931–4

    Article  Google Scholar 

  • Wacker, L., Fahrni, S., Hajdas, I., Molnar, M., Synal, H., Szidat, S., Zhang, Y.: A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nucl. Inst. Methods Phys. Res. B. 294, 315–319 (2013)

    Article  Google Scholar 

  • Walter, S.R.S., Gagnon, A.R., Roberts, M.L., McNichol, A.P., Lardie Gaylord, M.C., Klein, E.: Ultra-small graphitization reactors for ultra-microscale 14C analysis at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Radiocarbon. 57, 109–122 (2015)

    Article  Google Scholar 

  • Welte, C., Hendriks, L., Wacker, L., Haghipour, N., Eglinton, T.I., Gunther, D., et al.: Towards the limits: analysis of microscale 14C samples using EA-AMS. Nucl. Inst. Methods Phys. Res. B. 437, 66–74 (2018)

    Article  Google Scholar 

  • Zoppi, U., Skopec, Z., Skopec, J., Jones, G., Fink, D., Hua, Q., Jacobsen, G., Tuniz, C., Williams, A.: Forensic applications of C-14 bomb-pulse dating. Nucl. Inst. Methods Phys. Res. B. 223, 770–775 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to Laura Hendriks for her input to this article. The teams of LIP ETH (Zürich) and CIO (Groningen) are thanked for their continuous support with 14C sample preparation and measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes van der Plicht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Plicht, J., Hajdas, I. (2022). Dating of Artwork by Radiocarbon. In: Colombini, M.P., Degano, I., Nevin, A. (eds) Analytical Chemistry for the Study of Paintings and the Detection of Forgeries. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-86865-9_13

Download citation

Publish with us

Policies and ethics