www.fgks.org   »   [go: up one dir, main page]

Skip to main content

Intensified and Continuous mAb Production with Single-Use Systems

  • Chapter
  • First Online:
Cell Culture Engineering and Technology

Part of the book series: Cell Engineering ((CEEN,volume 10))

Abstract

Therapeutic monoclonal antibodies (mAbs) are the fastest-growing class of biotherapeutics. They are mainly used to treat cancer, inflammatory, metabolic and autoimmune diseases. Their commercial production processes are mainly based on Chinese hamster ovary (CHO) suspension cells, which are currently cultivated in fed-batch mode at cubic meter scale. The annually growing market for therapeutic mAbs and the pressure on producers to reduce their manufacturing costs have led to the increasing development of intensified and continuous production processes in recent years. Single-use systems are used in both upstream and downstream processing. This book chapter describes the main intensification approaches and operational architectures of continuous processes realized today, based on the developmental status of single-use technologies used for the up- and downstream processing of mAbs. In this context, the terms “process intensification” and “continuous process” are defined, while the preferential application of single-use systems is described using literature, and further by own studies. Based on the findings, the main challenges for the implementation of intensified and continuous mAb production using single-use systems are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497. https://doi.org/10.1038/256495a0

    Article  PubMed  Google Scholar 

  2. Carvalho LS, da Silva OB, da Almeida GC et al (2017) Production processes for monoclonal antibodies. In: Jozola A (ed) Fermentation processes. InTech, www.intechopen.com, pp 181–198

    Google Scholar 

  3. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145. https://doi.org/10.1038/nbt.4305

    Article  CAS  PubMed  Google Scholar 

  4. Lu RM, Hwang YC, Liu IJ et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27:1–30. https://doi.org/10.1186/s12929-019-0592-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bielser JM, Wolf M, Souquet J et al (2018) Perfusion mammalian cell culture for recombinant protein manufacturing – a critical review. Biotechnol Adv 36:1328–1340. https://doi.org/10.1016/j.biotechadv.2018.04.011

    Article  CAS  PubMed  Google Scholar 

  6. Kelley B (2009) Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs 1:443–452. https://doi.org/10.4161/mabs.1.5.9448

    Article  PubMed  PubMed Central  Google Scholar 

  7. Becerra S, Berrios J, Osses N, Altamirano C (2012) Exploring the effect of mild hypothermia on CHO cell productivity. Biochem Eng J 60:1–8. https://doi.org/10.1016/j.bej.2011.10.003

    Article  CAS  Google Scholar 

  8. Masterton RJ, Smales CM (2014) The impact of process temperature on mammalian cell lines and the implications for the production of recombinant proteins in CHO cells. Pharm Bioprocess 2:49–61. https://doi.org/10.4155/pbp.14.3

    Article  Google Scholar 

  9. Torres M, Zúñiga R, Gutierrez M et al (2018) Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells. PLoS One 13:e0194510. https://doi.org/10.1371/journal.pone.0194510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu J, Xu X, Huang C et al (2020) Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. MAbs 12:1770669. https://doi.org/10.1080/19420862.2020.1770669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Konstantinov KB, Cooney CL (2015) White paper on continuous bioprocessing May 20–21 2014 continuous manufacturing symposium. J Pharm Sci 104:813–820. https://doi.org/10.1002/jps.24268

    Article  CAS  PubMed  Google Scholar 

  12. Pollock J, Ho SV, Farid SS (2013) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110:206–219. https://doi.org/10.1002/bit.24608

    Article  CAS  PubMed  Google Scholar 

  13. Lindskog EK (2017) The upstream process: principal modes of operation. In: Jagschies G, Lindskog E, Lacki K, Galliher P (eds) Biopharmaceutical processing: development, design, and implementation of manufacturing processes. Elsevier, pp 625–635

    Google Scholar 

  14. Gupta SK (2017) Upstream continuous process development. In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 201–232

    Chapter  Google Scholar 

  15. Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B 848:8–18. https://doi.org/10.1016/j.jchromb.2006.07.037

    Article  CAS  Google Scholar 

  16. Gavara P, Bibi N, Sanchez M et al (2015) Chromatographic characterization and process performance of column-packed anion exchange fibrous adsorbents for high throughput and high capacity bioseparations. PRO 3:204–221. https://doi.org/10.3390/pr3010204

    Article  CAS  Google Scholar 

  17. Broly H, Costioli MD, Guillemot-Potelle C, Mitchell-Logean C (2010) Cost of goods modeling and quality by design for developing cost-effective processes. BioPharm Int 23:26–35

    Google Scholar 

  18. Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol 213:13–19. https://doi.org/10.1016/j.jbiotec.2015.06.393

    Article  CAS  PubMed  Google Scholar 

  19. Somasundaram B, Pleitt K, Shave E et al (2018) Progression of continuous downstream processing of monoclonal antibodies: current trends and challenges. Biotechnol Bioeng 115:2893–2907. https://doi.org/10.1002/bit.26812

    Article  CAS  PubMed  Google Scholar 

  20. Whitford WG (2013) Single-use technology supporting the comeback of continuous bioprocessing. Pharm Bioprocess 1:249–253. https://doi.org/10.4155/pbp.13.28

    Article  Google Scholar 

  21. Langer ES, Rader RA (2014) Single-use technologies in biopharmaceutical manufacturing: a 10-year review of trends and the future. Eng Life Sci 14:238–243. https://doi.org/10.1002/elsc.201300090

    Article  CAS  Google Scholar 

  22. Chulkova TY, Kurbanova EK, Novikov YN, Gusarov DA (2013) Single-use technologies in biopharmaceutical production: advantages and disadvantages. Upstream process solutions (mini-review). Russ J Biopharm 5:3–12

    Google Scholar 

  23. Rogge P, Müller D, Schmidt SR (2015) The single-use or stainless steel decision process: a CDMO perspective. Bioprocess Int 13:10–15

    Google Scholar 

  24. BioPlan Associates Inc. (2020) Seventeenth annual report and survey of biopharmaceutical manufacturing capacity and production. www.bioplanassociates.com

  25. Kunas K, Horvath B, Frank G et al (2013) A generic growth test method for improving quality control of disposables in industrial cell culture. BioPharm Int 26:34–41

    Google Scholar 

  26. Sobańtka A, Weiner C (2019) Extractables/leachables from single-use equipment. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture, 2nd edn. Wiley, Hoboken, pp 143–158

    Chapter  Google Scholar 

  27. Dorival-García N, Carillo S, Ta C et al (2018) Large-scale assessment of extractables and leachables in single-use bags for biomanufacturing. Anal Chem 90:9006–9015. https://doi.org/10.1021/acs.analchem.8b01208

    Article  CAS  PubMed  Google Scholar 

  28. Pahl I, Hauk A, Schosser L, Orlikowski S (2019) Considerations on performing quality risk analysis for production processes with single-use systems. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture, 2nd edn. Wiley, Hoboken, pp 211–218

    Chapter  Google Scholar 

  29. Martin JM (2011) A brief history of single-use manufacturing. BioPharm Int 24(Suppl):5–7

    Google Scholar 

  30. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158. https://doi.org/10.1023/a:1008025016272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jossen V, Eibl R, Eibl D (2019) Single-use bioreactors – an overview. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture, 2nd edn. Wiley, Hoboken, pp 37–52

    Chapter  Google Scholar 

  32. Stanton D (2019) ABEC breaks plastic ceiling again with 6,000 L single-use bioreactor. In: Bioprocess Int. https://bioprocessintl.com/bioprocess-insider/upstream-downstream-processing/abec-breaks-plastic-ceiling-again-with-6000-l-single-use-bioreactor/. Accessed 10 Nov 2020

  33. Oosterhuis NMG, Junne S (2016) Design, applications, and development of single-use bioreactors. In: Mandenius C-F (ed) Bioreactors: design, operation and novel applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 261–294

    Chapter  Google Scholar 

  34. Kaiser SC, Kraume M, Eibl D, Eibl R (2015) Single-use bioreactors for animal and human cells. In: Al-Rubeai M (ed) Animal cell culture. Cell engineering, vol 9. Springer, Cham, pp 445–500

    Chapter  Google Scholar 

  35. Oosterhuis NMG (2017) Single-use bioreactors for continuous bioprocessing: challenges and outlook. In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 131–148

    Chapter  Google Scholar 

  36. Schirmer C, Müller J, Steffen N et al (2020) How to produce mAbs in a cube-shaped stirred single-use bioreactor at 200 L scale. In: Pörtner R (ed) Animal cell biotechnology: methods and protocols, 4th edn. Humana Press, New York, pp 169–186

    Chapter  Google Scholar 

  37. Anderlei T, Eibl D, Eibl R et al (2017) Facility of the future. DECHEMA, Frankfurt a.M. ISBN 978-3-89746-199-4

    Google Scholar 

  38. Manser B, Glenz M, Bisschops M (2019) Single-use downstream processing for biopharmaceuticals. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture, 2nd edn. Wiley, Hoboken, pp 117–126

    Chapter  Google Scholar 

  39. Clincke MF, Mölleryd C, Samani PK et al (2013) Very high density of Chinese hamster ovary cells in perfusion by alternating tangential flow or tangential flow filtration in WAVE bioreactor™-part II: applications for antibody production and cryopreservation. Biotechnol Prog 29:768–777. https://doi.org/10.1002/btpr.1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ozturk SS (1996) Engineering challenges in high density cell culture systems. Cytotechnology 22:3–16. https://doi.org/10.1007/BF00353919

    Article  CAS  PubMed  Google Scholar 

  41. Konstantinov K, Goudar C, Ng M et al (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. Adv Biochem Eng Biotechnol 101:75–98. https://doi.org/10.1007/10_016

    Article  CAS  PubMed  Google Scholar 

  42. Castilho LR, Medronho RA (2002) Cell retention devices for suspended-cell perfusion cultures. In: Schügerl K, Zeng A-P (eds) Advances in biochemical engineering/biotechnology, 74th edn. Springer, Berlin, Heidelberg, pp 129–169

    Google Scholar 

  43. Warnock JN, Al-Rubeai M (2006) Bioreactor systems for the production of biopharmaceuticals from animal cells. Biotechnol Appl Biochem 45:1–12. https://doi.org/10.1042/BA20050233

    Article  CAS  PubMed  Google Scholar 

  44. Chotteau V (2015) Perfusion processes. In: Al-Rubeai M (ed) Animal cell culture. Cell engineering, vol 9. Springer, Cham, pp 407–443

    Chapter  Google Scholar 

  45. Voisard D, Meuwly F, Ruffieux P-A et al (2003) Potential of cell retention techniques for large-scale high-density perfusion culture of suspended mammalian cells. Biotechnol Bioeng 82:751–765. https://doi.org/10.1002/bit.10629

    Article  CAS  PubMed  Google Scholar 

  46. Clincke MF, Mölleryd C, Zhang Y et al (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™: part I: effect of the cell density on the process. Biotechnol Prog 29:754–767. https://doi.org/10.1002/btpr.1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oosterhuis NMG (2014) Perfusion process design in a 2D rocking single-use bioreactor. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 155–164

    Google Scholar 

  48. Whitford WG (2015) Single-use perfusion bioreactors support continuous biomanufacturing. Pharm Bioprocess 3:75–93. https://doi.org/10.4155/pbp.14.58

    Article  CAS  Google Scholar 

  49. Karst DJ, Serra E, Villiger TK et al (2016) Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochem Eng J 110:17–26. https://doi.org/10.1016/j.bej.2016.02.003

    Article  CAS  Google Scholar 

  50. Madsen B, Cobia J, Jones N (2019) S.U.B. enhancements for high-density perfusion cultures. Appl. Note. https://assets.thermofisher.com/TFS-Assets/BPD/Application-Notes/sub-enhancements-perfusion-cultures-app-note.pdf. Accessed 22 Nov 2020

  51. Stepper L, Filser FA, Fischer S et al (2020) Pre-stage perfusion and ultra-high seeding cell density in CHO fed-batch culture: a case study for process intensification guided by systems biotechnology. Bioprocess Biosyst Eng 43:1431–1443. https://doi.org/10.1007/s00449-020-02337-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sieck JB, Schild C, von Hagen J (2017) Perfusion formats and their specific medium requirements. In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 171–200

    Chapter  Google Scholar 

  53. Zhan C, Bidkhori G, Schwarz H et al (2020) Low shear stress increases recombinant protein production and high shear stress increases apoptosis in human cells. iScience 23:–101653. https://doi.org/10.1016/j.isci.2020.101653

  54. Radoniqi F, Zhang H, Bardliving CL et al (2018) Computational fluid dynamic modeling of alternating tangential flow filtration for perfusion cell culture. Biotechnol Bioeng 115:2751–2759. https://doi.org/10.1002/bit.26813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walther J, McLarty J, Johnson T (2019) The effects of alternating tangential flow (ATF) residence time, hydrodynamic stress, and filtration flux on high-density perfusion cell culture. Biotechnol Bioeng 116:320–332. https://doi.org/10.1002/bit.26811

    Article  CAS  PubMed  Google Scholar 

  56. Woodgate JM (2018) Perfusion N-1 culture—opportunities for process intensification. In: Jagschies G, Lindskog E, Łącki K, Galliher P (eds) Biopharmaceutical processing - development, design, and implementation of manufacturing processes. Elsevier, Amsterdam/Oxford/Cambridge, pp 755–768

    Chapter  Google Scholar 

  57. Zamani L, Lundqvist M, Zhang Y et al (2018) High cell density perfusion culture has a maintained exoproteome and metabolome. Biotechnol J 13:1–11. https://doi.org/10.1002/biot.201800036

    Article  CAS  Google Scholar 

  58. Padawer I, Ling WLW, Bai Y (2013) Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnol Prog 29:829–832. https://doi.org/10.1002/btpr.1719

    Article  CAS  PubMed  Google Scholar 

  59. Pohlscheidt M, Jacobs M, Wolf S et al (2013) Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 29:222–229. https://doi.org/10.1002/btpr.1672

    Article  CAS  PubMed  Google Scholar 

  60. Yang WC, Lu J, Kwiatkowski C et al (2014) Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnol Prog 30:616–625. https://doi.org/10.1002/btpr.1884

    Article  CAS  PubMed  Google Scholar 

  61. Xu J, Rehmann MS, Xu M et al (2020) Development of an intensified fed-batch production platform with doubled titers using N-1 perfusion seed for cell culture manufacturing. Bioresour Bioprocess 7:17. https://doi.org/10.1186/s40643-020-00304-y

    Article  CAS  Google Scholar 

  62. GE Healthcare (2016) One-step seed culture expansion from one vial of high-density cell bank to 2000 L production bioreactor. Appl. Note 29160932. https://www.cytivalifesciences.co.kr/wp-content/uploads/2020/04/One-step-seed-culture-expansion-from-one-vial-of-high-density-cell-bank-to-2000-L-production-bioreactor.pdf. Accessed 10 Nov 2020

  63. Steffen N (2020) Neue Ansätze zur CHO-Zell-basierten Antikörperproduktion. Master thesis, Zürcher Hochschule für Angewandte Wissenschaften

    Google Scholar 

  64. BioPhorum Operations Group (2017) Continuous downstream processing for biomanufacturing: an industry review. https://www.biophorum.com/download/continuous-downstream-processing-for-biomanufacturing-an-industry-review/. Accessed 8 Nov 2020

  65. Hwang I (2019) Samsung biologics implements large scale N-1 perfusion for commercial application. Press release. https://www.prnewswire.com/news-releases/samsung-biologics-implements-large-scale-n-1-perfusion-for-commercial-application-300899326.html. Accessed 10 Nov 2020

  66. Jordan M, Mac Kinnon N, Monchois V et al (2018) Intensification of large-scale cell culture processes. Curr Opin Chem Eng 22:253–257. https://doi.org/10.1016/j.coche.2018.11.008

    Article  Google Scholar 

  67. Grün M (2018) Scale-up strategie für eine CHO-Zell-basierte IgG-Produktion (Fed-Batch) in gerührten Single-Use Bioreaktoren. Master thesis, Zürcher Hochschule für Angewandte Wissenschaften

    Google Scholar 

  68. Yang WC, Minkler DF, Kshirsagar R et al (2016) Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. J Biotechnol 217:1–11. https://doi.org/10.1016/j.jbiotec.2015.10.009

    Article  CAS  PubMed  Google Scholar 

  69. Fenge C, Weyand J, Greller G, Adams T (2018) Large-scale perfusion and concentrated fed-batch operation of BIOSTAT ® STR single-use bioreactor. Appl. Note. https://www.sartorius.com/resource/blob/11984/8e3d506edce9939b03efd4e2352d7e6b/appl-large-scale-perfusion-sbt1018-e-data.pdf. Accessed 10 Nov 2020

  70. Warikoo V, Godawat R, Brower K et al (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109:3018–3029. https://doi.org/10.1002/bit.24584

    Article  CAS  PubMed  Google Scholar 

  71. Zijlstra G, Touw K, Koch M, Monge M (2019) Design considerations towards an intensified single-use facility. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture, 2nd edn. Wiley, Hoboken, pp 181–192

    Chapter  Google Scholar 

  72. Chon JH, Zarbis-Papastoitsis G (2011) Advances in the production and downstream processing of antibodies. New Biotechnol 28:458–463. https://doi.org/10.1016/j.nbt.2011.03.015

    Article  CAS  Google Scholar 

  73. Butler M, Meneses-Acosta A (2012) Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 96:885–894. https://doi.org/10.1007/s00253-012-4451-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zijlstra GM, Hof RP, Schilder J (2006) Improved process for the culturing of cells. Patent WO2008006494A1, 14 July 2006

    Google Scholar 

  75. Ramos-de-la-Peña AM, González-Valdez J, Aguilar O (2019) Protein a chromatography: challenges and progress in the purification of monoclonal antibodies. J Sep Sci 42:1816–1827. https://doi.org/10.1002/jssc.201800963

    Article  CAS  PubMed  Google Scholar 

  76. Zarrineh M, Mashhadi IS, Farhadpour M, Ghassempour A (2020) Mechanism of antibodies purification by protein a. Anal Biochem 609:113909. https://doi.org/10.1016/j.ab.2020.113909

    Article  CAS  PubMed  Google Scholar 

  77. Gao Z-Y, Zhang Q-L, Shi C et al (2020) Antibody capture with twin-column continuous chromatography: effects of residence time, protein concentration and resin. Sep Purif Technol 253:117554. https://doi.org/10.1016/j.seppur.2020.117554

    Article  CAS  Google Scholar 

  78. Hilbold N-J, Le Saoût X, Valery E et al (2017) Evaluation of several protein a resins for application to multicolumn chromatography for the rapid purification of fed-batch bioreactors. Biotechnol Prog 33:941–953. https://doi.org/10.1002/btpr.2465

    Article  CAS  PubMed  Google Scholar 

  79. Nadar S, Shooter G, Somasundaram B et al (2020) Intensified downstream processing of monoclonal antibodies using membrane technology. Biotechnol J:2000309. https://doi.org/10.1002/biot.202000309

  80. Follman DK, Fahrner RL (2004) Factorial screening of antibody purification processes using three chromatography steps without protein A. J Chromatogr A 1024:79–85. https://doi.org/10.1016/j.chroma.2003.10.060

    Article  CAS  PubMed  Google Scholar 

  81. Lain B, Cacciuttolo M, Zarbis-Papastoitsis G (2009) Development of a high-capacity MAb capture step based on cation-exchange chromatography. Bioprocess Int 7:26–34

    Article  CAS  Google Scholar 

  82. Hammerschmidt N, Tscheliessnig A, Sommer R et al (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9:766–775. https://doi.org/10.1002/biot.201300480

    Article  CAS  PubMed  Google Scholar 

  83. Gronemeyer P, Ditz R, Strube J (2014) Trends in upstream and downstream process development for antibody manufacturing. Bioengineering 1:188–212. https://doi.org/10.3390/bioengineering1040188

    Article  PubMed  Google Scholar 

  84. Kateja N, Agarwal H, Saraswat A et al (2016) Continuous precipitation of process related impurities from clarified cell culture supernatant using a novel coiled flow inversion reactor (CFIR). Biotechnol J 11:1320–1331. https://doi.org/10.1002/biot.201600271

    Article  CAS  PubMed  Google Scholar 

  85. Martinez M, Spitali M, Norrant EL, Bracewell DG (2019) Precipitation as an enabling technology for the intensification of biopharmaceutical manufacture. Trends Biotechnol 37:237–241. https://doi.org/10.1016/j.tibtech.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  86. Smejkal B, Agrawal NJ, Helk B et al (2013) Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Biotechnol Bioeng 110:2452–2461. https://doi.org/10.1002/bit.24908

    Article  CAS  PubMed  Google Scholar 

  87. Rosa PAJ, Azevedo AM, Ferreira IF et al (2007) Affinity partitioning of human antibodies in aqueous two-phase systems. J Chromatogr A 1162:103–113. https://doi.org/10.1016/j.chroma.2007.03.067

    Article  CAS  PubMed  Google Scholar 

  88. Kruse T, Kampmann M, Rüddel I, Greller G (2020) An alternative downstream process based on aqueous two-phase extraction for the purification of monoclonal antibodies. Biochem Eng J 161:107703. https://doi.org/10.1016/j.bej.2020.107703

    Article  CAS  Google Scholar 

  89. Boi C (2019) Membrane chromatography for biomolecule purification. In: Basile A, Charcosset C (eds) Current trends and future developments on (Bio-) membranes. Elsevier, Amsterdam/Oxford/Cambridge, pp 151–166

    Chapter  Google Scholar 

  90. Mothes B, Pezzini J, Schroeder-Tittmann K, Villain L (2016) Accelerated, seamless antibody purification: process intensification with continuous disposable technology. BioProcess Int 14:34–58

    Google Scholar 

  91. Weaver J, Husson SM, Murphy L, Wickramasinghe SR (2013) Anion exchange membrane adsorbers for flow-through polishing steps: part II. Virus, host cell protein, DNA clearance, and antibody recovery. Biotechnol Bioeng 110:500–510. https://doi.org/10.1002/bit.24724

    Article  CAS  PubMed  Google Scholar 

  92. Jacquemart R, Stout J (2017) Membrane adsorbers, columns: single-use alternatives to resin chromatography. Bioprocess Int 14:18–19

    Google Scholar 

  93. Lim JAC, Sinclair A, Kim DS, Gottschalk U (2007) Economic benefits of single-use membrane chromatography in polishing – a cost of goods model. Bioprocess Int 5:60–64

    Google Scholar 

  94. Bisschops M, Schofield M, Grace J (2017) Two mutually enabling trends: continuous bioprocessing and single-use technologies. In: Subramanian G (ed) Continuous biomanufacturing – innovative technologies and methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 149–170

    Chapter  Google Scholar 

  95. Zhang K, Liu X (2016) Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications. J Pharm Biomed Anal 128:73–88. https://doi.org/10.1016/j.jpba.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  96. Saufi SM, Fee CJ (2012) Preparation of multiple interaction membrane chromatography using mixed matrix membrane preparation concept. Procedia Eng 44:133–135. https://doi.org/10.1016/j.proeng.2012.08.335

    Article  CAS  Google Scholar 

  97. Freitag R, Splitt H, Reif OW (1996) Controlled mixed-mode interaction chromatography on membrane adsorbers. J Chromatogr A 728:129–137. https://doi.org/10.1016/0021-9673(95)01024-6

    Article  CAS  Google Scholar 

  98. Casey C, Rogler K, Gjoka X et al (2016) Cadence™ Single-pass TFF Coupled with Chromatography Steps Enables Continuous Bioprocessing while Reducing Processing Times and Volumes. In: Am Pharm Rev. https://www.americanpharmaceuticalreview.com/Featured-Articles/239951-Cadence-Single-pass-TFF-Coupled-with-Chromatography-Steps-Enables-Continuous-Bioprocessing-while-Reducing-Processing-Times-and-Volumes/. Accessed 12 Nov 2020

  99. Kossik J (2002) Think small: pharmaceutical facilities could boost capacity and slash costs by trading in certain batch operations for continuous versions. In: Pharma Manuf. https://www.pharmamanufacturing.com/articles/2002/6/. Accessed 13 Nov 2020

  100. Stanton D (2019) Up titer: WuXi breaks 50g/L with continuous CHO process. In: Bioprocess Int. https://bioprocessintl.com/bioprocess-insider/upstream-downstream-processing/up-titer-wuxi-breaks-50g-l-with-continuous-cho-process/. Accessed 2 Nov 2020

  101. Yu L (2016) Continuous manufacturing has a strong impact on drug quality. In: FDA voice. https://www.pharmaceuticalprocessingworld.com/continuous-manufacturing-has-a-strong-impact-on-drug-quality/. Accessed 13 Nov 2020

  102. U.S. Food and Drug Administration (2004) PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. https://www.fda.gov/node/379301. Accessed 13 Nov 2020

  103. Arnold L, Lee K, Rucker-Pezzini J, Lee JH (2019) Implementation of fully integrated continuous antibody processing: effects on productivity and COGm. Biotechnol J 14:1800061. https://doi.org/10.1002/biot.201800061

    Article  CAS  Google Scholar 

  104. Genengnews (2020) First mAb produced via fully continuous biomanufacturing. https://www.genengnews.com/news/first-mab-produced-via-fully-continuous-biomanufacturing/. Accessed 7 Nov 2020

  105. Biosimilar Development (2020) BiosanaPharma announces successful outcome of comparative Phase I Study of BP001 A Biosimilar Candidate To Xolair (omalizumab). https://www.biosimilardevelopment.com/doc/biosanapharma-announces-successful-phase-i-study-of-bp-a-biosimilar-xolair-omalizumab-0001. Accessed 13 Nov 2020

  106. Bonham-Carter J, Shevitz J (2011) A brief history of perfusion biomanufacturing. Bioprocess Int 9:24–28

    Google Scholar 

  107. Bayer M, Castan A, Eibl R et al (2020) Technical state-of-the-art and risk analysis on single-use equipment in continuous processing steps. DECHEMA, Frankfurt a.M. ISBN 978-3-89746-226-7

    Google Scholar 

  108. Thermo Fisher Scientific Inc. (2020) HyPerforma DynaDrive single-use bioreactor (S.U.B.). https://assets.thermofisher.com/TFS-Assets/BPD/brochures/dynadrive-sub-brochure.pdf. Accessed 10 Nov 2020

  109. Walther J, Godawat R, Hwang C et al (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12. https://doi.org/10.1016/j.jbiotec.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  110. Hummel J, Pagkaliwangan M, Gjoka X et al (2019) Modeling the downstream processing of monoclonal antibodies reveals cost advantages for continuous methods for a broad range of manufacturing scales. Biotechnol J 14:1700665. https://doi.org/10.1002/biot.201700665

    Article  CAS  Google Scholar 

  111. Steinebach F, Müller-Späth T, Morbidelli M (2016) Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnol J 11:1126–1141. https://doi.org/10.1002/biot.201500354

    Article  CAS  PubMed  Google Scholar 

  112. Ötes O, Flato H, Vazquez Ramirez D et al (2018) Scale-up of continuous multicolumn chromatography for the protein a capture step: from bench to clinical manufacturing. J Biotechnol 281:168–174. https://doi.org/10.1016/j.jbiotec.2018.07.022

    Article  CAS  PubMed  Google Scholar 

  113. Ichihara T, Ito T, Kurisu Y et al (2018) Integrated flow-through purification for therapeutic monoclonal antibodies processing. MAbs 10:325–334. https://doi.org/10.1080/19420862.2017.1417717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshimoto N, Hasegawa S, Yamamoto S (2019) A method for designing flow-through chromatography processes. MATEC Web Conf 268:01004. https://doi.org/10.1051/matecconf/201926801004

    Article  CAS  Google Scholar 

  115. Gupte P, Gavasane M, Samagod A et al (2018) Establishing effective high-throughput contaminant removal with membrane chromatography. Bioprocess Int 16:60–63

    CAS  Google Scholar 

  116. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (1999) Viral Safety Evaluation of Bbiotechnology Products Derived from Cell Lines of Human or Animal Origin Q5A(R1). www.ich.org

  117. Parker SA, Amarikwa L, Vehar K et al (2018) Design of a novel continuous flow reactor for low pH viral inactivation. Biotechnol Bioeng 115:606–616. https://doi.org/10.1002/bit.26497

    Article  CAS  PubMed  Google Scholar 

  118. Klutz S, Lobedann M, Bramsiepe C, Schembecker G (2016) Continuous viral inactivation at low pH value in antibody manufacturing. Chem Eng Process Process Intensif 102:88–101. https://doi.org/10.1016/j.cep.2016.01.002

    Article  CAS  Google Scholar 

  119. Kavara A, Sokolowski D, Collins M, Schofield M (2020) Recent advances in continuous downstream processing of antibodies and related products. In: Matte A (ed) Approaches to the purification, analysis and characterization of antibody-based therapeutics. Elsevier, Amsterdam/Oxford/Cambridge, pp 81–103

    Chapter  Google Scholar 

  120. Lute S, Kozaili J, Johnson S et al (2020) Development of small-scale models to understand the impact of continuous downstream bioprocessing on integrated virus filtration. Biotechnol Prog 36:e2962. https://doi.org/10.1002/btpr.2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bohonak D, Mehta U, Weiss ER, Voyta G (2020) Adapting virus filtration to enable intensified and continuous mAb processing. Biotechnol Prog. https://doi.org/10.1002/btpr.3088

  122. Klutz S, Magnus J, Lobedann M et al (2015) Developing the biofacility of the future based on continuous processing and single-use technology. J Biotechnol 213:120–130. https://doi.org/10.1016/j.jbiotec.2015.06.388

    Article  CAS  PubMed  Google Scholar 

  123. David L, Niklas J, Budde B et al (2019) Continuous viral filtration for the production of monoclonal antibodies. Chem Eng Res Des 152:336–347. https://doi.org/10.1016/j.cherd.2019.09.040

    Article  CAS  Google Scholar 

  124. Yehl CJ, Zydney AL (2020) Single-use, single-pass tangential flow filtration using low-cost hollow fiber modules. J Memb Sci 595:117517. https://doi.org/10.1016/j.memsci.2019.117517

    Article  CAS  Google Scholar 

  125. Casey C, Gallos T, Alekseev Y et al (2011) Protein concentration with single-pass tangential flow filtration (SPTFF). J Memb Sci 384:82–88. https://doi.org/10.1016/j.memsci.2011.09.004

    Article  CAS  Google Scholar 

  126. BioPharm International Editors (2017) Pall debuts new inline diafiltration modules for continuous bioprocessing. In: BioPharm Int. https://www.biopharminternational.com/view/pall-debuts-new-inline-diafiltration-modules-continuous-bioprocessing-0. Accessed 8 Nov 2020

  127. Nambiar AMK, Li Y, Zydney AL (2018) Countercurrent staged diafiltration for formulation of high value proteins. Biotechnol Bioeng 115:139–144. https://doi.org/10.1002/bit.26441

    Article  CAS  PubMed  Google Scholar 

  128. Yang O, Qadan M, Ierapetritou M (2020) Economic analysis of batch and continuous biopharmaceutical antibody production: a review. J Pharm Innov 15:182–200

    Article  Google Scholar 

  129. Yang O, Prabhu S, Ierapetritou M (2019) Comparison between batch and continuous monoclonal antibody production and economic analysis. Ind Eng Chem Res 58:5851–5863. https://doi.org/10.1021/acs.iecr.8b04717

    Article  CAS  Google Scholar 

  130. Jacquemart R, Vandersluis M, Zhao M et al (2016) A single-use strategy to enable manufacturing of affordable biologics. Comput Struct Biotechnol J 14:309–318. https://doi.org/10.1016/j.csbj.2016.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Brower M, Hou Y, Pollard D (2014) Monoclonal antibody continuous processing enabled by single use. In: Subramanian G (ed) Continuous processing in pharmaceutical manufacturing. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 255–296

    Google Scholar 

  132. Pollard D, Brower M, Abe Y et al (2016) Standardized economic cost modeling for next-generation MAb production. Bioprocess Int 14:14–23

    Google Scholar 

  133. Kornecki M, Schmidt A, Lohmann L et al (2019) Accelerating biomanufacturing by modeling of continuous bioprocessing—piloting case study of monoclonal antibody manufacturing. PRO 7:495. https://doi.org/10.3390/pr7080495

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Nina Steffen and Maren Grün for their support in generating the data of our intensified mAb productions at laboratory scale.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, J. et al. (2021). Intensified and Continuous mAb Production with Single-Use Systems. In: Pörtner, R. (eds) Cell Culture Engineering and Technology. Cell Engineering, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-79871-0_13

Download citation

Publish with us

Policies and ethics