www.fgks.org   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The path to leptomeningeal metastasis

Abstract

The leptomeninges, the cerebrospinal-fluid-filled tissues surrounding the central nervous system, play host to various pathologies including infection, neuroinflammation and malignancy. Spread of systemic cancer into this space, termed leptomeningeal metastasis, occurs in 5–10% of patients with solid tumours and portends a bleak clinical prognosis. Previous, predominantly descriptive, clinical studies have provided few insights. Recent development of preclinical leptomeningeal metastasis models, alongside genomic, transcriptomic and proteomic sequencing efforts, has provided groundwork for mechanistic understanding and identification of long-needed therapeutic targets. Although previously understood as an anatomically isolated compartment, the leptomeninges are increasingly appreciated as a major conduit of communication between the systemic circulation and the central nervous system. Despite the unique nature of the leptomeningeal microenvironment, the general principles of metastasis hold true: cells metastasizing to the leptomeninges must gain access to the new environment, survive within the space and evade the immune system. The study of leptomeningeal metastasis has the potential to uncover novel site-specific metastatic principles and illuminate the physiology of the leptomeningeal space. In this Review, we provide a biology-focused overview of how metastatic cells reach the leptomeninges, thrive in this nutritionally sparse environment and evade the detection of the omnipresent immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical routes of cancer cell entry into the leptomeninges.
Fig. 2: Leptomeningeal immune response to cancer.
Fig. 3: Integration of microenvironmental signals by leptomeningeal immune cells.

Similar content being viewed by others

References

  1. Vanderah, T. W. & Gould, D. J. Nolte’s the Human Brain : An Introduction to its Functional Anatomy 8th edn (Elsevier, 2021).

  2. Remsik, J. et al. Leptomeningeal metastatic cells adopt two phenotypic states. Cancer Rep. 5, e1236 (2022).

    Article  CAS  Google Scholar 

  3. Subira, D. et al. Diagnostic and prognostic significance of flow cytometry immunophenotyping in patients with leptomeningeal carcinomatosis. Clin. Exp. Metastasis 32, 383–391 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Scott, B. J. & Kesari, S. Leptomeningeal metastases in breast cancer. Am. J. Cancer Res. 3, 117–126 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Magbanua, M. J. et al. Molecular profiling of tumor cells in cerebrospinal fluid and matched primary tumors from metastatic breast cancer patients with leptomeningeal carcinomatosis. Cancer Res. 73, 7134–7143 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Baruch, K. et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc. Natl Acad. Sci. USA 110, 2264–2269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shechter, R. et al. Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38, 555–569 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cugurra, A. et al. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373, eabf7844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Remsik, J. et al. Leptomeningeal anti-tumor immunity follows unique signaling principles. Preprint at bioRxiv https://doi.org/10.1101/2023.03.17.533041 (2023).

  11. Boire, A. et al. Complement component 3 adapts the cerebrospinal fluid for leptomeningeal metastasis. Cell 168, 1101–1113.e13 (2017). This article shows that leptomeningeal cancer cells actively remodel the blood–CSF barrier to increase the flux of mitogens and nutrients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, Y. S. et al. Leptomeningeal metastases in patients with NSCLC with EGFR mutations. J. Thorac. Oncol. 11, 1962–1969 (2016).

    Article  PubMed  Google Scholar 

  13. Carausu, M. et al. Breast cancer patients treated with intrathecal therapy for leptomeningeal metastases in a large real-life database. ESMO Open 6, 100150 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chamberlain, M. C. Leptomeningeal metastasis. Semin. Neurol. 30, 236–244 (2010).

    Article  PubMed  Google Scholar 

  15. Martinez-Jimenez, F. et al. Pan-cancer whole-genome comparison of primary and metastatic solid tumours. Nature 575, 210–216 (2023).

    Google Scholar 

  16. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen, B. et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 185, 563–575.e11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dasgupta, K. & Jeong, J. Developmental biology of the meninges. Genesis 57, e23288 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee, Y. Y., Tien, R. D., Bruner, J. M., De Pena, C. A. & Van Tassel, P. Loculated intracranial leptomeningeal metastases: CT and MR characteristics. Am. J. Neuroradiol. 10, 1171–1179 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cordone, I. et al. Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study. Breast Cancer Res. 19, 46 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilcox, J. A., Li, M. J. & Boire, A. A. Leptomeningeal metastases: new opportunities in the modern era. Neurotherapeutics 10, 1782–1798 (2022).

    Article  Google Scholar 

  22. Yang, J. T. et al. Randomized phase II trial of proton craniospinal irradiation versus photon involved-field radiotherapy for patients with solid tumor leptomeningeal metastasis. J. Clin. Oncol. 40, 3858–3867 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park, S. et al. A phase II, multicenter, two cohort study of 160 mg osimertinib in EGFR T790M-positive non-small-cell lung cancer patients with brain metastases or leptomeningeal disease who progressed on prior EGFR TKI therapy. Ann. Oncol. 31, 1397–1404 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Tolaney, S. M. et al. A phase II study of abemaciclib in patients with brain metastases secondary to hormone receptor-positive breast cancer. Clin. Cancer Res. 26, 5310–5319 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Oberkampf, F. et al. Phase II study of intrathecal administration of trastuzumab in patients with HER2-positive breast cancer with leptomeningeal metastasis. Neuro Oncol. 25, 365–374 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Glitza Oliva, I. C. et al. Concurrent intrathecal and intravenous nivolumab in leptomeningeal disease: phase 1 trial interim results. Nat. Med. 29, 898–905 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Le Rhun, E. et al. Intrathecal liposomal cytarabine plus systemic therapy versus systemic chemotherapy alone for newly diagnosed leptomeningeal metastasis from breast cancer. Neuro Oncol. 22, 524–538 (2020).

    Article  PubMed  Google Scholar 

  28. Kokkoris, C. P. Leptomeningeal carcinomatosis. How does cancer reach the pia-arachnoid? Cancer 51, 154–160 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Olson, M. E., Chernik, N. L. & Posner, J. B. Infiltration of the leptomeninges by systemic cancer. A clinical and pathologic study. Arch. Neurol. 30, 122–137, (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Fitzpatrick, A. et al. Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype. Nat. Commun. 14, 7408 (2023). This study provides evidence for early clonal divergence of leptomeningeal metastatic cells.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhao, L., Taso, M., Dai, W., Press, D. Z. & Alsop, D. C. Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling. Fluids Barriers CNS 17, 58 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lun, M. P., Monuki, E. S. & Lehtinen, M. K. Development and functions of the choroid plexus–cerebrospinal fluid system. Nat. Rev. Neurosci. 16, 445–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carloni, S. et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 374, 439–448 (2021). This study investigates the choroid plexus vascular barrier that responds to intestinal inflammation via microbiota-derived stimuli.

    Article  CAS  PubMed  Google Scholar 

  34. Garzia, L. et al. A hematogenous route for medulloblastoma leptomeningeal metastases. Cell 172, 1050–1062.e14 (2018). This study shows that medulloblastoma, a primary childhood tumour, can colonize leptomeninges via haematogenous dissemination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moberg, A. & von, R. Carcinosis meningum. Acta Med. Scand. 170, 747–755 (1961).

    Article  CAS  PubMed  Google Scholar 

  36. Kearns, N. A. et al. Dissecting the human leptomeninges at single-cell resolution. Nat. Commun. 14, 7036 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl Med. 4, 147ra111 (2012). This article describes the function of glymphatics, a system allowing an exchange of CSF and interstitial fluid.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dasgupta, A., Moraes, F. Y., Rawal, S., Diamandis, P. & Shultz, D. B. Focal leptomeningeal disease with perivascular invasion in EGFR-mutant non-small-cell lung cancer. Am. J. Neuroradiol. 41, 1430–1433 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jonart, L. M. et al. Disrupting the leukemia niche in the central nervous system attenuates leukemia chemoresistance. Haematologica 105, 2130–2140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fernandez-Sevilla, L. M. et al. The choroid plexus stroma constitutes a sanctuary for paediatric B-cell precursor acute lymphoblastic leukaemia in the central nervous system. J. Pathol. 252, 189–200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Akers, S. M., Rellick, S. L., Fortney, J. E. & Gibson, L. F. Cellular elements of the subarachnoid space promote ALL survival during chemotherapy. Leuk. Res. 35, 705–711 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yao, H. et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560, 55–60 (2018). This study provides a mechanism of leukaemia CNS colonization along the vessels that are passing between vertebral and calvarial bone marrow and the subarachnoid space.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amit, M., Na’ara, S. & Gil, Z. Mechanisms of cancer dissemination along nerves. Nat. Rev. Cancer 16, 399–408 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez-Vitale, J. C. & Garcia-Bunuel, R. Meningeal carcinomatosis. Cancer 37, 2906–2911 (1976).

    Article  CAS  PubMed  Google Scholar 

  45. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martirosian, V. et al. Medulloblastoma uses GABA transaminase to survive in the cerebrospinal fluid microenvironment and promote leptomeningeal dissemination. Cell Rep. 35, 109302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ahn, J. H. et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572, 62–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Whiteley, A., Price, T., Simon, B., Xu, K. & Sipkins, D. Neuronal mimicry promotes breast cancer leptomeningeal metastasis from bone marrow. Cancer Res. 82, 3848 (2022).

    Article  Google Scholar 

  54. Geldof, A. A. Models for cancer skeletal metastasis: a reappraisal of Batson’s plexus. Anticancer Res. 17, 1535–1539 (1997).

    CAS  PubMed  Google Scholar 

  55. Ahn, J. H. et al. Risk for leptomeningeal seeding after resection for brain metastases: implication of tumor location with mode of resection. J. Neurosurg. 116, 984–993 (2012).

    Article  PubMed  Google Scholar 

  56. Tewarie, I. A. et al. Leptomeningeal disease in neurosurgical brain metastases patients: a systematic review and meta-analysis. Neurooncol. Adv. 3, vdab162 (2021).

    PubMed  PubMed Central  Google Scholar 

  57. Norris, L. K., Grossman, S. A. & Olivi, A. Neoplastic meningitis following surgical resection of isolated cerebellar metastasis: a potentially preventable complication. J. Neurooncol. 32, 215–223 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. van der Ree, T. C. et al. Leptomeningeal metastasis after surgical resection of brain metastases. J. Neurol. Neurosurg. Psychiatry 66, 225–227 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Horng, S. et al. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J. Clin. Invest. 127, 3136–3151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Smalley, I. et al. Single-cell characterization of the immune microenvironment of melanoma brain and leptomeningeal metastases. Clin. Cancer Res. 27, 4109–4125 (2021). This article dissects the tumour–immune system interactions in primary melanoma biopsies and melanoma parenchymal and leptomeningeal metastasis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smalley, I. et al. Proteomic analysis of CSF from patients with leptomeningeal melanoma metastases identifies signatures associated with disease progression and therapeutic resistance. Clin. Cancer Res. 26, 2163–2175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. DeAngelis, L. M., Posner, J. B. & Posner, J. B. Neurologic Complications of Cancer 2nd edn (Oxford Univ. Press, 2009).

  63. Spreafico, F. et al. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 8, 46177–46190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chi, Y. et al. Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science 369, 276–282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. DeSisto, J. et al. Single-cell transcriptomic analyses of the developing meninges reveal meningeal fibroblast diversity and function. Dev. Cell 54, 43–59.e4 (2020). This study provides a comprehensive atlas of embryonic leptomeningeal fibroblasts, dissected at the molecular level, layer by layer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021). This study provides a location-based atlas of mouse choroid plexi, from embryogenesis to ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Snyder, J., Remsik, J., Prescott, N. & Boire, A. Mimicking CAFs, pial cells support leptomeningeal metastasis. Cancer Res. 83, 1190 (2023).

    Article  Google Scholar 

  70. Ganesh, K. et al. L1CAM defines the regenerative origin of metastasis-initiating cells in colorectal cancer. Nat. Cancer 1, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, C., Zhang, F., Tsan, R. & Fidler, I. J. Transforming growth factor-beta2 is a molecular determinant for site-specific melanoma metastasis in the brain. Cancer Res. 69, 828–835 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Johnson, M. D., Gold, L. I. & Moses, H. L. Evidence for transforming growth factor-beta expression in human leptomeningeal cells and transforming growth factor-beta-like activity in human cerebrospinal fluid. Lab. Invest. 67, 360–368 (1992).

    CAS  PubMed  Google Scholar 

  74. Ferraro, G. B. et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat. Cancer 2, 414–428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Spector, R., Robert Snodgrass, S. & Johanson, C. E. A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp. Neurol. 273, 57–68 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Khaled, M. et al. Branched-chain keto acids exert an immune-suppressive and neurodegenerative microenvironment in CNS leptomeningeal lymphoma. Cancer Res. 83, 1192 (2023).

    Article  Google Scholar 

  77. Moorman, A. R. et al. Progressive plasticity during colorectal cancer metastasis. Preprint at bioRxiv https://doi.org/10.1101/2023.08.18.553925 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lumaquin-Yin, D. et al. Lipid droplets are a metabolic vulnerability in melanoma. Nat. Commun. 14, 3192 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fishman, R. Cerebrospinal Fluid in Diseases of the Nervous System 2nd edn (Saunders, 1992).

  81. Severien, C., Jacobs, K. H. & Schoenemann, W. Marked pleocytosis and hypoglycorrhachia in coxsackie meningitis. Pediatr. Infect. Dis. J. 13, 322–323 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Kang, S. J. et al. Diagnostic value of cerebrospinal fluid level of carcinoembryonic antigen in patients with leptomeningeal carcinomatous metastasis. J. Clin. Neurol. 6, 33–37 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jann, S., Comini, A. & Pellegrini, G. Hypoglycorrhachia in leptomeningeal carcinomatosis: a pathophysiological study. Ital. J. Neurol. Sci. 9, 83–88 (1988).

    Article  CAS  PubMed  Google Scholar 

  84. Cacho-Diaz, B. et al. Lactate dehydrogenase as a prognostic marker in neoplastic meningitis. J. Clin. Neurosci. 51, 39–42 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Legrand, C. et al. Lactate dehydrogenase (LDH) activity of the cultured eukaryotic cells as marker of the number of dead cells in the medium [corrected]. J. Biotechnol. 25, 231–243 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. An, Y. J. et al. An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung adenocarcinoma cancer patients. Int. J. Cancer 136, 162–171 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Bonig, L. et al. Leptomeningeal metastasis: the role of cerebrospinal fluid diagnostics. Front. Neurol. 10, 839 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schmidt, D. R. et al. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 71, 333–358 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Soares, M. P. & Hamza, I. Macrophages and iron metabolism. Immunity 44, 492–504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT05184816 (2024).

  91. Medawar, P. B. Immunity to homologous grafted skin; the suppression of cell division in grafts transplanted to immunized animals. Br. J. Exp. Pathol. 27, 9–14 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Herrlinger, U., Weller, M. & Schabet, M. New aspects of immunotherapy of leptomeningeal metastasis. J. Neurooncol. 38, 233–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Norris, G. T. & Kipnis, J. Immune cells and CNS physiology: microglia and beyond. J. Exp. Med. 216, 60–70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Subira, D. et al. Role of flow cytometry immunophenotyping in the diagnosis of leptomeningeal carcinomatosis. Neuro Oncol. 14, 43–52 (2012).

    Article  PubMed  Google Scholar 

  96. Schafflick, D. et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat. Commun. 11, 247 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morais, L. H., Schreiber, H. L. T. & Mazmanian, S. K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Zhu, X. et al. Dectin-1 signaling on colonic gammadelta T cells promotes psychosocial stress responses. Nat. Immunol. 24, 625–636 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Haviv, D. et al. The covariance environment defines cellular niches for spatial inference. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02193-4 (2024).

    Article  PubMed  Google Scholar 

  101. Tawbi, H. A. et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 379, 722–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hamid, O. et al. Long-term outcomes in patients with advanced melanoma who had initial stable disease with pembrolizumab in KEYNOTE-001 and KEYNOTE-006. Eur. J. Cancer 157, 391–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, J. et al. VLA-4 suppression by senescence signals regulates meningeal immunity and leptomeningeal metastasis. eLife 11, e83272 (2022).

    CAS  Google Scholar 

  104. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Benhar, I., London, A. & Schwartz, M. The privileged immunity of immune privileged organs: the case of the eye. Front. Immunol. 3, 296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bettcher, B. M., Tansey, M. G., Dorothee, G. & Heneka, M. T. Peripheral and central immune system crosstalk in Alzheimer disease — a research prospectus. Nat. Rev. Neurol. 17, 689–701 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ellrichmann, G., Reick, C., Saft, C. & Linker, R. A. The role of the immune system in Huntington’s disease. Clin. Dev. Immunol. 2013, 541259 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. van Langelaar, J., Rijvers, L., Smolders, J. & van Luijn, M. M. B and T cells driving multiple sclerosis: identity, mechanisms and potential triggers. Front. Immunol. 11, 760 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Santomasso, B. D. et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 8, 958–971 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Belin, C. et al. Description of neurotoxicity in a series of patients treated with CAR T-cell therapy. Sci. Rep. 10, 18997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gust, J., Taraseviciute, A. & Turtle, C. J. Neurotoxicity associated with CD19-targeted CAR-T cell therapies. CNS Drugs 32, 1091–1101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Korman, A. J., Garrett-Thomson, S. C. & Lonberg, N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat. Rev. Drug Discov. 21, 509–528 (2021).

    Article  PubMed  Google Scholar 

  113. List, J. et al. Cytokine responses to intraventricular injection of interleukin 2 into patients with leptomeningeal carcinomatosis: rapid induction of tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, gamma-interferon, and soluble interleukin 2 receptor (Mr 55,000 protein). Cancer Res. 52, 1123–1128 (1992).

    CAS  PubMed  Google Scholar 

  114. Salmaggi, A. et al. Immunological fluctuations during intrathecal immunotherapy in three patients affected by CNS tumours disseminating via CSF. Int. J. Neurosci. 77, 117–125 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Samlowski, W. E., Park, K. J., Galinsky, R. E., Ward, J. H. & Schumann, G. B. Intrathecal administration of interleukin-2 for meningeal carcinomatosis due to malignant melanoma: sequential evaluation of intracranial pressure, cerebrospinal fluid cytology, and cytokine induction. J. Immunother. Emphas. Tumor Immunol. 13, 49–54 (1993).

    Article  CAS  Google Scholar 

  116. Kaya, T. et al. CD8(+) T cells induce interferon-responsive oligodendrocytes and microglia in white matter aging. Nat. Neurosci. 25, 1446–1457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, Y. et al. STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells. Glia 58, 195–208 (2010).

    Article  PubMed  Google Scholar 

  118. Goldberg, S. B. et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 21, 655–663 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chorti, E. et al. Leptomeningeal disease from melanoma-poor prognosis despite new therapeutic modalities. Eur. J. Cancer 148, 395–404 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Brastianos, P. K. et al. Single-arm, open-label phase 2 trial of pembrolizumab in patients with leptomeningeal carcinomatosis. Nat. Med. 26, 1280–1284 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Brastianos, P. K. et al. Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis. Nat. Commun. 12, 5954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Naidoo, J. et al. Pembrolizumab for patients with leptomeningeal metastasis from solid tumors: efficacy, safety, and cerebrospinal fluid biomarkers. J. Immunother. Cancer 9, e002473 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Thouvenin, L., Olivier, T., Banna, G., Addeo, A. & Friedlaender, A. Immune checkpoint inhibitor-induced aseptic meningitis and encephalitis: a case-series and narrative review. Ther. Adv. Drug Saf. 12, 20420986211004745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02886585 (2024).

  125. US National Library of Medicine. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02939300 (2022).

  126. Prakadan, S. M. et al. Genomic and transcriptomic correlates of immunotherapy response within the tumor microenvironment of leptomeningeal metastases. Nat. Commun. 12, 5955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Umemura, Y. et al. Discordance between perceptions and experience of lumbar puncture: a prospective study. Neurol. Clin. Pract. 12, 344–351 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bobillo, S., Khwaja, J., Ferreri, A. J. M. & Cwynarski, K. Prevention and management of secondary central nervous system lymphoma. Haematologica 108, 673–689 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Chen, Q. et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533, 493–498 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bos, P. D. et al. Genes that mediate breast cancer metastasis to the brain. Nature 459, 1005–1009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Krishna, S. et al. Glioblastoma remodelling of human neural circuits decreases survival. Nature 617, 599–607 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Fernández-Castañeda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468.e16 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kovalchuk, A. & Kolb, B. Chemo brain: from discerning mechanisms to lifting the brain fog — an aging connection. Cell Cycle 16, 1345–1349 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Burton, L. B., Eskian, M., Guidon, A. C. & Reynolds, K. L. A review of neurotoxicities associated with immunotherapy and a framework for evaluation. Neurooncol. Adv. 3, v108–v120 (2021).

    PubMed  PubMed Central  Google Scholar 

  137. Kadry, H., Noorani, B. & Cucullo, L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17, 69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Daneman, R. & Prat, A. The blood–brain barrier. Cold Spring Harb. Perspect. Biol. 7, a020412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Derk, J. et al. Formation and function of the meningeal arachnoid barrier around the developing mouse brain. Dev. Cell 58, 635–644.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pietila, R. et al. Molecular anatomy of adult mouse leptomeninges. Neuron 111, 3745–3764.e7 (2023).

    Article  PubMed  Google Scholar 

  141. Wang, N., Bertalan, M. S. & Brastianos, P. K. Leptomeningeal metastasis from systemic cancer: review and update on management. Cancer 124, 21–35 (2018).

    Article  PubMed  Google Scholar 

  142. Mancusi, R. & Monje, M. The neuroscience of cancer. Nature 618, 467–479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bian, S. X., McAleer, M. F., Vats, T. S., Mahajan, A. & Grosshans, D. R. Pilocytic astrocytoma with leptomeningeal dissemination. Childs Nerv. Syst. 29, 441–450 (2013).

    Article  PubMed  Google Scholar 

  144. Daphu, I. et al. In vivo animal models for studying brain metastasis: value and limitations. Clin. Exp. Metastasis 30, 695–710 (2013).

    Article  PubMed  Google Scholar 

  145. Miarka, L. & Valiente, M. Animal models of brain metastasis. Neurooncol. Adv. 3, v144–v156 (2021).

    PubMed  PubMed Central  Google Scholar 

  146. Valiente, M. et al. Brain metastasis cell lines panel: a public resource of organotropic cell lines. Cancer Res. 80, 4314–4323 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Law, V. et al. A preclinical model of patient-derived cerebrospinal fluid circulating tumor cells for experimental therapeutics in leptomeningeal disease from melanoma. Neuro Oncol. 24, 1673–1686 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Glascock, J. J. et al. Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice. J. Vis. Exp. 56, 2968 (2011).

    Google Scholar 

  150. Law, V. et al. A Murine Ommaya xenograft model to study direct-targeted therapy of leptomeningeal disease. J. Vis. Exp. https://doi.org/10.3791/62033 (2021).

  151. Shackleford, G. M. et al. Continuous and bolus intraventricular topotecan prolong survival in a mouse model of leptomeningeal medulloblastoma. PLoS ONE 14, e0206394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge their patients who inspire this work, their mentors who have provided the tools to carry out this research and the philanthropic and governmental sources that enable experimental work in their laboratories. This work was supported in part by the NIH/NCI Cancer Center Support Grant NCI P30 CA008748.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Adrienne Boire.

Ethics declarations

Competing interests

J.R. and A.B. are inventors on the provisional US patent applications 63/449,817 and 63/449,823 and international patent application PCT/US24/18343. A.B. holds an unpaid position on the scientific advisory board for Evren Scientific and is an inventor on the US patents 62/258,044, 10/413,522 and 63/052,139.

Peer review

Peer review information

Nature Reviews Cancer thanks Michael Taylor and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Acute phase reactants

A group of proteins that are markedly elevated in the plasma during acute and chronic inflammation.

Arachnoid mater

The upper layer of leptomeninges composed of a fibroblastoid network of cells connected to the pia mater by a series of fibrous strands.

Brain’s four ventricles

A system of interconnected cerebrospinal fluid-filled cavities within the brain.

Bridging vessels

Veins that extend from the brain parenchyma to the subdural space.

Cauda equina

Spinal nerve roots that extend beyond the terminus of the spinal cord, transmitting motor and sensory information to the bowel, bladder and lower limbs.

Cerebrospinal fluid

(CSF). A colourless, paucicellular fluid that surrounds the brain and the spinal cord.

Choroid plexuses

Specialized, cerebrospinal fluid-secreting structures within the ventricular system, composed of a blood vessel network, surrounded by a fibroblast and extracellular matrix-rich stroma and encircled by specialized polarized, secretory epithelial cells.

Ependyma

A layer of polarized, secretory neuroepithelial cells, lining the cerebral ventricles and spinal central canal, capable of cerebrospinal fluid production.

Ferroptosis

A molecularly distinct type of cell death classically resulting from interactions between iron and lipids to generate reactive oxygen species.

Liquid biopsy

Analysis of the tumour-derived material in easily accessed body fluids, including blood, urine or cerebrospinal fluid.

Paraneoplastic syndromes

A rare complication of cancer whereby the immune system attacks normal neural tissues causing neurological symptoms such as seizures, dementia, loss of coordination and sensory disturbances.

Pia mater

A fibroblastoid monolayer of cells that make up the innermost layer of the leptomeninges.

Posterior fossa

The lower portion of the cranial cavity that houses the cerebellum, pons and medulla oblongata.

Subarachnoid space

Cerebrospinal fluid-filled compartment between the arachnoid and pial membranes, surrounding the brain and the spinal cord.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remsik, J., Boire, A. The path to leptomeningeal metastasis. Nat Rev Cancer 24, 448–460 (2024). https://doi.org/10.1038/s41568-024-00700-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00700-y

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer