www.fgks.org   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours

Abstract

Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Predictive biomarkers of immune checkpoint inhibitors in solid tumours.

Similar content being viewed by others

References

  1. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  4. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Kaufman, H. L. et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 17, 1374–1385 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Migden, M. R. et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N. Engl. J. Med. 379, 341–351 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Oaknin, A. et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: interim results from GARNET — a phase I, single-arm study. J. Immunother. Cancer 10, e003777 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mai, H.-Q. et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial. Nat. Med. 27, 1536–1543 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, L. et al. Clinically approved combination immunotherapy: current status, limitations, and future perspective. Curr. Res. Immunol. 3, 118–127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Gumusay, O., Callan, J. & Rugo, H. S. Immunotherapy toxicity: identification and management. Breast Cancer Res. Treat. 192, 1–17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sher, A. F., Golshani, G. M. & Wu, S. Fatal adverse events associated with pembrolizumab in cancer patients: a meta-analysis. Cancer Invest. 38, 130–138 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Li, H., van der Merwe, P. A. & Sivakumar, S. Biomarkers of response to PD-1 pathway blockade. Br. J. Cancer 126, 1663–1675 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Marabelle, A. et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21, 1353–1365 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Johnson, D. B. et al. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur. J. Cancer 51, 2792–2799 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vidotto, T. et al. Emerging role of PTEN loss in evasion of the immune response to tumours. Br. J. Cancer 122, 1732–1743 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Trujillo, J. A. et al. Secondary resistance to immunotherapy associated with β-catenin pathway activation or PTEN loss in metastatic melanoma. J. Immunother. Cancer 7, 295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Suzman, D. L. et al. FDA Approval Summary: atezolizumab or pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for cisplatin-containing chemotherapy. Oncologist 24, 563–569 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Beaver, J. A. et al. An FDA perspective on the regulatory implications of complex signatures to predict response to targeted therapies. Clin. Cancer Res. 23, 1368–1372 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Davis, A. A. & Patel, V. G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 7, 278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Twomey, J. D. & Zhang, B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 23, 39 (2021).

    Article  PubMed  Google Scholar 

  27. Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Reck, M. et al. Updated analysis of KEYNOTE-024: pembrolizumab versus platinum-based chemotherapy for advanced non-small-cell lung cancer with PD-L1 tumor proportion score of 50% or greater. J. Clin. Oncol. 37, 537–546 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burtness, B. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394, 1915–1928 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Altman, D. G. & Bland, J. M. Statistics Notes: Diagnostic tests 2: predictive values. BMJ 309, 102 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haragan, A. et al. Heterogeneity of PD-L1 expression in non-small cell lung cancer: Implications for specimen sampling in predicting treatment response. Lung Cancer 134, 79–84 (2019).

    Article  PubMed  Google Scholar 

  37. Suda, K. & Mitsudomi, T. Inter-tumor heterogeneity of PD-L1 status: is it important in clinical decision making? J. Thorac. Dis. 12, 1770–1775 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hu, X., Deng, X., Xie, J., Tang, H. & Zou, Y. Heterogeneous PD-L1 expression in metastases impacts immunotherapy response. eBio. Medicine 97, 104816 (2023).

    CAS  Google Scholar 

  39. Rasmussen, J. H. et al. Intratumor heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma. Br. J. Cancer 120, 1003–1006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hendry, S. et al. Comparison of four PD-L1 immunohistochemical assays in lung cancer. J. Thorac. Oncol. 13, 367–376 (2018).

    Article  PubMed  Google Scholar 

  41. Vranic, S. & Gatalica, Z. PD-L1 testing by immunohistochemistry in immuno-oncology. Biomol. Biomed. 23, 15–25 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. US Food & Drug Administration. List of cleared or approved companion diagnostic devices (in vitro and imaging tools). fda.gov https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools (2024).

  43. US Food & Drug Administration. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. fda.gov https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2020).

  44. Deng, L. et al. Structural basis for the recognition of mutant self by a tumor-specific, MHC class II-restricted T cell receptor. Nat. Immunol. 8, 398–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, D., Gallagher, D. T., Gowthaman, R., Pierce, B. G. & Mariuzza, R. A. Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen. Nat. Commun. 11, 2908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Devlin, J. R. et al. Structural dissimilarity from self drives neoepitope escape from immune tolerance. Nat. Chem. Biol. 16, 1269–1276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oliveira, G. et al. Landscape of helper and regulatory antitumour CD+ T cells in melanoma. Nature 605, 532–538 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Sinha, N. et al. Immune determinants of the association between tumor mutational burden and immunotherapy response across cancer types. Cancer Res. 82, 2076–2083 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17, 251–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Milbury, C. A. et al. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PLoS ONE 17, e0264138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Strickler, J. H., Hanks, B. A. & Khasraw, M. tumor mutational burden as a predictor of immunotherapy response: is more always better? Clin. Cancer Res. 27, 1236–1241 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goodman, A. M. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 16, 2598–2608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Riaz, N. et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171, 934–949.e916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanna, G. J. et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight 3, e98811 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hellmann, M. D. et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33, 843–852 e844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Forde, P. M., Chaft, J. E. & Pardoll, D. M. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 379, e14 (2018).

    PubMed  Google Scholar 

  61. Hellmann, M. D. et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N. Engl. J. Med. 378, 2093–2104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Marcus, L., Lemery, S. J., Keegan, P. & Pazdur, R. FDA Approval Summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 25, 3753–3758 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Le, D. T. et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 38, 11–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Diaz, L. A. Jr et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23, 659–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heitzer, E. & Tomlinson, I. Replicative DNA polymerase mutations in cancer. Curr. Opin. Genet. Dev. 24, 107–113 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jansen, A. M. et al. Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. Eur. J. Hum. Genet. 24, 1089–1092 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Albertson, T. M. et al. DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proc. Natl Acad. Sci. 106, 17101–17104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Aaltonen, L. A. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  Google Scholar 

  71. Vogelstein, B. & Kinzler, K. W. The path to cancer – three strikes and you’re out. N. Engl. J. Med. 373, 1895–1898 (2015).

    Article  PubMed  Google Scholar 

  72. Kumar, S. et al. Passenger mutations in more than 2,500 cancer genomes: overall molecular functional impact and consequences. Cell 180, 915–927.e916 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonneville, R. et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017, PO.1700073 (2017).

    Google Scholar 

  74. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, D. et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 25, 1916–1927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miao, D. et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat. Genet. 50, 1271–1281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Mehta, A. et al. Immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov. 8, 935–943 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018).

    Article  PubMed  Google Scholar 

  83. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Tumeh, P. C. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e1020 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167, 397–404.e399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thommen, D. S. et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24, 994–1004 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, A. C. et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Freeman, S. S. et al. Combined tumor and immune signals from genomes or transcriptomes predict outcomes of checkpoint inhibition in melanoma. Cell Rep. Med. 3, 100500 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, J. et al. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife 7, e31657 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e4720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anagnostou, V. et al. Integrative tumor and immune cell multi-omic analyses predict response to immune checkpoint blockade in melanoma. Cell Rep. Med. 1, 100139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bergholtz, H. et al. Best practices for spatial profiling for breast cancer research with the GeoMx(®) digital spatial profiler. Cancers 13, 4456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596–614.e514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kong, J. et al. Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat. Commun. 13, 3703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Berry, S. et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science 372, eaba2609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pan, D., Hu, A. Y., Antonia, S. J. & Li, C. Y. A gene mutation signature predicting immunotherapy benefits in patients with NSCLC. J. Thorac. Oncol. 16, 419–427 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, H. et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 25, 316–327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Colunga, A., Pulliam, T. & Nghiem, P. Merkel cell carcinoma in the age of immunotherapy: facts and hopes. Clin. Cancer Res. 24, 2035–2043 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, H.-F. et al. The double-edged sword — how human papillomaviruses interact with immunity in head and neck cancer. Front. Immunol. 10, 653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jiang, Y., Turinsky, A. L. & Brudno, M. The missing indels: an estimate of indel variation in a human genome and analysis of factors that impede detection. Nucleic Acids Res. 43, 7217–7228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hasan, M. S., Wu, X. & Zhang, L. Uncovering missed indels by leveraging unmapped reads. Sci. Rep. 9, 11093 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cancer Genome Atlas Network.Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  Google Scholar 

  106. Takahashi, N. et al. Dynamics of genomic and immune responses during primary immunotherapy resistance in mismatch repair-deficient tumors. Cold Spring Harb. Mol. Case Stud. 6, a005678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hung, S. et al. Mismatch repair-signature mutations activate gene enhancers across human colorectal cancer epigenomes. eLife 8, e40760 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Kuncman, W., Orzechowska, M., Kuncman, Ł., Kordek, R. & Taran, K. Intertumoral heterogeneity of primary breast tumors and synchronous axillary lymph node metastases reflected in IHC-assessed expression of routine and nonstandard biomarkers. Front. Oncol. 11, 660318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, P. L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu, D. et al. Evolution of delayed resistance to immunotherapy in a melanoma responder. Nat. Med. 27, 985–992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leiserson, M. D. et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Cheng, F. et al. Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat. Genet. 53, 342–353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zviran, A. et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 26, 1114–1124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Parikh, A. R. et al. Minimal residual disease detection using a plasma-only circulating tumor DNA assay in patients with colorectal cancer. Clin. Cancer Res. 27, 5586–5594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Coustan-Smith, E. et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 351, 550–554 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Chaudhuri, A. et al. Analysis of circulating tumor DNA in localized lung cancer for detection of molecular residual disease and personalization of adjuvant strategies. J. Clin. Oncol. 35, 8519–8519 (2017).

    Article  Google Scholar 

  118. McDonald, B. R. et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci. Transl. Med. 11, eaax7392 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tarazona, N. et al. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann. Oncol. 30, 1804–1812 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Nixon, A. B. et al. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J. Immunother. Cancer 7, 325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Du, W. et al. Dynamic testing of stimulative and suppressive biomarkers on peripheral blood cells at early stages of immunotherapy predicts response in advanced cancer patients. Discov. Med. 25, 277–290 (2018).

    PubMed  Google Scholar 

  122. Gandara, D. R. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat. Med. 24, 1441–1448 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Fairfax, B. P. et al. Peripheral CD8+ T cell characteristics associated with durable responses to immune checkpoint blockade in patients with metastatic melanoma. Nat. Med. 26, 193–199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Valpione, S. et al. Immune-awakening revealed by peripheral T cell dynamics after one cycle of immunotherapy. Nat. Cancer 1, 210–221 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shi, A. et al. Plasma-derived extracellular vesicle analysis and deconvolution enable prediction and tracking of melanoma checkpoint blockade outcome. Sci. Adv. 6, eabb3461 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Babačić, H., Lehtiö, J., Pico de Coaña, Y., Pernemalm, M. & Eriksson, H. In-depth plasma proteomics reveals increase in circulating PD-1 during anti-PD-1 immunotherapy in patients with metastatic cutaneous melanoma. J. Immunother. Cancer 8, e000204 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Harel, M. et al. Longitudinal plasma proteomic profiling of patients with non-small cell lung cancer undergoing immune checkpoint blockade. J. Immunother. Cancer 10, e004582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Carvalho, S. et al. Early variation of FDG-PET radiomics features in NSCLC is related to overall survival-the “delta radiomics” concept. Radiother. Oncol. 118, S20–S21 (2016).

    Article  Google Scholar 

  129. Liu, Y. et al. Imaging biomarkers to predict and evaluate the effectiveness of immunotherapy in advanced non-small-cell lung cancer. Front. Oncol. 11, 657615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, Q. et al. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: a systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 49, 345–360 (2021).

    Article  PubMed  Google Scholar 

  132. Castello, A. et al. The role of radiomics in the era of immune checkpoint inhibitors: a new protagonist in the jungle of response criteria. J. Clin. Med. 11, 1740 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Colen, R. R. et al. Radiomics to predict immunotherapy-induced pneumonitis: proof of concept. Invest. New Drugs 36, 601–607 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Mu, W., Tunali, I., Qi, J., Schabath, M. B. & Gillies, R. J. Radiomics of (18)F fluorodeoxyglucose PET/CT images predicts severe immune-related adverse events in patients with NSCLC. Radiol. Artif. Intell. 2, e190063 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dercle, L. et al. Early readout on overall survival of patients with melanoma treated with immunotherapy using a novel imaging analysis. JAMA Oncol. 8, 385–392 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Valentinuzzi, D. et al. [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab. Radiol. Oncol. 54, 285–294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mu, W. et al. Radiomics predicts risk of cachexia in advanced NSCLC patients treated with immune checkpoint inhibitors. Br. J. Cancer 125, 229–239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mu, W. et al. Radiomics of (18)F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 47, 1168–1182 (2020).

    Article  CAS  PubMed  Google Scholar 

  139. Vaidya, P. et al. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J. Immunother. Cancer 8, e001343 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tunali, I. et al. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report. Lung Cancer 129, 75–79 (2019).

    Article  PubMed  Google Scholar 

  141. Yang, Y. et al. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J. Transl. Res. 13, 743–756 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. He, B. et al. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. J. Immunother. Cancer 8, e000550 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Yoon, H. J. et al. Deciphering the tumor microenvironment through radiomics in non-small cell lung cancer: correlation with immune profiles. PLoS ONE 15, e0231227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yolchuyeva, S. et al. Radiomics approaches to predict PD-L1 and PFS in advanced non-small cell lung patients treated with immunotherapy: a multi-institutional study. Sci. Rep. 13, 11065 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Basler, L. et al. Radiomics, tumor volume, and blood biomarkers for early prediction of pseudoprogression in patients with metastatic melanoma treated with immune checkpoint inhibition. Clin. Cancer Res. 26, 4414–4425 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Yu, H. et al. Predicting the level of tumor-infiltrating lymphocytes in patients with breast cancer: usefulness of mammographic radiomics features. Front. Oncol. 11, 628577 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Iwatate, Y. et al. Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer. Br. J. Cancer 123, 1253–1261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Golia Pernicka, J. S. et al. Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation. Abdom. Radiol. 44, 3755–3763 (2019).

    Article  Google Scholar 

  149. Wen, Q. et al. Pretreatment CT-based radiomics signature as a potential imaging biomarker for predicting the expression of PD-L1 and CD8+ TILs in ESCC. OncoTargets Ther. 13, 12003–12013 (2020).

    Article  CAS  Google Scholar 

  150. Gao, X. et al. A CT-based radiomics signature for evaluating tumor infiltrating Treg cells and outcome prediction of gastric cancer. Ann. Transl. Med. 8, 469 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Liao, H. et al. Preoperative radiomic approach to evaluate tumor-infiltrating CD8+ T cells in hepatocellular carcinoma patients using contrast-enhanced computed tomography. Ann. Surg. Oncol. 26, 4537–4547 (2019).

    Article  PubMed  Google Scholar 

  152. Chen, S. et al. Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur. Radiol. 29, 4177–4187 (2019).

    Article  PubMed  Google Scholar 

  153. Sun, R. et al. Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells. J. Immunother. Cancer 8, e001429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Korpics, M. C. et al. A validated T cell radiomics score is associated with clinical outcomes following multisite SBRT and pembrolizumab. Int. J. Radiat. Oncol. Biol. Phys. 108, 189–195 (2020).

    Article  PubMed  Google Scholar 

  155. Sun, R. et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 19, 1180–1191 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Khorrami, M. et al. Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non-small cell lung cancer. Cancer Immunol. Res. 8, 108–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Zhang, M., Liu, J. & Xia, Q. Role of gut microbiome in cancer immunotherapy: from predictive biomarker to therapeutic target. Exp. Hematol. Oncol. 12, 84 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hes, C. & Jagoe, R. T. Gut microbiome and nutrition-related predictors of response to immunotherapy in cancer: making sense of the puzzle. BJC Rep. 1, 5 (2023).

    Article  Google Scholar 

  159. Liang, H. et al. Predicting cancer immunotherapy response from gut microbiomes using machine learning models. Oncotarget 13, 876–889 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhou, C.-B., Zhou, Y.-L. & Fang, J.-Y. Gut microbiota in cancer immune response and immunotherapy. Trends Cancer 7, 647–660 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Yi, Y. et al. Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a prospective, longitudinal study. Clin. Cancer Res. 27, 1329–1340 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Zhao, C. et al. Gut microbiome to predict durable response to immunotherapy in patients with hepatocellular carcinoma. JCO Glob. Oncol. 9, 47 (2023).

    Article  Google Scholar 

  163. Dai, D. et al. Abstract A030: Gut microbiome as a promising biomarker for colorectal cancer diagnosis and immunotherapy response prediction. Cancer Res. 82, A030 (2022).

    Article  Google Scholar 

  164. Limeta, A., Ji, B., Levin, M., Gatto, F. & Nielsen, J. Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight 5, e140940 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zheng, Y. et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer 7, 193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mao, J. et al. Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J. Immunother. Cancer 9, e003334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wu, H. et al. Dynamic microbiome and metabolome analyses reveal the interaction between gut microbiota and anti-PD-1 based immunotherapy in hepatocellular carcinoma. Int. J. Cancer 151, 1321–1334 (2022).

    Article  CAS  PubMed  Google Scholar 

  169. Derosa, L. et al. Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur. Urol. 78, 195–206 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Routy, B. et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Fang, C. et al. Distinct functional metagenomic markers predict the responsiveness to anti-PD-1 therapy in Chinese non-small cell lung cancer patients. Front. Oncol. 12, 837525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  PubMed  Google Scholar 

  175. Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dennis, K. L. et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res. 73, 5905–5913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gao, G. et al. Adjunctive probiotic Lactobacillus rhamnosus Probio-M9 administration enhances the effect of anti-PD-1 antitumor therapy via restoring antibiotic-disrupted gut microbiota. Front. Immunol. 12, 772532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Takada, K. et al. Clinical impact of probiotics on the efficacy of anti-PD-1 monotherapy in patients with nonsmall cell lung cancer: a multicenter retrospective survival analysis study with inverse probability of treatment weighting. Int. J. Cancer 149, 473–482 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Fessas, P. et al. Early antibiotic exposure is not detrimental to therapeutic effect from immunotherapy in hepatocellular carcinoma. Liver Cancer 10, 583–592 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dong, X. et al. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci. Adv. 6, eaba1590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med. 29, 2121–2132 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Marron, T. U. et al. Neoadjuvant clinical trials provide a window of opportunity for cancer drug discovery. Nat. Med. 28, 626–629 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Mittendorf, E. A., Burgers, F., Haanen, J. & Cascone, T. Neoadjuvant immunotherapy: leveraging the immune system to treat early-stage disease Am. Soc. Clin. Oncol. Educ. Book 42, 115 (2022).

    PubMed  Google Scholar 

  189. Reijers, I. L. M. et al. Personalized response-directed surgery and adjuvant therapy after neoadjuvant ipilimumab and nivolumab in high-risk stage III melanoma: the PRADO trial. Nat. Med. 28, 1178–1188 (2022).

    Article  CAS  PubMed  Google Scholar 

  190. Irene, L. M. et al. The interferon-gamma (IFN-y) signature from baseline tumor material predicts pathologic response after neoadjuvant ipilimumab (IPI) + nivolumab (NIVO) in stage III melanoma. J. Clin. Oncol. 40, 9539 (2022).

    Article  Google Scholar 

  191. Reijers, I. L. M. et al. IFN-gamma signature enables selection of neoadjuvant treatment in patients with stage III melanoma. J. Exp. Med. 220, e20221952 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Liebers, N. et al. Ex vivo drug response profiling for response and outcome prediction in hematologic malignancies: the prospective non-interventional SMARTrial. Nat. Cancer 4, 1648–1659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Jenkins, R. W. et al. Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8, 196–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Hofmann, S., Cohen-Harazi, R., Maizels, Y. & Koman, I. Patient-derived tumor spheroid cultures as a promising tool to assist personalized therapeutic decisions in breast cancer. Transl. Cancer Res. 11, 134–147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang, H. M. et al. Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: a real-world study. Cell Rep. Med. 4, 100911 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, T. et al. Patient-derived tumor organoids can predict the progression-free survival of patients with stage IV colorectal cancer after surgery. Dis. Colon. Rectum 66, 733–743 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Leung, C. M. et al. A guide to the organ-on-a-chip. Nat. Rev. Methods Prim. 2, 33 (2022).

    Article  CAS  Google Scholar 

  198. Mullard, A. $215 million cancer immunotherapy biomarker consortium debuts. Nat. Rev. Drug Discov. 16, 743 (2017).

    PubMed  Google Scholar 

  199. National Institutes of Health. NIH partners 11 leading biopharmaceutical companies to accelerate the development of new cancer immunotherapy strategies for more patients. nih.gov https://www.nih.gov/news-events/news-releases/nih-partners-11-leading-biopharmaceutical-companies-accelerate-development-new-cancer-immunotherapy-strategies-more-patients (2017).

  200. Srivastava, S., Wagner, P. D., Hughes, S. K. & Ghosh, S. PreCancer Atlas: present and future. Cancer Prev. Res. 16, 379–384 (2023).

    Article  CAS  Google Scholar 

  201. Chen, H. X. et al. Network for Biomarker Immunoprofiling for Cancer Immunotherapy: Cancer Immune Monitoring and Analysis Centers and Cancer Immunologic Data Commons (CIMAC-CIDC). Clin. Cancer Res. 27, 5038–5048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gide, T. N. et al. Abstract 5701: Predictive biomarker models of immunotherapy response in patients with metastatic melanoma: genomic, transcriptomic, and immune profiles from the Personalised Immunotherapy Program (PIP). Cancer Res. 83, 5701–5701 (2023).

    Article  Google Scholar 

  203. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Herbst, R. S. et al. Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival: an updated analysis of KEYNOTE-010 trial. Ann. Oncol. 30, 281–289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017).

    Article  PubMed  Google Scholar 

  207. Horn, L. et al. Nivolumab versus docetaxel in previously treated patients with advanced non-small-cell lung cancer: two-year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 35, 3924–3933 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wu, Y. L. et al. Nivolumab versus docetaxel in a predominantly Chinese patient population with previously treated advanced NSCLC: CheckMate 078 randomized phase III clinical trial. J. Thorac. Oncol. 14, 867–875 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Nosaki, K. et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non–small-cell lung cancer: pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer 135, 188–195 (2019).

    Article  PubMed  Google Scholar 

  211. Ready, N. et al. First-line nivolumab plus ipilimumab in advanced non–small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J. Clin. Oncol. 37, 992–1000 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Sezer, A. et al. 378MO EMPOWER-Lung 1: phase III first-line (1L) cemiplimab monotherapy vs platinum-doublet chemotherapy (chemo) in advanced non-small cell lung cancer (NSCLC) with programmed cell death-ligand 1 (PD-L1). Ann. Oncol. 31, S1388 (2020).

    Article  Google Scholar 

  213. Zhou, C. et al. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): a randomised, open-label, multicentre, phase 3 trial. Lancet Respir. Med. 9, 305–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  214. Brahmer, J. R. et al. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non-small-cell lung cancer in CheckMate 227. J. Clin. Oncol. 41, 1200–1212 (2023).

    Article  CAS  PubMed  Google Scholar 

  215. Paz-Ares, L. et al. Pembrolizumab plus chemotherapy for squamous non–small-cell lung cancer. N. Engl. J. Med. 379, 2040–2051 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Lemvigh, C. K. et al. ZNF683 (Hobit) marks a CD8+ T cell population associated with anti-tumor immunity following anti-PD-1 therapy for Richter syndrome. Blood 140, 1807–1808 (2022).

    Article  Google Scholar 

  221. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Auslander, N. et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat. Med. 24, 1545–1549 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hwang, S. et al. Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci. Rep. 10, 643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, H. et al. Tumor immunological phenotype signature-based high-throughput screening for the discovery of combination immunotherapy compounds. Sci. Adv. 7, eabd7851 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Sandulache, V. C. et al. Acute tumor lactate perturbations as a biomarker of genotoxic stress: development of a biochemical model. Mol. Cancer Ther. 14, 2901–2908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Blatt, S. et al. Lactate as a predictive marker for tumor recurrence in patients with head and neck squamous cell carcinoma (HNSCC) post radiation: a prospective study over 15 years. Clin. Oral. Investig. 20, 2097–2104 (2016).

    Article  PubMed  Google Scholar 

  227. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    Article  CAS  PubMed  Google Scholar 

  229. Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 23, 4416–4428 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Ficial, M. et al. Evaluation of predictive biomarkers for nivolumab in patients (pts) with metastatic clear cell renal cell carcinoma (mccRCC) from the CheckMate-025 (CM-025) trial. J. Clin. Oncol. 38, 5023 (2020).

    Article  Google Scholar 

  231. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R. Cancer Cell 25, 846–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Granier, C. et al. Tim-3 expression on tumor-infiltrating PD-1+CD8+ T cells correlates with poor clinical outcome in renal cell carcinoma. Cancer Res. 77, 1075–1082 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Stenzel, P. J. et al. Prognostic and predictive value of tumor-infiltrating leukocytes and of immune checkpoint molecules PD1 and PDL1 in clear cell renal cell carcinoma. Transl. Oncol. 13, 336–345 (2020).

    Article  PubMed  Google Scholar 

  234. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Hamid, O. et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J. Transl. Med. 9, 204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Johnson, D. B. et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat. Commun. 7, 10582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ren, Z. H. et al. CD73 is associated with poor prognosis in HNSCC. Oncotarget 7, 61690–61702 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Jacquelot, N. et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat. Commun. 8, 592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Subrahmanyam, P. B. et al. Distinct predictive biomarker candidates for response to anti-CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J. Immunother. Cancer 6, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Hiniker, S. M. et al. A prospective clinical trial combining radiation therapy with systemic immunotherapy in metastatic melanoma. Int. J. Radiat. Oncol. Biol. Phys. 96, 578–588 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Polverari, G. et al. 18F-FDG PET parameters and radiomics features analysis in advanced nsclc treated with immunotherapy as predictors of therapy response and survival. Cancers 12, 1163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Tian, P. et al. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. Theranostics 11, 2098–2107 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ravanelli, M. et al. Prognostic and predictive value of histogram analysis in patients with non-small cell lung cancer refractory to platinum treated by nivolumab: a multicentre retrospective study. Eur. J. Radiol. 118, 251–256 (2019).

    Article  PubMed  Google Scholar 

  244. Ladwa, R. et al. Computed tomography texture analysis of response to second-line nivolumab in metastatic non-small cell lung cancer. Lung Cancer Manag. 9, Lmt38 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Shen, L. et al. Pre-immunotherapy contrast-enhanced CT texture-based classification: a useful approach to non-small cell lung cancer immunotherapy efficacy prediction. Front. Oncol. 11, 591106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Liu, C. et al. A CT-based radiomics approach to predict nivolumab response in advanced non-small-cell lung cancer. Front. Oncol. 11, 544339 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Nardone, V. et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using nivolumab. Oncol. Lett. 19, 1559–1566 (2020).

    CAS  PubMed  Google Scholar 

  248. Dercle, L. et al. Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin. Cancer Res. 26, 2151–2162 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Tang, C. et al. Development of an immune-pathology informed radiomics model for non-small cell lung cancer. Sci. Rep. 8, 1922 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Yoon, J. et al. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Thorac. Cancer 11, 993–1004 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Jiang, M. et al. Assessing PD-L1 expression level by radiomic features from PET/CT in nonsmall cell lung cancer patients: an initial result. Acad. Radiol. 27, 171–179 (2020).

    Article  PubMed  Google Scholar 

  252. Tunali, I. et al. Hypoxia-related radiomics and immunotherapy response: a multicohort study of non-small cell lung cancer. JNCI Cancer Spectr. 5, pkab048 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Yang, B. et al. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Respir. Res. 22, 189 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Trebeschi, S. et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol. 30, 998–1004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Bhatia, A. et al. MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors. Neuro-Oncol. 21, 1578–1586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Park, K. J. et al. Radiomics-based prediction model for outcomes of PD-1/PD-L1 immunotherapy in metastatic urothelial carcinoma. Eur. Radiol. 30, 5392–5403 (2020).

    Article  CAS  PubMed  Google Scholar 

  257. Li, Z. Z. et al. Construction of a prognostic immune signature for lower grade glioma that can be recognized by MRI radiomics features to predict survival in LGG patients. Transl. Oncol. 14, 101065 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Peters, B. A. et al. Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med. 11, 61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  259. McCulloch, J. A. et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 28, 545–556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Salgia, N. J. et al. Stool microbiome profiling of patients with metastatic renal cell carcinoma receiving anti-PD-1 immune checkpoint inhibitors. Eur. Urol. 78, 498–502 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Andrews, M. C. et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 27, 1432–1441 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hakozaki, T. et al. The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non–small cell lung cancer. Cancer Immunol. Res. 8, 1243–1250 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.M.B. acknowledges support from the Adelson Medical Research Foundation (AMRF), the Patricia K. Donahoe Award from the Huiying Foundation, the Emma and Bill Roberts MGH Research Scholar Award, the Melanoma Research Alliance and the Department of Defense. A.D. has received support from the George and Marie Vergottis Research Fellowship award from Harvard Medical School. A.M.H. has support provided by the American College of Surgeons Clowes Award and the Department of Defense CDMRP through the Melanoma Academy Scholar Program. S.C. is supported by the KL2 award from Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Center for Advancing Translational Sciences, NIH Award KL2 TR002542).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Genevieve M. Boland.

Ethics declarations

Competing interests

G.M.B. discloses the following financial and professional collaborations: Takeda Oncology — sponsored research agreement; Olink Proteomics — sponsored research agreement; Novartis — scientific advisory board, speaker; Nektar Therapeutics — scientific advisory board, steering committee; Palleon Pharmaceuticals — sponsored research agreement; InterVenn Biosciences — sponsored research agreement, scientific advisory board; Merck — scientific advisory board, consulting; Iovance — scientific advisory board; Ankyra Therapeutics — scientific advisory board, equity. A.P. has held equity in C2i Genomics, XGenomes, Cadex, Vionix and Parithera. In the past 36 months, she has served as an adviser/consultant for Eli Lilly, Mirati, Pfizer, Inivata, Biofidelity, Checkmate Pharmaceuticals, Foundation Medicine Inc., Guardant, AbbVie, Bayer, Delcath, Taiho, CVS, Value Analytics Lab, Seagen, Saga, AstraZeneca, Scare Inc., Illumina, Taiho, Hookipa, Kahar Medical, Xilio Therapeutics, Sirtex, Takeda and Science For America. She receives fees from Up to Date. She has received travel fees from Karkinos Healthcare. She has been on the DSMC for a Roche study and on the Steering Committee for Exilixis. She has received research funding to the Institution from PureTech, PMV Pharmaceuticals, Plexxicon, Takeda, Bristol Myers Squibb, Mirati, Novartis, Erasca, Genentech, Daiichi Sankyo, Syndax, Revolution Medicine and Parthenon. D.L. has received honorarium (invited speaker/travel fees) from Genentech, Inc., and is on the scientific advisory board for Oncovalent Therapeutics. A.M.H., A.D., K.S.-D. and S.C. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks L. Zitvogel and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Cancer Immune Monitoring and Analysis Centers (CIMACs) and Cancer Immunologic Data Center (CIDC) Network: https://dctd.cancer.gov/ResearchNetworks/cimacs_cidc_network.htm

Personalised Immunotherapy Platform (PIP): https://melanoma.org.au/personalised-immunotherapy-platform-pip/

Glossary

Area under the curve

(AUC). Occurs between two points of a function, which is calculated with the use of a definite integral between the two points. In the context of novel prediction models, a receiver operator curve (ROC) is formed to correlate the true and false positive rates of the test. The AUC of this ROC ranges between 0.5 and 1 and signifies the predictive ability of the model. An AUC of 0.5 means that the model has no predictive value, and an AUC of 1 signifies a perfect predictive model.

Companion diagnostic test

A test performed on a patient before administration of a specific therapy, to determine whether the treatment would have a high chance of working and, therefore, if it can be used for the patient.

Data coordinating centre

(DCC). A group that coordinates the planning and operational aspects of a multi-institutional clinical trial.

Dynamic biomarkers

Measurable biological signals that can change over time and their change can accurately predict, at an early time point, any significant events, such as response to treatment or tumour recurrence after complete response.

Extracellular vesicles

Nano-sized vesicles released from cells. They are enclosed by a single outer membrane, come in various sizes, have variable surface markers and cargo, and can be found in biofluids such as plasma, urine, serum, saliva, cerebrospinal fluid, breast milk, amniotic fluid, semen, lymph, bile and gastric acid.

Microsatellite instability

The existence of a large number of newly identified microsatellite regions in the genome of a sample (in this context cancer cells), which are not found in the corresponding germline DNA. High microsatellite instability is caused by defective DNA mismatch repair of a cell.

Microsatellite regions

Areas in the genome that have a large repetition of microsatellites, which are small repeating nucleotide sequences (of around 2–10 bp) found throughout the genome of each cell.

Mismatch repair

(MMR). A DNA repair system that ensures the integrity of the DNA of each cell. It recognizes and repairs erroneous insertions, deletions and mismatched base pairs that may happen during DNA replication and recombination or at any point during DNA damage.

Neoantigens

Newly formed antigens generated by tumour cells owing to tumour cell-specific alterations, such as dysregulated DNA mutations, RNA splicing and post-translational modifications.

Next-generation sequencing

(NGS). A sequencing technology that enables the processing of multiple DNA sequences in parallel, offering high throughput and speed. NGS is used to determine the nucleotide sequence of either the whole genome or specific DNA and RNA regions of the analysed sample.

Plasma proteomics

The proteomic analysis (that is, the identification of all proteins) of plasma.

Predictive biomarkers

Measurable biological signals that can identify patients who are more likely to respond to a specific therapy.

Response evaluation criteria in solid tumours

(RECIST). A set of published rules used to assess tumour burden with which to provide an objective assessment of response to therapy. They were initially introduced in 2000, and an updated revision (version 1.1) was published in 2009.

Sensitivity

A measure of the proportion of patients who respond to a therapy who were predicted to respond according to a biomarker. It is calculated by dividing the number of biomarker-positive patients who actually respond (true positives) by the total number of patients who actually respond (true positives and false negatives).

Variant callers

After next-generation sequencing, the identified sequences are matched to already available data, to identify any alterations. This process is called ‘variant calling’, and the particular variants identified in a specific sample or sample population are called ‘variant callers’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holder, A.M., Dedeilia, A., Sierra-Davidson, K. et al. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 24, 498–512 (2024). https://doi.org/10.1038/s41568-024-00705-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00705-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer