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Abstract

Background: Ubiquitination is a crucial post-translational modification of proteins that regulates diverse cellular functions. Accurate
identification of ubiquitination sites in proteins is vital for understanding fundamental biological mechanisms, such as cell cycle and
DNA repair. Conventional experimental approaches are resource-intensive, whereas machine learning offers a cost-effective means of
accurately identifying ubiquitination sites. The prediction of ubiquitination sites is species-specific, with many existing models being
tailored for Arabidopsis thaliana (A. thaliana) and Homo sapiens (H. sapiens). However, these models have shortcomings in sequence
window selection and feature extraction, leading to suboptimal performance. Methods: This study initially employed the chi-square
test to determine the optimal sequence window. Subsequently, a combination of six features was assessed: Binary Encoding (BE),
Composition of K-Spaced Amino Acid Pair (CKSAAP), Enhanced Amino Acid Composition (EAAC), Position Weight Matrix (PWM),
531 Properties of Amino Acids (AA531), and Position-Specific Scoring Matrix (PSSM). Comparative evaluation involved three feature
selection methods: Minimum Redundancy-Maximum Relevance (mRMR), Elastic net, and Null importances. Alongside these were four
classifiers: Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The
Null importances combined with the RF model exhibited superior predictive performance, and was denoted as UbNiRF (A. thaliana:
ArUbNiRF; H. sapiens: HoUbNiRF). Results: A comprehensive assessment indicated that UbNiRF is superior to existing prediction
tools across five performance metrics. It notably excelled in the Matthews Correlation Coefficient (MCC), with values of 0.827 for
the A. thaliana dataset and 0.781 for the H. sapiens dataset. Feature analysis underscores the significance of integrating six features
and demonstrates their critical role in enhancing model performance. Conclusions: UbNiRF is a valuable predictive tool for identify-
ing ubiquitination sites in both A. thaliana and H. sapiens. Its robust performance and species-specific discovery capabilities make it
extremely useful for elucidating biological processes and disease mechanisms associated with ubiquitination.
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1. Introduction

Ubiquitin is a small protein comprised of 76 amino
acid residues. This protein is strongly conserved across eu-
karyotic cells. Ubiquitination is the post-translational pro-
cess whereby ubiquitin molecules attach to lysine residues
on substrate proteins. This process regulates various cel-
lular functions including cell cycle progression, DNA re-
pair, transcriptional control, receptor trafficking, immune
response, viral infection, etc. [1–3]. Dysregulation of ubiq-
uitination in humans can result in cancer and neurodegen-
erative diseases [4–6], while in plants it can impact growth,
development, and responses to biotic and abiotic stresses
[7,8]. Accurate identification of protein ubiquitination sites
is crucial for understanding cellular functions and network
regulation. Traditional methods for detecting ubiquitina-
tion sites, such as Chromatin Immunoprecipitation (ChIP)
[9], Mass Spectrometry (MS) [10], and liquid chromatogra-
phy [11], are laborious, time-consuming, and costly. How-

ever, rapid advances in machine learning technology may
offer a cost-effective and accurate way to identify ubiquiti-
nation sites.

Ubiquitination sites exhibit significant species speci-
ficity, with the current machine learning-based predic-
tion methods primarily targeting Arabidopsis thaliana (A.
thaliana) and Homo sapiens (H. sapiens). The prediction
process for ubiquitination modification sites typically en-
compasses five essential stages: window size determina-
tion, feature extraction, feature selection, classifier choice,
and performance evaluation.

(1) Window size determination. Selection of an opti-
mal window size is crucial for accurate prediction of ubiq-
uitination sites. Current reports encompass ranges such as
–10~+10 [12], –13~+13 [13–16], –20~+20 [17–19], all of
which are centered around lysine ‘K’. However, there is no
clear rationale guiding the selection.

(2) Feature extraction. Feature extraction involves de-
riving the predictive attributes from protein sequences and
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converting string sequences into digital formats. Widely
employed methods for feature extraction in site predic-
tion encompass Binary Encoding (BE) [18], Composition
of K-Spaced Amino Acid Pair (CKSAAP) [20,21], Posi-
tion Weight Matrix (PWM) [22], Amino Acid Composition
(AAC) [17], Enhanced Amino Acid Composition (EAAC)
[19,23,24], 531 Properties of Amino Acids (AA531) [12],
Position-Specific Scoring Matrix (PSSM) [25,26], Blocks
Substitution Matrix (BLOSUM62) [19], etc. The majority
of models tend to incorporate only one feature, or 2–3 fea-
tures, and lack the integration of multiple feature types.

(3) Feature selection. Feature selection is a crucial as-
pect of machine learning, with profound impacts on model
accuracy, reduction of runtime, and enhancement of inter-
pretability. Common feature selection methodologies em-
ployed in bioinformatics include Minimum Redundancy-
Maximum Relevance (mRMR) [27], Elastic net [28], and
Null importances [29].

(4) Classifier choice. During model construction,
multiple classifiers for comparative analysis and selection
are commonly used to enhance prediction accuracy and
stability. Each classifier has distinct strengths and weak-
nesses, and caters to diverse datasets or specific contexts.
Notable predictors include Support Vector Machine (SVM)
[30], Decision Tree (DT) [31], Random Forest (RF) [32],
and Extreme Gradient Boosting (XGBoost) [33].

(5) Performance evaluation. Cross-validation and in-
dependent testing are commonly used to evaluate model
performance. Cross-validation is used primarily to assess
the model’s generalization on training data. Post cross-
validation, further testing on a separate, unused dataset is
crucial to ascertain true model performance. For the A.
thaliana model, the cross-validated Matthews Correlation
Coefficient (MCC) ranges from 0.485 to 0.822, with the
Area Under the Receiver Operating Characteristic Curve
(ROC curve, AUC) ranging from 0.877 to 0.977. More-
over, independently tested MCC ranges from 0.468 to
0.772, with an AUC range of 0.868 to 0.960 [16–19]. For
the H. sapiens model, the cross-validated MCC is 0.530
with an AUC range of 0.770 to 0.852, while the indepen-
dent test MCC ranges from 0.480 to 0.673 and the AUC
ranges from 0.757 to 0.950 [12–15]. The existing models
indicate there is still a need to improve bothMCC andAUC,
with a particular focus on enhancing MCC.

This study addresses several of the above key aspects.
Firstly, the chi-square test was employed to determine the
optimal size of the protein sequence window within the
dataset. Subsequently, a fusion feature set incorporating
six distinct features (BE, PWM, CKSAAP, EAAC, AA531,
and PSSM) was extracted. Three distinct feature selec-
tion methods (mRMR, Elastic net, and Null importances)
were compared, alongside the evaluation of four classifiers
(SVM, DT, RF, and XGBoost). To mitigate the imbalance
between positive and negative samples, the Synthetic Mi-
nority Over-sampling Technique (SMOTE) was also intro-

duced during the training phase [34], coupled with the ap-
plication of stratified sampling in cross-validation. Follow-
ing rigorous experimental comparisons, a combination of
the null importances feature selection method and the RF
classifier were found to show superior performance. Con-
sequently, the UbNiRF model (A. thaliana: ArUbNiRF; H.
sapiens: HoUbNiRF) was formulated. This showed several
notable improvements compared to existing models. Fur-
thermore, species-specificity for the prediction of ubiquiti-
nation sites was confirmed through species cross-testing of
the ArUbNiRF model for A. thaliana and the HoUbNiRF
model forH. sapiens. This demonstrated distinct predictive
capabilities for different species. Additionally, we investi-
gated the necessity to fuse the six features. The flowchart
for the development of UbNiRF is shown in Fig. 1.

2. Materials and Methods

2.1 Data Collection and Preprocessing

To train and evaluate the proposed method, this study
employed two ubiquitination site datasets from AraUbiSite
(A. thaliana) [17] and HUbipPred (H. sapiens) [15]. Exper-
imentally confirmed ubiquitination sites in these datasets
are marked as positive samples, while the remaining
lysine (‘K’) residues serve as negative samples (non-
ubiquitination sites). Samples consist of A. thaliana se-
quence fragments with a window size of 41 and centered on
lysine (‘K’). If the site is at the start or end of the sequence,
thereby creating a peptide shorter than 41, ‘X’ fills the start
or end of the peptide. In contrast, theH. sapiens dataset em-
ploys a window size of 27. CD-HIT software (canva.com.)
[35] with a threshold of 40% sequence identity was applied
to the A. thaliana dataset to remove redundant fragments in
the compiled sequence fragments of positive and negative
samples. The H. sapiens dataset utilizes the Blastclust pro-
gram with a 30% identity cutoff for the same purpose, but
with a notable window length of 27. Consequently, the cur-
rent study reacquired the protein sequences via ID mapping
(date: 2023-10-13) from the Uniprot database [36] in or-
der to adjust the window length to 41. During ID mapping,
some protein sequences were found to be missing from the
Uniprot database, leading to fewer samples in theH. sapiens
dataset compared to the original. Details of the A. thaliana
and H. sapiens training and test datasets used in the model
construction are presented in Table 1 (Ref. [15,17]).

Table 1. Training and test dataset for A. thaliana and H.
sapiens.

Species
Training dataset Test dataset

Reference
Positive Negative Positive Negative

A. thaliana 1532 4597 511 1533 [17]
H. sapiens 5160 5107 2905 2896 [15]
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Fig. 1. Flowchart for the development of UbNiRF. BE, Binary Encoding; CKSAAP, Composition of K-Spaced Amino Acid Pair;
EAAC, Enhanced Amino Acid Composition; PWM, Position Weight Matrix; AA531, 531 Properties of Amino Acids; PSSM, Position-
Specific Scoring Matrix.

2.2 Determination of Window Size

A chi-square independence test was performed to an-
alyze the amino acid distribution at each position in the
A. thaliana and H. sapiens training sets, excluding posi-
tion 0. If the association between the sample label and the
amino acid distribution is statistically significant (p-value
< 0.05), it indicates the relevance of this position in de-
termining whether the fragment belongs to a ubiquitination
site [37]. For clarity, the negative logarithm of p-values
(–lg[p-value]) is shown in Fig. 2. Fig. 2A,B display the –

lg(p-value) for all positions, other than position 0, at the
ubiquitination site sequences of A. thaliana and H. sapiens,
respectively. Using –lg(0.05) = 1.301 as the threshold and
considering window continuity, the optimal window length
for the ubiquitination site sequences of A. thaliana and H.
sapiens was determined to be 31 (i.e., –16~+14). Unless
stated otherwise, the sequence window length utilized for
the ubiquitination sites of A. thaliana and H. sapiens in the
present study was therefore 31.
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Fig. 2. –lg(p-value) for different positions in the training datasets of A. thaliana and H. sapiens. (A) –lg(p-value) for different
positions in the training dataset of A. thaliana. (B) –lg(p-value) for different positions in the training dataset of H. sapiens.

2.3 Feature Extraction
We next reviewed the established methodologies and

utilized six prevalent and efficient numerical feature extrac-
tion methods for sequences. These included: (1) sequence

composition information encompassing BE, CKSAAP, and
EAAC; (2) positional information denoted by PWM; (3)
physical and chemical property information referred to as
AA531; and (4) evolutionary information represented by

4

https://www.imrpress.com


PSSM. Subsequently, these six features, amounting to a col-
lective dimensionality of 20272, were fused for feature se-
lection.

2.3.1 BE
BE [38] is employed for feature extraction based

on sequence composition information. It is utilized to
transform protein sequences into digital vectors. With this
approach, each amino acid is depicted as a 20-dimensional
binary vector. For instance, alanine (‘A’) is denoted
as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], and argi-
nine (‘R’) by [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].
The special character ‘X’ is distinguished as
a 20-dimensional vector consisting of zeros:
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]. Consequently,
a protein sequence of length L generates a feature vector
with dimensions of 20×L.

2.3.2 CKSAAP
CKSAAP [39] is a feature extraction method that re-

lies on protein sequence composition and emphasizes the
occurrence frequency of distinct pairs of amino acids within
amino acid fragments (total of 20 × 20 potential combina-
tions). These paired amino acids are separated by a specific
number of intervening amino acids, denoted by the parame-
ter ‘k’. For example, when k = 2, the method computes the
occurrence frequency of all 400 amino acid pairs separated
by two intervening amino acids within the fragment. Typ-
ically, the establishment of an upper limit ‘kmax’ is essen-
tial, allowing the computation of component characteristics
for values ranging from k = 0 to kmax. Hence, for a protein
sequence of length L, setting the kmax to four yields 5 ×
400 = 2000 dimensional features.

2.3.3 EAAC
EAAC utilizes sequence composition to capture the

frequency of standard amino acid occurrences within indi-
vidual peptide sequences. AAC transforms the 20 amino
acids into a 20-dimensional digital vector by tallying the
occurrence of specific amino acids in individual peptide se-
quences [40]. EAAC differs significantly from this by em-
ploying continuous sliding from the N-terminus to the C-
terminus of peptide sequences, utilizing a fixed-length slid-
ing window for computation [41]. Thus, for a protein se-
quence of length L, a fixed sliding window size of 5 would
yield L-5+1 sliding windows. The EAAC encoding dimen-
sion is (L-5+1) × 20.

2.3.4 PWM
PWM [22] represents a positional feature extraction

method. For both positive and negative samples, the re-
spective relative frequencies of the 20 amino acids at spe-
cific positions are calculated, thus giving the frequency data
for amino acids at each position. Hence, a protein sequence
of length L yields an L-dimensional feature vector.

2.3.5 AA531
The Amino Acid Index (AAindex) compiles numeri-

cal indices encompassing diverse physicochemical and bio-
chemical attributes of amino acids and their pairs [42]. A
total of 531 prevalent physical and chemical properties were
employed for feature extraction in this study. For each
property, the average of the 20 amino acids was computed
for the placeholder character ‘X’. For a protein sequence
of length L, 531 physical and chemical properties were ex-
tracted per amino acid, resulting in a feature matrix with
dimensions of 531×L.

2.3.6 PSSM
PSSM is a method for extracting features rooted in

evolutionary information. Position Specific Iterative-Blast
(PSI-BLAST) is widely employed for identifying remotely-
related protein sequences. PSSM generation involves com-
paring the target sequence against homologous sequences
through PSI-BLAST as follows [43]:

PSSMP =



P1→1 P1→2 · · · P1→j · · · P1→20

P2→1 P2→2 · · · P2→j · · · P2→20

...
...

...
...

...
...

Pi→1 Pi→2 · · · Pi→j · · · Pi→20

...
...

...
...

...
...

PL→1 PL→2 · · · PL→j · · · PL→20


(1)

The protein sequence P, of length L, can be trans-
formed into a feature matrix denoted as PSSMp, with the
dimensions of L×20. Within this matrix, P(i→j) denotes
the score attributed to mutation of the amino acid residue at
the ith position (i = 1, 2,…, L) in protein sequence P to the
jth amino acid (j = 1, 2,…, 20). Positive and negative score
values denote the likelihood of occurrence for the respec-
tive mutation. Positive scores suggest a higher likelihood,
whereas negative scores imply a lower likelihood.

2.4 Feature Selection
Following the fusion of six features, the potential in-

crease in feature dimensions might adversely impact both
computational speed and model performance. Conse-
quently, this study compared three feature selection meth-
ods: Null importances, mRMR, and Elastic net.

2.4.1 Null Importances
The Null importances method [29] is a statistical ap-

proach used to assess the significance of feature importance
generated by the RF model. It involves creating a distribu-
tion of importance scores for each feature under the null hy-
pothesis, which assumes that the feature is irrelevant to the
prediction outcome. The process is carried out by permut-
ing the response vector in the dataset and then re-running
the model to compute importance scores for each feature.
These permutations effectively break any real association
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between the feature and the target, thereby providing a base-
line distribution of importance scores under the assumption
of no relationship.

Integration of the null importances method with the
RF model allows for a more robust assessment of feature
importance. After the RF model is fitted on the original
dataset, the original importance score of each feature is cal-
culated. The null importances distribution is then generated
by repeatedly permuting the response vector and recalcu-
lating each feature’s importance score across multiple itera-
tions. The original importance scores can then be compared
against this null distribution to determine the significance
of the observed importances. Features with the original im-
portance score significantly higher than those observed in
the null distribution are considered to be genuinely informa-
tive for the model’s predictions, thereby providing a means
to identify and focus on the most relevant features for the
problem at hand.

This method enhances the interpretability of the RF
model by distinguishing between features that have a sta-
tistically significant impact on the model’s predictions
and those that do not. It also reduces the risk of over-
interpreting importance scores derived from random noise
in the data, thereby resulting in more reliable and transpar-
ent machine learning models.

Olivier implemented this method within the Kag-
gle Community (https://www.kaggle.com/code/ogrellier/fe
ature-selection-with-null-importances). Drawing inspira-
tion from this method, we implemented the following steps
for feature selection: (1) Eliminate features exhibiting zero
variance; (2) Employ random forest (default parameters)
to compute the score for each feature within the original
dataset (recorded as the actual score); (3) Randomly shuf-
fle labels and employ random forest (default parameters) to
derive scores for each feature. The resulting scores after
label shuffling denote the null score for each feature. This
process is repeated 1000 times to obtain the score distribu-
tion, and recorded as null scores for subsequent use. The
custom scoring function is defined as follows:

final score = actual score/null scoresmean (2)

The final score for each feature is computed using for-
mula (2), features with a final score of 0 are eliminated, and
the top 5% of features are selected as the ultimate input vari-
ables.

2.4.2 mRMR
The mRMR algorithm is predicated on the principle

of maximizing the relevance of selected features with re-
spect to the target variable, while concurrently minimiz-
ing the redundancy among these features. The dual ob-
jectives of the mRMR algorithm ensure that the selected
feature subset has a high degree of predictive power for
the target variable, and is devoid of superfluous or du-

plicative information that could impair model performance.
The mRMR algorithm operates by iteratively evaluating
the mutual information between each feature and the tar-
get variable, thereby quantifying the relevance of each fea-
ture. Simultaneously, it assesses the mutual information
among the features themselves to gauge their redundancy.
The algorithm seeks to construct a feature subset where
the average mutual information between the features and
the target is maximized, and the average mutual informa-
tion among the features is minimized. This approach fa-
cilitates the selection of a feature set that is both highly
informative and minimally redundant, thus striking a bal-
ance between relevance and redundancy [27]. To imple-
ment the mRMR algorithm, we utilized the mrmr_classif
function available in the mrmr package (version: 0.2.8) for
Python (https://github.com/smazzanti/mrmr). The parame-
ter K was set to match the number of features selected by
the Null importancesmethod, while retaining default values
for the remaining parameters.

2.4.3 Elastic Net
Elastic net is a regularization method that integrates

the strengths of both the Ridge (L2 norm) and Lasso
(L1 norm) regularization techniques. This integration is
achieved by combining their penalty terms into a single
formulation, thereby enabling the method to acquire the
benefits of both approaches: Lasso’s capability for fea-
ture selection through its tendency to produce coefficients
that are exactly zero, and Ridge’s ability to handle multi-
collinearity by more evenly distributing the penalty across
all coefficients [44]. The sklearn.linear_model.ElasticNet
class (https://scikit-learn.org/stable/modules/generated/sk
learn.linear_model.ElasticNet.html) within the sklearn li-
brary was utilized to implement Elastic net for feature se-
lection under the default parameter settings. These default
parameters, including the mix ratio between L1 and L2 reg-
ularization, were retained to provide a balanced regulariza-
tion approach suitable for a wide range of datasets, as well
as to ensure reproducibility and comparability of the results.

2.5 Classifiers
This study employed four classifiers to evaluate pre-

diction performance across various classifiers for input fea-
tures. The SVM, DT, and RF classifiers were implemented
using the Python sklearn library [45], whereas XGBoost
was employed through the XGBClassifier function within
the Python-based XGBoost Package (version: 1.7.0). To
enhance performance and prevent overfitting, parameter
optimization for these classifiers was conducted via five-
fold cross-validation using the ACC value as the metric.

2.5.1 SVM
SVM serves in both classification and regression

tasks. It aims to identify a decision boundary, of-
ten referred to as a hyperplane, which effectively sep-
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arates data points into distinct categories. This is ac-
complished by maximizing the margin, which is the
separation distance between the boundary and the near-
est datapoint known as the support vector. The effi-
cacy of SVM is particularly evident in its handling of
high-dimensional data and non-linear problem sets, where
it shows robust generalization capabilities [30]. The
sklearn.svm.SVC class (https://scikit-learn.org/stable/mo
dules/generated/sklearn.svm.SVC.html) within the sklearn
library was used to implement SVM. Two parameters must
be considered when training an SVM with the Radial Ba-
sis Function (RBF) kernel: C and gamma. The parameter
C trades off misclassification of training examples against
simplicity of the decision surface. A low C makes the de-
cision surface smooth, while a high C aims to correctly
classify all training examples. gamma defines how much
influence a single training example has. The larger the
gamma value, the closer the other examples must be to be
affected. During parameter optimization, C and gamma are
spaced exponentially apart in order to select suitable val-
ues (https://scikit-learn.org/stable/modules/svm.html#svm
-classification). The optimization ranges for parameters C
and gamma were set to [0.001, 0.01, 0.1, 1, 10, 100, 1000]
and [1, 0.1, 0.01, 0.001, 0.0001], respectively.

2.5.2 DT

DT performs classification by querying features
within the data and posing a series of questions. Each
question serves as a node within the tree structure and seg-
ments data items into different child nodes based on the an-
swers, thus enabling the classification process. This hier-
archical arrangement of queries establishes the tree struc-
ture characteristic of decision trees. Compared to other
classifiers such as neural networks [46], decision trees of-
fer greater interpretability by leveraging straightforward,
data-based inquiries in an understandable manner. Nev-
ertheless, minor alterations in the input data can occa-
sionally result in substantial modifications within the con-
structed tree [31]. The sklearn.tree.DecisionTreeClassifier
class (https://scikit-learn.org/stable/modules/generated/sk
learn.tree.DecisionTreeClassifier.html) within the sklearn
library was utilized to implement DT. The parameter
max_depth represents the maximum depth of the tree. Typ-
ically, max_depth = 3 is set as the initial tree depth to ob-
tain a preliminary evaluation of how the tree fits the data,
and then the depth is increased. Controlling the tree size
through max_depth helps to prevent overfitting (https://sc
ikit-learn.org/stable/modules/tree.html). The optimization
ranges for the max_depth parameter are set from 3 to 10 in
steps of 1.

2.5.3 RF

RF comprises numerous autonomously trained deci-
sion trees. The ultimate prediction relies on aggregat-
ing the outcomes from all trees [47]. This approach is

used extensively in prediction tasks, accommodating both
large and small sample datasets alongside high-dimensional
feature spaces. It offers the advantages of high accu-
racy and requiring minimal parameter tuning. Addi-
tionally, it can readily adapt to diverse ad-hoc learning
tasks and provides valuable information on feature impor-
tance [32]. The sklearn.ensemble.RandomForestClassifier
class (https://scikit-learn.org/stable/modules/generated/sk
learn.ensemble.RandomForestClassifier.html) within the
sklearn library was used to implement RF. The parame-
ter n_estimators represents the number of trees in the for-
est and is the primary parameter for adjustment when uti-
lizing RF, with a default value of 100. Of note, the re-
sults stop getting significantly better beyond a critical num-
ber of trees (https://scikit-learn.org/stable/modules/ensemb
le.html#forest). The optimization ranges for the parameter
n_estimators are set from 50 to 150 in steps of 10.

2.5.4 XGBoost

XGBoost is a gradient boosting tree model utilized for
addressing classification and regression challenges. It en-
hances model performance through the iterative construc-
tion of multiple decision trees, and integrates various op-
timization techniques to ensure efficient, scalable, and ac-
curate prediction capabilities. XGBoost has demonstrated
prowess in machine learning competitions and real-world
applications. It excels in managing large-scale datasets and
high-dimensional features, showcasing exceptional gener-
alization capabilities [33]. We utilized XGBoost via the
xgb.XGBClassifier class (https://xgboost.readthedocs.io/e
n/stable/python/python_api.html) within the Python-based
XGBoost Package. The parameter learning_rate denotes
the boosting learning rate. It is instrumental in control-
ling overfitting through step size shrinkage, which is set
to 0.01 [23]. n_estimators, akin to RF, signifies the num-
ber of boosting rounds. The parameter gamma indicates
the minimum loss reduction required to further partition a
leaf node within the tree. A higher gamma value results in
a more conservative algorithm. subsample represents the
subsample ratio of training instances. When set above 0.5,
XGBoost randomly samples more than half of the training
data before tree growth, effectively mitigating overfitting
(https://xgboost.readthedocs.io/en/stable/). The optimiza-
tion ranges for parameter n_estimators are set from 50 to
150 in steps of 10, while for gamma and subsample the
ranges are [0.2, 0.4, 0.6, 0.8, 1] and [0.6, 0.7, 0.8, 0.9, 1],
respectively.

2.6 Class Imbalance Handling

The A. thaliana dataset employed in this study has
a positive-to-negative sample ratio of 1:3, whereas the
H. sapiens dataset has a near 1:1 ratio of positive and
negative samples. To address data imbalance, this study
employed the imblearn.over_sampling.SMOTE class
(https://imbalanced-learn.org/stable/references/generated/i
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Table 2. Predictive performance of different feature selection methods and classifiers in A. thaliana.
Feature selection classifier ACC MCC AUC Sn Sp

Five-fold Cross-Validation

mRMR

SVM 0.921 0.783 0.963 0.792 0.963
DT 0.978 0.940 0.984 0.927 0.995
RF 0.977 0.938 0.994 0.922 0.995

XGBoost 0.982 0.951 0.997 0.927 1.000

Elastic net

SVM 0.760 0.339 0.766 0.470 0.857
DT 0.673 0.149 0.584 0.384 0.769
RF 0.760 0.194 0.767 0.134 0.969

XGBoost 0.762 0.251 0.754 0.251 0.933

Null importances

SVM 0.924 0.790 0.942 0.757 0.979
DT 0.980 0.947 0.977 0.931 0.997
RF 0.986 0.962 0.997 0.952 0.997

XGBoost 0.985 0.959 0.997 0.939 1.000

Independent Test

mRMR

SVM 0.921 0.785 0.959 0.795 0.963
DT 0.772 0.561 0.845 0.920 0.723
RF 0.910 0.777 0.966 0.904 0.912

XGBoost 0.818 0.619 0.936 0.910 0.787

Elastic net

SVM 0.761 0.337 0.750 0.462 0.860
DT 0.702 0.166 0.613 0.333 0.825
RF 0.766 0.218 0.741 0.141 0.974

XGBoost 0.764 0.239 0.741 0.213 0.947

Null importances

SVM 0.903 0.742 0.939 0.806 0.935
DT 0.679 0.463 0.770 0.941 0.592
RF 0.930 0.827 0.979 0.941 0.926

XGBoost 0.821 0.633 0.937 0.928 0.786
a In the metrics column, the bold font represents the highest value for each metric in the five-fold cross-
validation and independent test. mRMR, Minimum Redundancy-Maximum Relevance.

mblearn.over_sampling.SMOTE.html#r001eabbe5dd7-1)
within the imbalanced-learn library. The SMOTE algo-
rithm calculates the Euclidean distance for a minority
class sample to find its k-nearest neighbors, then randomly
selects one neighbor and generates a new synthetic sample
along the line segment between these two samples [34].
In the present study, two strategies were delineated and
contrasted as follows: (1) The StratifiedKFold function
(https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.StratifiedKFold.html) with shuffle = True
was employed during k-fold cross-validation to maintain
consistent ratios of positive and negative samples within
each fold, alongside SMOTE application on the training set
within each fold. During independent testing, SMOTE was
applied solely on the training set. (2) Employing KFold
(https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.KFold.html) with shuffle = True during
k-fold cross-validation without SMOTE application.
During independent testing, SMOTE was not applied.

2.7 Performance Evaluation

This study employed five-fold cross-validation along
with independent testing to evaluate the model’s perfor-
mance. Five widely acknowledged metrics, namely Ac-

curacy (ACC), MCC, AUC, Sensitivity (Sn), and Speci-
ficity (Sp), were utilized to evaluate the classification per-
formance of the models. These metrics are defined as:

ACC =
TP + TN

TP + FP + TN + FN
(3)

MCC =
(TP × TN) − (FP × FN)√

(TP + FN) × (TN + FP ) × (TP + FP ) × (TN + FN)
(4)

Sn =
TP

TP + FN
(5)

Sp =
TP

TP + FN
(6)

TP signifies correctly predicted, true ubiquitina-
tion sites; TN represents correctly predicted, true non-
ubiquitination sites; FN indicates true ubiquitination sites
that were incorrectly predicted as non-ubiquitination sites;
and FP denotes true non-ubiquitination sites incorrectly pre-
dicted as ubiquitination sites. The ROC curve evaluates
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classifier performance by illustrating the trade-off between
the True Positive Rate (TPR) and the False Positive Rate
(FPR). This method is widely accepted for evaluation, with
AUC representing the area under the curve. The aim of this
study was to evaluate and compare the performance of di-
verse classifiers, with a particular emphasis on their per-
formance during cross-validation and independent testing.
The outcomes of these performance evaluations are illus-
trated through ROC curves, thereby contributing to a com-
prehensive assessment of individual classifier strengths and
weaknesses.

3. Results and Discussion
3.1 Comparison of Different Feature Selection Methods
and Classifiers

For the A. thaliana dataset, the combined perfor-
mance of three feature selection methods (Null impor-
tances, mRMR, and Elastic net) were assessed alongside
four classifiers (SVM, DT, RF, XGBoost) using five-fold
cross-validation and independent testing. The combination
of Null importances and RFwas found to yield the most
favorable outcomes across all combinations (Table 2). It
demonstrated the highest ACC (0.986) and MCC (0.962) in
5-fold cross-validation, as well as the highest ACC (0.930)
and MCC (0.827) in independent testing. Furthermore,
ROC curves revealed an AUC value of 0.997 for Null im-
portances + RF in five-fold cross-validation, and 0.979 in
independent testing (Fig. 3). The Null importances + RF
combination gave the best performance of all the combi-
nations. Parallel evaluations performed on the H. sapiens
dataset revealed similar results, with Null importances +
RF exhibiting superior independent test scores of 0.891 for
ACC, 0.781 for MCC, and 0.956 for AUC. Consequently,
the Null importances + RF method (UbNiRF) was adopted
due to its consistently high performance across both five-
fold cross-validation and independent testing on the H.
sapiens dataset (see Supplementary Table 1).

3.2 Comparison of the Models with and without the
SMOTE Method

The datasets for A. thaliana and H. sapiens are unbal-
anced, with A. thaliana in particular having a 1:3 ratio of
positive to negative samples. Directly training the model
could compromise its generalizability and robustness. We
therefore employed the Null importances+RF method in
A. thaliana to compare model performance with and with-
out SMOTE. Fig. 4 shows a comparison of the evalua-
tion metrics between the original dataset and the SMOTE-
enhancedmodel. TheMCC for training set cross-validation
with SMOTE (0.962) was not significantly different to the
MCC without SMOTE (0.980) (paired T-test on five met-
rics, p-value = 0.0506 > 0.05). Following augmentation of
the training data, the independent test MCC reached 0.827,
demonstrating a significant increase compared to the MCC
obtained without data augmentation (paired T-test on five

metrics, p-value = 0.0197< 0.05). Integrating SMOTE into
the model therefore significantly improves independent test
accuracy, mitigates overfitting, and strengthens the model’s
generalizability.

3.3 Comparison of Different Window Sizes
Comparative analysis was conducted using indepen-

dent tests on the A. thaliana dataset to assess the predic-
tive performance of the selected window size (–16~+14)
against the window sizes of established models (–10~+10,
–13~+13, –20~+20). As shown in Table 3, the proposed
model with 31-residue window size (–16~+14) achieved an
ACC of 0.930, an MCC of 0.827, and an AUC of 0.979,
signifying greater accuracy. These results indicate that an
excessively large window could introduce irrelevant infor-
mation, while an overly short window could lead to insuf-
ficient information, thus potentially reducing the prediction
accuracy. This outcome confirms the reliability of our se-
lected window size.

Table 3. Performance of independent tests according to
different window sizes using ArUbNiRF in A. thaliana.
Window size Feature dimension ACC MCC AUC

–10∼+10 582 0.871 0.723 0.969
–13∼+13 700 0.897 0.764 0.970
–20∼+20 895 0.918 0.798 0.971
–16∼+14 767 0.930 0.827 0.979
a In the metrics column, the bold font represents the highest
value for each metric.

3.4 Comparison with Existing Methods
The preceding analyses showed that utilization of the

chi-square test to capture the sequence window, together
with integration of the Null importances + SMOTE + RF
method, yielded superior performance. Consequently, the
prediction models ArUbNiRF and HoUbNiRF were devel-
oped for A. thaliana and H. sapiens, respectively, and then
benchmarked against established models. For a fair and un-
biased comparison, ourmodel was evaluated using identical
training and independent test sets as for the other models,
with ‘*’ indicating distinct datasets. The performance met-
rics of established models were compared based on the in-
formation provided in the relevant published articles. Due
to the absence of cross-validation outcomes in the majority
of H. sapiens models, as well as the utilization of different
datasets in some models, the present comparison was based
solely on independent test results obtained with theH. sapi-
ens dataset. Table 4, Ref. [16–19], Table 5, Ref. [12–15,26]
show the results of performance comparisons between our
method and previous studies in A. thaliana and H. sapiens
datasets.

In the five-fold cross-validation of the Arabidopsis
training set, all metrics for ArUbNiRF outperformed those
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Fig. 3. ROC curves of different feature selection methods and classifiers for A. thaliana. (A–C) Five-fold cross-validation. (D–F)
independent test. ‘Ni’ in (A) and (D) is an abbreviation for Null importances. ROC, Receiver Operating Characteristic.
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Fig. 4. Performance comparison between using SMOTE and stratified sampling, and not using SMOTE and stratified sampling
in the A. thaliana dataset. (A) Five-fold cross validation. (B) Independent test. SMOTE, Synthetic Minority Over-sampling Technique.

Table 4. Comparative performance with existing models on training dataset and test dataset in A.thaliana.
Method ACC MCC AUC Sn Sp

AraUbiSite [17] 0.818/0.814 0.485/0.468 0.877/0.868 0.533/0.513 0.913/0.914
CNN_Binary [18] 0.854/0.854 -/- 0.924/0.921 0.881/0.892 0.827/0.817
CNN_Property [18] 0.843/0.855 -/- 0.913/0.914 0.849/0.887 0.836/0.821
SVM_PseAraUbi [16] 0.908/0.887 0.725/0.722 0.953/0.942 0.927/0.894 0.891/0.897
PrUb-EL [19] 0.910/0.885 0.822/0.772 0.977/0.960 0.916/0.870 0.903/0.900
ArUbNiRF 0.986/0.930 0.962/0.827 0.997/0.979 0.952/0.941 0.997/0.926
a The symbol ‘-’ represents a missing value.
b The two numbers in each cell represent the performance in the training dataset and in the test dataset.
c In the Method column, the bold font is our method, and the bold font in the metrics columns repre-
sents the highest value for each metric.

Table 5. Comparative performance with existing models on
test dataset in H. sapiens.

Method ACC MCC AUC Sn Sp

UbiProber* [13] - 0.673 0.782 - -
hCKSAAP_UbSite [14] - - 0.757 - -
ESA-UbiSite* [12] 0.920 0.480 0.950 0.660 0.940
HUbipPred [15] 0.771 0.545 0.844 0.813 0.730
Pourmirzaei et al.* [26] 0.820 0.402 - - -
HoUbNiRF 0.891 0.781 0.956 0.893 0.888
a The symbol ‘-’ represents a missing value.
b In the Method column, the bold font is our method, and the bold
font in the metrics columns represents the highest value in each met-
ric.
c The symbol ‘*’ indicates the use of different datasets.

of the other five models. The MCC result in particular was
excellent, with the score of 0.827 being a 14% improve-
ment over existingmethods. Ourmethod also demonstrated
clear advantages across various metrics in the independent
test. The values for ACC, MCC, AUC, Sn, and Sp were

Table 6. Cross-species prediction performance of UbNiRF.

Test
Training model

ArUbNiRF HoUbNiRF

A.thaliana 0.827/0.979 0.345/0.754
H.sapiens 0.103/0.564 0.781/0.956
a The two numbers in each cell represent the MCC
and AUC. The training model with the highest
AUC for each test dataset is shown in bold.

0.930, 0.827, 0.979, 0.941, and 0.926, respectively, with
all metrics outperforming the other five models. Compared
to the current best-performing model, PrUb-EL, the ACC,
MCC, AUC, Sn, and Sp metrics improved by 4.5%, 5.5%,
1.9%, 7.1%, and 2.6%, respectively. With the H. sapi-
ens dataset, HoUbNiRF was superior to existing methods
with regard to MCC, AUC, and Sn. Despite recording the
highest values for ACC and Sp, ESA-UbiSite showed an
MCC value of only 0.480. It is important to note, how-
ever, that different datasets were utilized. For the same
dataset, HoUbNiRF was significantly better across all in-
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Table 7. Predictive performance with and without PSSM based on UbNiRF in A. thaliana and H. sapiens.
Number of feature types ACC MCC AUC Sn Sp

A. thaliana
6 (with PSSM) 0.930 0.827 0.979 0.941 0.926

5 (without PSSM) 0.900 0.764 0.965 0.930 0.890

H. sapiens
6 (with PSSM) 0.891 0.781 0.956 0.893 0.888

5 (without PSSM) 0.883 0.766 0.951 0.890 0.877
a In the metrics column, the bold font represents the highest value for each metric in A.
thaliana and H. sapiens.

dicators compared to HUbipPred, which is the the current
best-performing method. In particular, the MCC of 0.781
with UbNiRFwas a remarkable 23.6% improvement. Next,
we performed a thorough comparison with established A.
thaliana and H. sapiens ubiquitination site prediction mod-
els. ArUbNiRF and HoUbNiRF exhibited notable perfor-
mance advantages, particularly in addressing the challenge
of imbalanced positive and negative samples. In addition,
we calculated the computational efficiency of the UbNiRF
model for reference by researchers who may be interested
in practical applications. The program was executed on a
Linux system running CentOS 7.2.1511, with a total RAM
of 125GB. For the A. thaliana dataset, comprising a train-
ing set of 6129 instances and a test set of 2044 instances, the
training and test times were 46.4 seconds and 5.4 seconds,
respectively. Similarly, for the H. sapiens dataset consist-
ing of a training set of 10267 instances and a test set of 5801
instances, the training and test times were 55.0 seconds and
5.1 seconds, respectively. Further details are provided in
Supplementary Table 2.

3.5 Species Cross-Testing Results and Analysis
Cross-species predictive performance was assessed

using UbNiRF for each species. As depicted in Ta-
ble 6, themodel showed superior prediction outcomes when
trained on species-matched data. However, employing dis-
tinct models for predicting ubiquitination sites in different
species within the independent test set notably diminished
the performance. This highlights the species-specific nature
of ArUbNiRF and HoUbNiRF in predicting ubiquitination
sites.

3.6 Six Types of Feature Analysis and Discussion
The results shown in Table 2 indicate that diverse

feature selection methods, alongside classifier combina-
tions, markedly influence model performance. Fig. 5 illus-
trates the proportion of selected versus not selected features
across the different feature selection methods in A. thaliana
and H. sapiens. Clear distinctions exist among the indi-
vidual feature selection methods. High-performing models
typically select six features, notably favoring the position-
specific information feature PWM (excluding position 0),
and showing the least preference for the evolution feature
PSSM. The Elastic net model performed the worst, select-
ing only AA531 features. Fig. 6 shows the relative preva-

lence of individual features within the chosen feature sets
of the different feature selection methods. AA531 exhib-
ited the highest prevalence across all methods. However,
superior-performing methods typically encompass six dis-
tinct features. Hence, to assess the necessity of incorporat-
ing six features, we omitted PSSM features and employed
the UbNiRF model to predict both A. thaliana and H. sapi-
ens, ensuring uniform feature dimensions (A. thaliana: 767;
H. sapiens: 904). Analysis of independent tests (Table 7)
revealed a scarcity of features with minimal proportion. In
the A. thaliana model, the ACC, MCC, and AUC showed
corresponding decreases from 0.930, 0.827, and 0.979 to
0.900, 0.764, and 0.965, respectively. Similarly, for the H.
sapiens model, the ACC, MCC, and AUC decreased from
0.891, 0.781, and 0.956 to 0.883, 0.766, and 0.951. Hence,
the amalgamation of multiple informative features and sub-
sequent feature selection are imperative.

For each feature, a higher final score indicates a
greater contribution to the overall prediction accuracy of
the model. Notable differences between A. thaliana and
H. sapiens were observed for the contribution of various
features to model performance, as illustrated in Fig. 7. In
the A. thaliana dataset, the sequence-based EAAC feature
showed major importance, possibly due to its direct reflec-
tion of amino acid distribution in local protein regions. In
particular, the top-ranked feature EAAC_195 (i.e., the fre-
quency of occurrence of arginine ‘R’ at positions –7~–3) is
critical for identifying specific Arabidopsis ubiquitination
sites. Conversely, in the H. sapiens dataset, the positional
feature PWM and the physical and chemical property fea-
ture AA531 hold greater importance. The PWM_19 fea-
ture (i.e., the frequency of the amino acid at the +2 posi-
tion) ranked first, indicating a significant contribution to the
prediction performance of ubiquitination sites in H. sapi-
ens, as corroborated by Fig. 2B. Although PSSM features in
both species constitute a small proportion and are not highly
ranked, their contribution to the model was undeniable. As
discussed in section 3.6, each type of feature is indispens-
able.

4. Conclusions
This study presents UbNiRF, a hybrid machine learn-

ing framework specifically crafted for predicting ubiquiti-
nation sites in both A. thaliana andH. sapiens. Our findings
demonstrate the superiority of UbNiRF over current ubiq-
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Fig. 5. Percentage of selected versus unselected features for the three feature selection methods in A. thaliana (A–C), and H.
sapiens (D–F).

Fig. 6. Percentage of individual features among selected features based on three feature selection methods in A. thaliana (A–C),
and H. sapiens (D–F).
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Fig. 7. Final score for (A) A. thaliana, and (B) H. sapiens training set features (Top 60). Different colors indicate different types of
features.

uitination site prediction models across five performance
indicators in both A. thaliana and H. sapiens, with partic-
ularly good performance for MCC. Furthermore, UbNiRF
adeptly captures windows and effectively addresses the im-
balance between positive and negative samples. These find-
ings highlight the significance of UbNiRF in reliably pre-
dicting ubiquitination sites, which should help to unravel
the mechanisms underlying ubiquitination-related biologi-
cal processes.

Cross-species testing with the ArUbNiRF and HoUb-
NiRF models validated their species-specificity for the pre-
diction of ubiquitination sites. The use of diverse models
for a single species is crucial for accurate prediction of ubiq-
uitination sites. The absence of any of the six features was
found to decrease model performance, emphasizing the im-
portance of feature fusion and selection. UbNiRF is there-
fore a valuable tool for the accurate prediction of ubiquiti-
nation sites in both A. thaliana and H. sapiens.

As more and more ubiquitination sites are identified
experimentally, some non-ubiquitination sites may in the
past have been experimentally identified as ubiquitination

sites [48], leading to inaccuratemodel results. Furthermore,
as data continues to accumulate, traditional machine learn-
ing may gradually lose its advantages in computational ef-
ficiency and predictive capabilities. Therefore, based on
large datasets, deep learning algorithms such as the long
short-term memory network [49] and convolutional neural
network [50] may avoid the effects of empirically extracted
features on predictive models. This is expected to further
improve the accuracy of the prediction model for ubiquiti-
nation sites. The problem of imbalance in the proportion
of positive and negative samples in ubiquitination sites is
often more serious in practical applications than it was in
our dataset. An appropriate data balancing method such
as autoencoder [51] or generative adversarial network [52]
should be employed in such cases. Further improvements in
the prediction of ubiquitination sites are highly significant
for gaining a better understanding of important physiologi-
cal and pathological processes in plants and humans.
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