www.fgks.org   »   [go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 439 results found. page 1 2 3 4 5 6 7 8 9 10 ... 44
     Sort: relevance | references | number | modified | created      Format: long | short | data
A361690 Number of primes in the interval [2^n, 2^n + n]. +0
0
0, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 3, 4, 0, 3, 0, 2, 1, 1, 3, 0, 0, 1, 0, 2, 1, 5, 1, 1, 2, 1, 0, 1, 2, 2, 2, 2, 1, 1, 2, 3, 0, 1, 3, 1, 0, 0, 1, 2, 2, 0, 3, 0, 2, 0, 0, 1, 3, 0, 1, 3, 0, 1, 2, 3, 1, 2, 2, 1, 1, 2, 3, 2, 4, 2, 2, 1, 2, 4, 1, 3, 0, 3, 2, 1, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..90.

FORMULA

From Alois P. Heinz, Mar 20 2023: (Start)

a(n) = pi(2^n+n) - pi(2^n-1), pi = A000720.

a(n) = = 1, 1 <= k <= n.">A143537(2^n+n,2^n-1). (End)

EXAMPLE

In the interval [2^1, 2^1 + 1] there are 2 primes (2 and 3). So a(1) = 2.

MAPLE

a:= n-> nops(select(isprime, [$2^n..2^n+n])):

seq(a(n), n=0..100); # Alois P. Heinz, Mar 20 2023

MATHEMATICA

Array[PrimePi[2^# + #] - PrimePi[2^# - 1] &, 50, 0] (* Michael De Vlieger, Mar 27 2023 *)

PROG

(PARI) a(n)=#primes([2^n, 2^n+n])

CROSSREFS

Cf. A000720, A036378, = 1, 1 <= k <= n.">A143537.

KEYWORD

nonn,new

AUTHOR

Jean-Marc Rebert, Mar 20 2023

STATUS

approved

A361766 Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n/A(-x))^(n+2). +0
0
1, 1, 2, 5, 12, 27, 57, 123, 280, 666, 1614, 3955, 9733, 23949, 58967, 145844, 363137, 910339, 2295192, 5811070, 14754567, 37542078, 95715596, 244567665, 626388406, 1608131393, 4137707994, 10667045757, 27546269363, 71241831762, 184508259405, 478501423792 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds for all y as a formal power series in x.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..300

FORMULA

G.f. A(x) = Sum_{n>=0} a(n)*x^n

(1) 0 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) - (-x)^n)^(n+2) / A(x)^n.

(2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-3)) * A(x)^n / (1 - (-x)^n*A(x))^(n-2).

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 27*x^5 + 57*x^6 + 123*x^7 + 280*x^8 + 666*x^9 + 1614*x^10 + 3955*x^11 + 9733*x^12 + ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);

A[#A] = -polcoeff( sum(m=-#A, #A, (-x)^m * (1 - (-x)^m/Ser(A))^(m+2) ), #A-3)); A[n+1]}

for(n=0, 35, print1(a(n), ", "))

CROSSREFS

Cf. A358952, A355866.

KEYWORD

nonn,new

AUTHOR

Paul D. Hanna, Mar 26 2023

STATUS

approved

A361284 Number of unordered triples of self-avoiding paths whose sets of nodes are disjoint subsets of a set of n points on a circle; one-node paths are not allowed. +0
0
0, 0, 0, 0, 0, 15, 420, 7140, 95760, 1116990, 11891880, 118776900, 1132182480, 10415938533, 93207174060, 815777235000, 7011723045600, 59364660734172, 496238466573648, 4102968354298200, 33602671702168800, 272909132004479355, 2200084921469527092, 17618774018675345340, 140252152286127750000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Although each path is self-avoiding, the different paths are allowed to intersect.

LINKS

Table of n, a(n) for n=1..25.

Ivaylo Kortezov, Sets of Paths between Vertices of a Polygon, Mathematics Competitions, Vol. 35 (2022), No. 2, ISSN:1031-7503, pp. 35-43.

FORMULA

a(n) = (n*(n-1)*(n-2)/384)*(7^(n-3) - 3*5^(n-3) + 3^(n-2) - 1).

E.g.f.: x^3*exp(x)*(exp(2*x) - 1)^3/384. - Andrew Howroyd, Mar 07 2023

EXAMPLE

a(7) = A359404(7) + 7*A359404(6) = 315 + 7*15 = 420 since either all the 7 points are used or one is not.

PROG

(PARI) a(n) = {(n*(n-1)*(n-2)/384) * (7^(n-3) - 3*5^(n-3) + 3^(n-2) - 1)} \\ Andrew Howroyd, Mar 07 2023

CROSSREFS

If there is only one path, we get A261064. If there is are two paths, we get A360716. If all n points need to be used, we get A359404.

KEYWORD

nonn,easy,new

AUTHOR

Ivaylo Kortezov, Mar 07 2023

STATUS

approved

A361267 Numbers k such that prime(k+2) - prime(k) = 6. +0
0
3, 4, 5, 6, 7, 12, 13, 19, 25, 26, 27, 28, 43, 44, 48, 49, 59, 63, 64, 69, 88, 89, 112, 116, 142, 143, 147, 148, 151, 152, 181, 182, 206, 211, 212, 224, 225, 229, 234, 235, 236, 253, 261, 264, 276, 285, 286, 287, 301, 302, 313, 314, 322, 332, 336, 352, 384, 389 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..58.

Eric Weisstein's World of Mathematics, Prime Triplet

Wikipedia, Prime triplet

FORMULA

a(n) = A000720(A007529(n)). - Alois P. Heinz, Mar 06 2023

MAPLE

q:= n-> is(ithprime(n+2)-ithprime(n)=6):

select(q, [$1..400])[]; # Alois P. Heinz, Mar 06 2023

MATHEMATICA

Select[Range[400], Prime[# + 2] - Prime[#] == 6 &] (* Michael De Vlieger, Mar 06 2023 *)

PROG

(Clojure)

(defn next-prime [n]

(if (= n 2)

3

(let [m (+ n 2)

t (-> n Math/sqrt int (+ 2))]

(if (some #(zero? (mod m %)) (range 2 t))

(next-prime m)

m))))

(def primes (lazy-seq (iterate next-prime 2)))

(defn triplet-primes-positions [n]

(->> primes

(take n)

(partition 3 1)

(map list (range))

(filter (fn [[i xs]] (= 6 (- (last xs) (first xs)))))

(map #(-> % first inc))))

(println (triplet-primes-positions 2000))

CROSSREFS

Cf. A000040, A000720, A007529, A022004, A022005.

KEYWORD

nonn,new

AUTHOR

Atabey Kaygun, Mar 06 2023

STATUS

approved

A361260 Maximum latitude in degrees of spherical Mercator projection with an aspect ratio of one, arctan(sinh(Pi))*180/Pi. +0
0
8, 5, 0, 5, 1, 1, 2, 8, 7, 7, 9, 8, 0, 6, 5, 9, 2, 3, 7, 7, 7, 9, 6, 7, 1, 5, 5, 2, 1, 9, 2, 4, 6, 9, 2, 0, 6, 6, 9, 8, 2, 5, 9, 1, 2, 6, 8, 4, 2, 0, 6, 8, 8, 4, 0, 5, 7, 6, 2, 4, 5, 9, 3, 9, 1, 5, 9, 4, 5, 8, 9, 3, 7, 0, 0, 8, 3, 4, 6, 7, 3, 1, 2, 7, 1, 7, 4, 3, 6, 3, 7, 9, 0, 5, 7, 6, 4, 6, 7, 8, 7, 3, 1, 4, 5, 0, 3, 1, 6, 1, 1, 4, 9, 0, 2, 0, 8, 2, 9, 1, 5, 9, 8, 2, 3, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Widely used as a cutoff line of web maps which use the web Mercator projection.

LINKS

Table of n, a(n) for n=2..128.

FORMULA

Equals arctan(sinh(Pi))*180/Pi.

Equals 360/Pi*arctan(exp(Pi)) - 90.

EXAMPLE

85.05112877980659237779671552192469206698259126842068...

MATHEMATICA

RealDigits[ArcTan[Sinh[Pi]]/Degree, 10, 100][[1]] (* Amiram Eldar, Mar 06 2023 *)

PROG

(PARI) atan(sinh(Pi))*180/Pi \\ Michel Marcus, Mar 06 2023

CROSSREFS

Cf. A334401.

KEYWORD

nonn,cons,new

AUTHOR

Donghwi Park, Mar 06 2023

STATUS

approved

A361256 Smallest base-n strong Fermat pseudoprime with n distinct prime factors. +0
0
2047, 8911, 129921, 381347461, 333515107081, 37388680793101, 713808066913201, 665242007427361, 179042026797485691841, 8915864307267517099501, 331537694571170093744101, 2359851544225139066759651401, 17890806687914532842449765082011 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Main diagonal of A360184.

LINKS

Table of n, a(n) for n=2..14.

PROG

(PARI)

strong_check(p, base, e, r) = my(tv=valuation(p-1, 2)); tv > e && Mod(base, p)^((p-1)>>(tv-e)) == r;

strong_fermat_psp(A, B, k, base) = A=max(A, vecprod(primes(k))); (f(m, l, lo, k, e, r) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, forstep(p=lift(1/Mod(m, l)), hi, l, if(isprimepower(p) && gcd(m*base, p) == 1 && strong_check(p, base, e, r), my(n=m*p); if(n >= A && (n-1) % znorder(Mod(base, p)) == 0, listput(list, n)))), forprime(p=lo, hi, base%p == 0 && next; strong_check(p, base, e, r) || next; my(z=znorder(Mod(base, p))); gcd(m, z) == 1 || next; my(q=p, v=m*p); while(v <= B, list=concat(list, f(v, lcm(l, z), p+1, k-1, e, r)); q *= p; Mod(base, q)^z == 1 || break; v *= p))); list); my(res=f(1, 1, 2, k, 0, 1)); for(v=0, logint(B, 2), res=concat(res, f(1, 1, 2, k, v, -1))); vecsort(Set(res));

a(n) = if(n < 2, return()); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=strong_fermat_psp(x, y, n, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x);

CROSSREFS

Cf. A001262, A180065, A271874, A360184.

KEYWORD

nonn,new

AUTHOR

Daniel Suteu, Mar 06 2023

STATUS

approved

A361517 The value of n for which the two-player impartial {0,1}-Toggle game on a generalized Petersen graph GP(n,2) with a (1,0)-weight assignment is a next-player winning game. +0
0
3, 4, 5, 11, 17, 27, 35, 37, 49, 59, 69, 81, 91, 103, 115, 123, 135, 137, 167, 175, 189, 199, 207, 287, 295, 307, 361, 1051, 2507, 2757, 2917, 3057, 3081, 7255, 7361, 7871, 16173 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

The two-player impartial {0,1}-Toggle game is played on a simple connected graph G where each vertex is assigned an initial weight of 0 or 1.

A Toggle move consists of selecting a vertex v and switching its weight as well as the weights of each of its neighbors. This move is only legal provided the weight of vertex v is 1 and the total sum of the vertex weights decreases.

In the special case G=GP(n,2), a (1,0)-weight assignment is one in which each vertex of the outer polygon is assigned weight 1 and each vertex of the inner polygon(s) is assigned weight 0.

REFERENCES

E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1, CRC Press, 2001.

LINKS

Table of n, a(n) for n=3..39.

E. Fiorini, M. Lind, A. Woldar, and T. W. H. Wong, Characterizing Winning Positions in the Impartial Two-Player Pebbling Game on Complete Graphs, Journal of Integer Sequences, 24(6), 2021.

Katherine Levandosky, CGSuite Program.

EXAMPLE

For n = 3, the {0,1}-Toggle game on GP(3,2) with a (1,0)-weight assignment is a next-player winning game.

For n = 5, the {0,1}-Toggle game on GP(5,2) with a (1,0)-weight assignment is a next-player winning game.

PROG

(CGSuite) # See Levandosky link

CROSSREFS

Cf. A071426, A340631, A346197, A346401, A346637.

KEYWORD

nonn,more,new

AUTHOR

Eugene Fiorini, Maxwell Fogler, Katherine Levandosky, Bryan Lu, Jacob Porter and Andrew Woldar, Mar 14 2023

STATUS

approved

A361759 Sum of b(i) where the first b terms are all k digits of n, followed by Keith-like sum of the previous k digits until b(i) >= n +0
0
34, 33, 32, 44, 33, 40, 47, 54, 61, 39, 68, 75, 66, 86, 64, 76, 88, 100, 66, 73, 102, 96, 129, 99, 119, 139, 96, 108, 120, 132, 136, 117, 150, 112, 132, 152, 172, 116, 128, 140, 170, 138, 171, 204, 145, 165, 185, 205, 225, 148, 204, 159, 192, 225, 258, 178 (list; graph; refs; listen; history; text; internal format)
OFFSET

10,1

COMMENTS

Similar to the concept of (but not limited to) Keith numbers, form a sequence {b(i)} whose initial terms are the t digits of n, later terms given by the rule that b(i) = sum of t previous terms, until b(i) >= n.

Originally, the concept of Keith numbers did not include n < 10. This sequence follows this rule; however, a(n) is mathematically possible for n < 10: a(n) = n.

LINKS

Table of n, a(n) for n=10..65.

EXAMPLE

For n = 15, the sequence is {1, 5, 6, 11, 17} (the first two terms being each of the two digits of 15 and the sequence stops at 17 because this is the first number that is at least n). So, a(15) = 1 + 5 + 6 + 11 + 17 = 40.

PROG

(Ruby)

def a(n)

digits = n.to_s.chars.map(&:to_i)

countDigits = digits.size

until digits.last >= n do

sum = digits.last(countDigits).sum

digits.push(sum)

end

return digits.sum # Terms of this OEIS sequence

end # Diego V. G. Silva, Mar 24 2023

(PARI) a(n)={my(v=digits(n), s=vecsum(v)); while(v[#v] < n, v=concat(v[2..#v], vecsum(v)); s+=v[#v]); s} \\ Andrew Howroyd, Mar 23 2023

CROSSREFS

Cf. A007629.

KEYWORD

nonn,base,new

AUTHOR

Diego V. G. Silva, Mar 23 2023

STATUS

approved

A361579 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n. +0
0
1, 0, 1, 0, 3, 1, 0, 51, 12, 1, 0, 3614, 447, 34, 1, 0, 991930, 53675, 2885, 85, 1, 0, 1051469032, 21514470, 741455, 16665, 201, 1, 0, 4366988803688, 30405612790, 642187105, 9816380, 90678, 462, 1, 0, 71895397383029040, 160152273169644, 2024633081100, 19625842425, 122330544, 474138, 1044, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Here, a source-like component of a digraph D is a strongly connected component of D that corresponds to a node of in-degree 0 in the condensation of D.

LINKS

Table of n, a(n) for n=0..44.

E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.

R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.

Wikipedia, Strongly connected component

EXAMPLE

Triangle begins:

1;

0, 1;

0, 3, 1;

0, 51, 12, 1;

0, 3614, 447, 34, 1;

0, 991930, 53675, 2885, 85, 1;

...

MATHEMATICA

nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];

ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}]; Table[B[n], {n, 0, nn}] CoefficientList[Series[ggfz[Exp[(u - 1) s[x]]]/ggfz[Exp[- s[x]]], {z, 0, nn}], {z u}] // Grid

CROSSREFS

Cf. A003028 (column k=1), A053763 (row sums).

KEYWORD

nonn,tabl,new

AUTHOR

Geoffrey Critzer, Mar 16 2023

STATUS

approved

A361723 Numbers k such that there are 18 primes between 100*k and 100*k + 99. +0
0
1228537713709, 23352869714018, 28703237474266, 144785865481702, 161394923966449, 168975708209638, 174748809066898, 207552241231357, 278215179205531, 312303328909720, 592248982143877, 812939886634531, 939100782752014, 983930290209021, 1111161494544274 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

There are 948729 possible patterns for centuries having 18 primes.

LINKS

Brian Kehrig, Table of n, a(n) for n = 1..19

EXAMPLE

1228537713709 is in the sequence because there are 18 primes between 122853771370900 and 122853771370999: 122853771370900 + x, where x is one of (1, 3, 7, 19, 21, 27, 31, 33, 37, 49, 51, 61, 69, 73, 87, 91, 97, or 99).

PROG

(PARI) isok(k) = sum(i=0, 99, isprime(100*k + i)) == 18; \\ Michel Marcus, Mar 23 2023

CROSSREFS

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).

Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes).

KEYWORD

nonn,new

AUTHOR

Brian Kehrig, Mar 21 2023

STATUS

approved

page 1 2 3 4 5 6 7 8 9 10 ... 44

Search completed in 0.121 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 27 08:32 EDT 2023. Contains 361555 sequences. (Running on oeis4.)