www.fgks.org   »   [go: up one dir, main page]

Figure 3. BIBE 45854, articulated series of nine mid and posterior cervical vertebrae of a large, osteologically mature Alamosaurus sanjuanensis. Series is estimated to represent the sixth to fourteenth cervical vertebrae. A, composite photo-mosaic of the cervical series in right lateral view; identification of each vertebra indicated by C6 to C14, respectively. B, line drawing based on the photo-mosaic in A. C, line drawing in B with labels shown and vertebral fossae indicated by solid grey fill; cross-hatching represents broken bone surfaces and reconstructive material. Abbreviations: C, cervical vertebra; cdf, centrodiapophyseal fossa; clf, centrum lateral fossa; pocdf, postzygapophyseal centrodiapophyseal fossa; prcdf, prezygapophyseal centrodiapophyseal fossa; prcdf1, dorsal prezygapophyseal centrodiapophyseal fossa; prcdf2, ventral prezygapophyseal centrodiapophyseal fossa; sdf, spinodiapophyseal fossa; spof, spinopostzygapophyseal fossa; sprf, spinoprezygapophyseal fossa. (Tykoski and Fiorillo 2016)

Have you been reading Justin Tweet’s series, “Your Friends the Titanosaurs“, at his awesomely-named blog, Equatorial Minnesota? If not, get on it. He’s been running the series since June, 2018, so this notice is only somewhat grotesquely overdue. The latest installment, on Alamosaurus from Texas and Mexico, is phenomenal. I have never seen another summary or review that pulled together so much of the relevant literature and explained it all so well. Seriously, that blog post deserves to be a review paper; it could be submitted pretty much as-is, although it would be even better with his two other Alamosaurus posts integrated (this one, and this one). It’s great work, is what I’m saying, and it needs to be acknowledged.

In particular, I was struck by the note by Anonymous in 1941 on the discovery of a cervical vertebra 1.2 meters long. I’d never heard of that ref, and I’ve never seen that vert, but at 120cm it would be in the top 7 longest cervical vertebrae on the planet (see the latest version of the list in this post), narrowly beating out the 118-cm cervical of Puertasaurus. In fairness, the preserved cervical of Puertasaurus is probably a posterior one, and more anterior cervicals might have been longer. Then again, in the big Alamosaurus neck the longest verts are pretty darned posterior, so…we need more Puertasaurus.

EDIT a few hours later: Thanks to the kind offices of Justin Tweet, I’ve now seen Anonymous (1941), and the exact wording is, “A single vertebra, or neck joint bone, is three feet across, only two inches less than four feet long, and in its present fossilized state weighs 600 pounds.” ‘Two inches less than four feet long’ is 46 inches or a hair under 117cm, which puts the supposed giant cervical just behind Puertasaurus after all, but still firmly in the top 10. And depending on how one interprets the passage in Anonymous (1941), it might not have been any bigger than BIBE 45854–see this comment for details.

Big cervical showdown. From the top left: BYU 9024, originally referred to Supersaurus but more likely representing a giant Barosaurus (137cm); the single available cervical of Puertasaurus (118cm); a world-record giraffe neck (2.4m); Alamosaurus referred cervical series BIBE 45854, longest centra are ~81cm; Sauroposeidon holotype OMNH 53062, longest centrum is 125cm. This image makes it very clear that whatever Sauroposeidon was doing, it was a way different thing from Alamosaurus.

Crucially, the longest vertebrae in the BIBE 45854 series are about 80 or 81 cm long, which means that a 1.2-meter cervical would be half again as large. That is a pretty staggering thought, and that individual of Alamosaurus–assuming it was the same taxon as BIBE 45854, and not some other, longer-necked critter–would definitely be a contender for the largest sauropod of all time.

Illustrations here are of the big Alamosaurus cervical series from Big Bend, which was comprehensively described by Ron Tykoski and Tony Fiorillo in 2016, and which we have covered in these previous posts:

References

  • Anonymous. 1941. Find dinosaur neck bone nearly four feet long. The Science News-Letter 39(1):6–7.
  • Tykoski, R.S. and Fiorillo, A.R. 2016. An articulated cervical series of Alamosaurus sanjuanensis Gilmore, 1922 (Dinosauria, Sauropoda) from Texas: new perspective on the relationships of North America’s last giant sauropod. Journal of Systematic Palaeontology 15(5):339-364.

I got a wonderful surprise a couple of nights ago!

Supersaurus referred scapulocoracoid BYU 12962 back when it was still in the ground. Rough composite assembled from screenshots of the video below, from about 23m17s.

I found myself wondering where the widely quoted (and ludicrous) mass estimate of 180 tons for Ultrasauros came from, and went googling for it. That took me to a blog-post by Brian Switek, which linked to a Google Books scan of what turned out to be my own chapter on the history of sauropod research (Taylor 2010) in the Geological Society’s volume Dinosaurs and Other Extinct Saurians: a Historical Perspective. So it turns out that I once knew the answer to that question. My chapter references McGowan (1991:118), which says:

Jim Jensen’s (1985) Ultrasaurus (“beyond lizard”), found in Colorado in 1979, had an estimated length of more than ninety-eight feet (30 m), compared with seventy-four feet (22.5 m) for the Berlin specimen of Brachiosaurus. This is a length increase of 1.32, so the weight increase would be (1.32)^3 = 2.3, giving an estimated weight of almost 180 tons.

[As I noted in my 2010 chapter, that’s based on Colbert’s (1962) equally silly estimate of 78 tonnes for MB.R.2181 (formerly HMN S II), the Girafatitan brancai paralectotype.]

So that’s a funny story and a mystery solved, but where it gets really good is that as I was grubbing around in the search results that led me to that conclusion, I stumbled on Episode 21 of the I Know Dino podcast, which contains a glorious embedded video: The Great Dinosaur Discovery, a 1976 film by BYU about Jensen’s work at quarries including Dry Mesa, and heavily featuring bones of what would become Supersaurus!

It’s very well worth 25 minutes of your time, despite the horrible 1970s documentary music, and brings actual new information to the table.

Some of the highlights include:

— Right from the start, seeing Jensen himself: someone I’ve been sort of familiar with from the literature, but never really imagined as being an actual human being.

— From about two minutes in, Jensen seems be uncovering bones in dry sand, rather like kids in a palaeo pits at some museums. It takes about one minute to uncover a nice tibia. Is it ever really that easy? Is the Dry Mesa quarry that easy to work?

— Putting faces to the important names of Vivian and Eddie Jones, the uranium prospectors who first led Jensen to several of his important sites, and after whom the species Supersaurus vivianae and Dystylosaurus edwini were named.

Vivian “Supersaurus” Jones and Eddie “Dystylosaurus” Jones in the field [from about 4m41s in the video]

— From about 13m30s onwards, we see what I think must be the Supersaurus pelvis that’s now on display at the North American Museum of Ancient Life. (It doesn’t actually look all that big, in the scheme of things.)

— From 16m50s onwards, things start to get real, with the uncovering (real or re-enacted) of the first Supersaurus scapulocoracoid: that is, the one that Jensen referred to in his 1985 paper as “first specimen”, but which in the end he did not designate as the holtotype. This bone, once accessioned, became BYU 12962 (but Jensen refers to it in his papers as BYU 5501).

The first appearance in the film of the Supersaurus scap BYU 12962 fully unconvered [18m11s]. You can easily recognise it as the bone that Jensen posed with from the lobe-shaped acromion process.

— Within seconds of our seeing the scap, Jensen decides the best thing to do is illustrate how it’s “like a sidewalk” by walking up and down on it. Seriously.

Oh, Jim.

— At about 19m30s, we see what is probably the big Barosaurus vertebra BYU 9024 whose identity Jensen changed his mind about a couple of times. Unfortunately, the film quality is very poor here, and you can’t make much out.

— From 20 minutes in, the video shows comparative skeletal reconstructions of Brontosaurus (clearly from Marsh 1891), “Brachiosaurus” [i.e. Giraffatitan] (clearly from Janensch 1950) and Supersaurus. The fascinating thing is that the latter is restored as a brachiosaurid — in fact, as a scaled-up Janensch-1950 Giraffatitan with some tweaks only to the head and anterior neck. So it seems Jensen thought at this time that he’d found a giant brachiosaur, not a diplodocid. (Note that this film was made three years before the Ultrasaurus scapulocoracoid was discovered in 1979, so the presumed brachiosaurid identity cannot have rested in that.)

Brontosaurus (yellow), Brachiosaurus (blue), and Supersaurus (white) — which is restored as a brachiosaurid.

— During this section, a fascinating section of narration says “The animal found here is so much larger than anything ever dreamed of, the press, for lack of scientific name, called it a Supersaurus.” If this is legit, then it seems Jensen is not guilty of coining this dumb name. It’s the first I’ve heard of it: I wonder if anyone can corroborate?

— As 22m06s we are told: “It was an AP newsman who broke the story to the world. Time and Life followed. Reader’s Digest ran the story. And National Geographic, one of the quarry sponsors, began an article.” I would love to get hold of the AP, Time, Life and National Geographic articles. Can anyone help? It seems that all these organisations have archives online, but they all suffer from problems:

Here’s that scap again, in the process of being excavated. [22:05]

— As 22m40s, Jack McIntosh turns up to give an expert opinion. I don’t know how much film of him there is out there, but it’s nice that we have something here.

Everyone’s favourite avocational sauropod specialist, Jack McIntosh.

— At 23:17, we get our best look at the scap, with a long, slow pan that shows the whole thing. (That’s the sequence that I made the composite from, that we started this whole post with.)

All in all, it’s a facinating insight into a time when the Dry Mesa quarry was new and exciting, when it was thought to contain only a single giant sauropod, when that animal was known only informally as “Supersaurus” having been so nicknamed by the media, and when it was (it seems) thought to be brachiosaurid. Take 25 minutes, treat yourself, and watch it.

Update (the next day)

The Wikipedia entry on Jim Jensen says that “In 1973, Brigham Young University cooperated with producer Steve Linton and director John Linton in order to produce The Great Dinosaur Discovery, a 1-hour-long color documentary showing Jensen’s on-site finds in Dry Mesa. […] the full-length documentary was reduced to a 24-minute-long mini-film which started airing on American television channels throughout the USA as of 1976.”

Can anyone confirm that the original date was 1973, and not 1976 as given on the short version that’s linked above?

And, more important, does anyone have access to the full-hour version?

 

References

 

In part 2, we concluded that BYU 9024, the large cervical vertebra assigned by Jensen to the Supersaurus holotype individual, is in fact a perfectly well-behaved Barosaurus cervical — just a much, much bigger one than we’ve been used to seeing. Although we heavily disclaimered our size estimates, Andrea Cau quite rightly commented:

Thanks for the disclaimer: unfortunately, it is going to be ignored by the Internet.
[…]
So, my boring-conservative mind asks: what is the smallest size that is a valid alternative explanation? I mean, if we combine all possible factors (position misinterpretation, deformation effects, allometry and so on) what could be the smallest plausible size? Only the latter should be taken as “the size” of this animal, pending more material.

Andrea is right that we should take a moment to think a bit more about the possible size implications of BYU 9024.

BYU 9024, the huge cervical vertebra assigned to Supersaurus but which is actually Barosaurus, in left dorsolateral view, lying on its right side with anterior to the right. In front of it, for scale, a Diplodocus cervical from about the same serial position. (Note that the Diplodocus vertebra here appears proportionally bigger than it really is, due to being much closer to the camera.)

What we know for sure is that the vertebra is 1380 mm long (give or take a centimeter or two due to the difficulties of measuring big complex bones in an objective way, something we should write about separately some time.)

We are 99% certain that the bone is a Barosaurus cervical.

We are much less certain about the serial position of that bone. When we were at BYU, we concluded that it most resembled C9 of the AMNH specimen, but I honestly can’t remember the detail of our reasoning (can you, Matt?) and our scanned notebooks don’t offer much in the way of help. We know from McIntosh (2005) that the neural spine of C8 is unsplit and that C9 has the first hint of a cleft.  How does that compare with BYU 9024? Here’s a photo to help you decide:

BYU 9024, large cervical vertebra in left dorsolateral view, inverted (i.e. with dorsal towards us and anterior to the right). Note the shallow cleft between metapophyses at bottom left.

And here’s an anaglyph, to help you appreciate the 3D structure. (Don’t have any red-cyan glasses? GET SOME!)

BYU 9024, oriented similarly to the previous photograph.

The morphology around the crown of the neural spine is difficult to interpret, partly just because the fossil itself is a bit smashed up and partly because the bone, the (minimal) restoration and the matrix are such similar colours. But here’s my best attempt to draw out what’s happening, zoomed in from last non-anaglyph photo:

As you start at the prezygapophyses and work backwards, the SPRLs fade out some way before you reach the crown, and disappear at or before what appears to be an ossified midline ligament scar projecting anteriorly from very near the top of the vertebra. Posterior to that are two small, tab-like metapophyses that appear almost like separate osteological features.

Now this is a very strange arrangement. Nothing like it occurs in any of the cervicals of Diplodocus, where all the way from C3 back to the last cervical, the SPRLs run continuously all the way up from the prezygs to the metapophyses:

Hatcher (1901:plate V). Diplodocus carnegii holotype CM 84, cervical vertebra 2-15 in anterior view.

What we’d love to do of course is compare this morphology with a similar plate of the AMNH Barosaurus cervicals in anterior view, but no such plate exists and no such photos can be taken due to the ongoing entombment of the vertebrae. So we’re reduced to feeding on scraps. McIntosh (2005:47) says:

The neural spine of cervical 8 is flat across the top, and that of cervical 9 shows the first trace of a divided spine (Fig. 2.2A). This division increases gradually in sequential vertebrae, being moderately developed in cervicals 12 and 13, and as a deep V-shape in cervicals 15 and 16.

Sadly, McIntosh illustrates only cervicals 8 and 13 in anterior view: Fig 2.2A does not illustrate C9, as the text implies. And neither of the illustrated vertebrae much resembles what we see in BYU 9024.

So while in 2016 we interpreted BYU 9024 is having “the first trace of a divided spine”, we do hold open the possibility that what we’re seeing is a vertebra in which the spine bifurcation is a little more developed than we’d realised, but with strange morphology that does not correspond closely to any well-preserved vertebra we’ve seen of any sauropod. (Most Barosaurus cervicals are either crushed and damaged; the well preserved ones outside of the AMNH walkway tomb are from a more anterior part of the neck where there is no bifurcation of the spine.)

There is one more possibility. Here is a truly lovely (privately owned) Barosaurus cervical in the prep lab at the North American Museum of Ancient Life (NAMAL):

Uncrushed Barosaurus cervical vertebra, serial position uncertain, in the NAMAL prep lab.

In this blessedly undistorted vertebra, we can see that the summit of the neural spine is flared, with laterally projecting laminae that are likely homologous with metapophyses. (The vertebra is symmetrical in this respect.) Might it be possible that the tab-like metapophyses of BYU 9024 were like this in life, but have been folded upwards post-mortem?

All of this leaves the serial position of the vertebra far from certain. But what we can do is compare it with the lengths of all the known AMNH Barosaurus vertebrae. Columns 1 and 2 in the table below show the serial position and total length of the AMNH cervicals. Column 3 shows the factor by which the 1370 mm length of BYU 9024 exceeds the relevant cervical, and column 4 shows the corresponding estimate for total neck length, based on 8.5 m (Wedel 2007:206–207) for AMNH Barosaurus.

Cv# Length (mm) BYU 9224 ratio BYU 9024 neck length
8 618 2.217 18.84
9 685 2.000 17.00
10 737 1.859 15.80
11 775 1.768 15.03
12 813 1.685 14.32
13 850 1.612 13.70
14 865 1.584 13.46
15 840 1.631 13.86
16 750 1.827 15.53

So to finally answer Andrea’s question from waaay back at the start of this post, the smallest possible interpretation of the BYU 9024 animal gives it a neck 1.584 times as long as that of the AMNH individual, which comes out around 13.5 m (and implies a total length of maybe 43 m).

But I don’t at all think that’s right: I am confident that the serial position of BYU 9024 is some way anterior to C14, likely no further back than C11 — which gives us a neck at least 15 m long (and a total length of maybe 48 m and a mass of maybe 12 × 1.768^3 = 66 tonnes).

 

References

  • Hatcher, Jonathan B. 1901. Diplodocus (Marsh): its osteology, taxonomy and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:1-63 and plates I-XIII.
  • McIntosh, John S. 2005. The genus Barosaurus Marsh (Sauropoda, Diplodocidae). pp. 38-77 in: Virginia Tidwell and Ken Carpenter (eds.), Thunder Lizards: the Sauropodomorph Dinosaurs. Indiana University Press, Bloomington, Indiana. 495 pp.
  • Wedel, Mathew J. 2007. Postcranial pneumaticity in dinosaurs and the origin of the avian lung. Ph.D dissertation, Integrative Biology, University of California, Berkeley, CA. Advisors: Kevin Padian and Bill Clemens. 290 pages.

In a comment on the last post, Mike wrote, “perhaps the pneumaticity was intially a size-related feature that merely failed to get unevolved when rebbachisaurs became smaller”.

Caudal pneumaticity in saltasaurines. Cerda et al. (2012: fig. 1).

Or maybe pneumaticity got even more extreme as rebbachisaurids got smaller, which apparently happened with saltasaurines  (see Cerda et al. 2012 and this post).

I think there is probably no scale at which pneumaticity isn’t useful. Like, we see a saltasaurine the size of a big horse and think, “Why does it need to be so pneumatic?”, as if it isn’t still one or two orders of magnitude more massive than an ostrich or an eagle, both of which are hyperpneumatic even though only one of them flies. Even parakeets and hummingbirds have postcranial pneumaticity.

Micro CT of a female Anna’s hummingbird. The black tube in the middle of the neck is the supramedullary airway. Little black dots in the tiny cervical centra are air spaces.

We’re coming around to the idea that the proper way to state the dinosaur size question is, “Why are mammals so lousy at being big on land?” Similarly, the proper way to state the pneumaticity question is probably not “Why is small sauropod X so pneumatic?”, but rather “Why aren’t some of the bigger sauropods even more pneumatic?”

Another thought: we tend to think of saltsaurines as being crazy pneumatic because they pneumatized their limb girdles and caudal chevrons (see Zurriaguz et al. 2017). Those pneumatic foramina are pretty subtle – maybe their apparent absence in other sauropod clades is just because we haven’t looked hard enough. Lots of things have turned out to be pneumatic that weren’t at first glance – see Yates et al. (2012) on basal sauropodomorphs and Wedel and Taylor (2013b) on sauropod tails, for example.

Back of the skull of a bighorn sheep, showing the air spaces inside one of the broken horncores.

Or, even more excitingly, if the absence is genuine, maybe that tells us something about sauropod biomechanics after all. Maybe if you’re an apatosaurine or a giant brachiosaurid, you actually can’t afford to pneumatize your coracoid, for example. One of my blind spots is a naive faith that any element can be pneumatized without penalty, which I believe mostly on the strength of the pneumatic horncores of bison and bighorn sheep. But AFAIK sauropod girdle elements don’t have big marrow cavities for pneumaticity to expand into. Pneumatization of sauropod limb girdles might have come at a real biomechanical cost, and therefore might have only been available to fairly small animals. (And yeah, Sander et al. 2014 found a pneumatic cavity in an Alamosaurus pubis, but it’s not a very big cavity.)

As I flagged in the title, this is noodling, not a finding, certainly not certainty. Just an airhead thinking about air. The comment thread is open, come join me.

References

An important paper is out today: Carpenter (2018) names Maraapunisaurus, a new genus to contain the species “Amphicoelias fragillimus, on the basis that it’s actually a rebbachisaurid rather than being closely related to the type species Amphicoelias altus.

Carpenter 2018: Figure 5. Comparison of the neural spine of Maraapunisaurus fragillimus restored as a rebbachisaurid (A), and the dorsal vertebrae of Rebbachisaurus garasbae (B), and Histriasaurus boscarollii (C). Increments on scale bars = 10 cm.

And it’s a compelling idea, as the illustration above shows. The specimen (AMNH FR 5777) has the distinctive dorsolaterally inclined lateral processes of a rebbachisaur, as implied by the inclined laminae meeting at the base of the SPOLs, and famously has the very excavated and highly laminar structure found in rebbachisaurs — hence the species name fragillimus.

Ken’s paper gives us more historical detail than we’ve ever had before on this enigmatic and controversial specimen, including extensive background to the excavations. The basics of that history will be familiar to long-time readers, but in a nutshell, E. D. Cope excavated the partial neural arch of single stupendous dorsal vertebra, very briefly described it and illustrated it (Cope 1878), and then … somehow lost it. No-one knows how or where it went missing, though Carpenter offers some informed speculation. Most likely, given the primitive stabilisation methods of the day, it simply crumbled to dust on the journey east.

Carpenter 2018: Frontispiece. E. D. Cope, the discoverer of AMNH FR 5777, drawn to scale with the specimen itself.

Cope himself referred the vertebra to his own existing sauropod genus Amphicoelias — basically because that was the only diplodocoid he’d named — and there it has stayed, more or less unchallenged ever since. Because everyone knows Amphicoelias (based on the type species A. altus) is sort of like Diplodocus(*), everyone who’s tried to reconstruct the size of the AMNH FR 5777 animal has done so by analogy with Diplodocus — including Carpenter himself in 2006, Woodruff and Foster (2014) and of course my own blog-post (Taylor 2010).

(*) Actually, it’s not; but that’s been conventional wisdom.

Ken argues, convincingly to my mind, that Woodruff and Foster (2014) were mistaken in attributing the great size of the specimen to a typo in Cope’s description, and that it really was as big as described. And he argues for a rebbachisaurid identity based on the fragility of the construction, the lamination of the neural spine, the extensive pneumaticity, the sheetlike SDL, the height of the postzygapophyses above the centrum, the dorsolateral orientation of the transverse processes, and other features of the laminae. Again, I find this persuasive (and said so in my peer-review of the manuscript).

Carpenter 2018: Figure 3. Drawing made by E.D. Cope of the holotype of Maraapunisaurus fragillimus (Cope, 1878f) with parts labeled. “Pneumatic chambers*” indicate the pneumatic cavities dorsolateral of the neural canal, a feature also seen in several rebbachisaurids. Terminology from Wilson (1999, 2011) and Wilson and others (2011).

If AMNH FR 5777 is indeed a rebbachisaur, then it can’t be a species of Amphicoelias, whose type species is not part of that clade. Accordingly, Ken gives it a new generic name in this paper, Maraapunisaurus, meaning “huge reptile” based on Maraapuni, the Southern Ute for “huge” — a name arrived at in consultation with the Southern Ute Cultural Department, Ignacio, Colorado.

How surprising is this?

On one level, not very: Amphicoelias is generally thought to be a basal diplodocoid, and Rebbachisauridae was the first major clade to diverge within Diplodocoidae. In fact, if Maraapunisaurus is basal within Rebbachisauridae, it may be only a few nodes away from where everyone previously assumed it sat.

On the other hand, a Morrison Formation rebbachisaurid would be a big deal for two reasons. First, because it would be the only known North American rebbachisaur — all the others we know are from South America, Africa and Europe. And second, because it would be, by some ten million years, the oldest known rebbachisaur — irritatingly, knocking out my own baby Xenoposeidon (Taylor 2018), but that can’t be helped.

Finally, what would this new identity mean for AMNH FR 5777’s size?

Carpenter 2018: Figure 7. Body comparisons of Maraapunisaurus as a 30.3-m-long rebbachisaurid (green) compared with previous version as a 58-m-long diplodocid (black). Lines within the silhouettes approximate the distal end of the diapophyses (i.e., top of the ribcage). Rebbachisaurid version based on Limaysaurus by Paul (2016), with outline of dorsal based on Rebbachisaurus; diplodocid version modified from Carpenter (2006).

Because dorsal vertebrae in rebbachisaurids are proportionally taller than in diplodocids, the length reconstructed from a given dorsal height is much less for rebbachisaurs: so much so that Ken brings in the new version, based on the well-represented rebbachisaur Limaysaurus tessonei, at a mere 30.3 m, only a little over half of the 58 m he previously calculated for a diplodocine version. That’s disappointing for those of us who like our sauropods stupidly huge. But the good news is, it makes virtually no difference to the height of the animal, which remains prodigious — 8 m at the hips, twice the height of a giraffe’s raised head. So not wholly contemptible.

Exciting times!

References

 

This post started out as a comment on this thread, kicked off by Dale McInnes, in which Mike Habib got into a discussion with Mike Taylor about the max size of sauropods. Stand by for some arm-waving. All the photos of outdoor models were taken at Dino-Park Münchehagen back in late 2008.

I think it’s all too easy to confuse how big things do get from how big they could get, assuming different selection pressures and ecological opportunities. I’m sure someone could write a very compelling paper about how elephants are as big as they could possibly be, or Komodo dragons, if we didn’t have indricotheres and Megalania to show that the upper limit is elsewhere. This is basically what Economos (1981) did for indricotheres, either forgetting about sauropods or assuming they were all aquatic.

Truly, a mammal of excellence and distinction. With Mike and some dumb rhino for scale.

In fact, I’ll go further: a lot of pop discussions of sauropod size assume that sauropods got big because of external factors (oxygen levels, etc.) but were ultimately limited by internal factors, like bone and cartilage strength or cardiovascular issues. I think the opposite is more likely: sauropods got big because of a happy, never-repeated confluence of internal factors (the Sander/et al. [2008, 2011, 2013] hypothesis, which I think is extremely robust), and their size was limited by external, ecological factors.

Take a full-size Argentinosaurus or Bruhathkayosaurus – even modest estimates put them at around 10x the mass of the largest contemporary predators. Full-grown adults were probably truly predator-immune, barring disease or senescence. So any resources devoted to pushing the size disparity higher, instead of invested in making more eggs, would basically be wasted.

If there was reproductive competition among the super-giants, could the 100-tonners have been out-reproduced by the 70-tonners, which put those extra 30 tonnes into making babies? Or would the 100-tonners make so many more eggs than the 70-tonners (over some span of years) that they’d still come out on top? I admit, I don’t know enough reproductive biology to answer that. (If you do, speak up in the comments!) But if – if – 70-tonners could out-reproduce 100-tonners, that by itself might have been enough to put a cap on the size of the largest sauropods.

Another possibility is that max-size adult sauropods were neither common nor the target of selection. In most populations most of the time, the largest individuals might have been reproductively active but skeletally-immature and still-growing subadults (keep in mind that category would encompass most mounted sauropod skeletons, including the mounted brachiosaurs in Chicago and Berlin). If such individuals were the primary targets of selection, and they were selected for a balance of reproductive output and growth, then the few max-size adults might represent the relatively rare instances in which the developmental program “overshot” the selection target.

Dave Hone and Andy Farke and I mentioned this briefly in our 2016 paper, and it’s come up here on the blog several times before, but I still have a hard time wrapping my head around what that would mean. Maybe the max-size adults don’t represent the selective optimum, but rather beneficial traits carried to extreme ends by runaway development. It seems at least conceivable that the bodies of such animals might have been heavily loaded with morphological excrescences – like 15- to 17-meter necks – that were well past the selective optimum. As long as those features weren’t inherently fatal, they could possibly have been pretty darned inefficient, riding around on big predator-immune platforms that could walk for hundreds of kilometers and survive on garbage.

What does that swerve into weird-but-by-now-well-trod ground have to do with the limits on sauropod size? This: if max-size adults were not heavy selection targets, either because the focus of selection was on younger, reproductively-active subadults, or because they’d gotten so big that the only selection pressure that could really affect them was a continent-wide famine – or both – then they might not have gotten as big as they could have (i.e., never hit any internally-imposed, anatomical or biomechanical limits) because nothing external was pushing them to get any bigger than they already were.

Or maybe that’s just a big pile of arm-wavy BS. Let’s try tearing it down, and find out. The comment thread is open.

References

A bunch of stuff, loosely organized by theme.

Media

First up, I need to thank Brian Switek, who invited me to comment on Patagotitan for his piece at Smithsonian. I think he did a great job on that, arguably the best of any of the first-day major media outlet pieces. And it didn’t go unnoticed – his article was referenced at both the Washington Post and NPR (and possibly other outlets, those are the two I know of right now). I don’t think my quotes got around because they’re particularly eloquent, BTW, but rather because reporters tend to like point-counterpoint, and I was apparently the most visible counterpoint. They probably would have done the same if I’d been talking complete nonsense (which, to be fair, some people may think I was).

Paleobiology vs Records

The most commonly reproduced quote of mine is this one, originally from Brian’s piece:

I think it would be more accurate to say that Argentinosaurus, Puertasaurus and Patagotitan are so similar in size that it is impossible for now to say which one was the largest.

That may seem at odds with the, “Well, actually…[pushes glasses up nose]…Argentinosaurus was still biggest” tack I’ve taken both in my post yesterday and on Facebook. So let me elaborate a little.

There is a minor, boring point, which is that when I gave Brian that quote, I’d seen the Patagotitan paper, but not the Electronic Supplementary Materials (ESM), so I knew that Patagotitan was about the same size as the other two (and had known for a while), but I hadn’t had a chance to actually run the numbers.

The much more interesting point is that the size differences between Argentinosaurus, Puertasaurus, and Patagotitan are astonishingly small. The difference between a 2.5m femur and a 2.4m one is negligible, ditto for vertebrae with centra 59cm and 60cm in diameter. OMNH 1331, the biggest centrum bit from the giant Oklahoma apatosaur, had an intact max diameter of 49cm, making it 26% larger in linear terms than the next-largest apatosaur. The centra of these giant South American titanosaurs are more than 20% bigger yet than OMNH 1331, just in linear terms. That’s crazy.

It’s also crazy that these three in particular – Argentinosaurus, Puertasaurus, and Patagotitan – are so similar in size. Dinosaur developmental programs were ‘messy’ compared to those of mammals, both in having weird timings for things like onset of reproduction, and in varying a lot among closely related taxa. Furthermore, sauropod population dynamics should have been highly skewed toward juveniles and subadults. So is the near-equality in size among Argentinosaurus, Puertasaurus, and Patagotitan just a coincidence, or does it mean that something weird was going on? There’s really no third option. I mean, even if some kind of internal (biomechanical or physiological) or external (ecological, food or predation) constraint forced those three to the same adult body size, it’s weird then that we’re finding only or at least mostly near-max-size adults. (If the available specimens of these three aren’t near-max-size, then any hypothesis that they’re forced to the same size by constraints is out the window, and we’re back to coincidence.)

BUT

With all that said, the title of “world’s largest dinosaur” is not handed out for effort expended, number of specimens collected, skeletal completeness, ontogenetic speculation, or anything other than “the dinosaur with the largest measured elements”. And that is currently Argentinosaurus. So although for any kind of paleobiological consideration we can currently consider Argentinosaurus, Puertasaurus, and Patagotitan to all be about the same size – and Alamosaurus, Paralititan, Notocolossus, and probably others I’ve forgotten should be in this conversation – anyone wanting to dethrone Argentinosaurus needs to actually show up with bigger elements.

So, if you’re interested in paleobiology, it’s fascinating and frankly kind of unnerving that so many of these giant titanosaurs were within a hand-span of each other in terms of size. Patagotitan is one more on the pile – and, as I said yesterday, exciting because it’s so complete.

But if you want to know who holds the crown, it’s still Argentinosaurus.

Humeri

In a comment on the last post, Andrea Cau made an excellent point that I am just going to copy here entire:

Even Paralititan stromeri humerus is apparently larger than Patagotitan humerus (169 cm vs 167.5 cm). I know humerus length alone is bad proxy of body size, but at least this shows that even in that bone Patagotitan is just another big titanosaur among a well known gang of titans, not a supersized one.

That made me want to start a list of the longest sauropod humeri. Here goes – if I missed anyone or put down a figure incorrectly, I’m sure you’ll let me know in the comments.

  • Giraffatitan: 213cm
  • Brachiosaurus: 203cm
  • Ruyangosaurus: 190cm (estimated from 135cm partial)
  • Turiasaurus: 179cm
  • Notocolossus: 176cm
  • Paralititan: 169cm
  • Patagotitan: 167.5cm
  • Dreadnoughtus: 160cm
  • Futlognkosaurus: 156cm

Admittedly the Patagotitan humerus is from a paratype and not from the largest individual, but that is true for some others on the list, including Giraffatitan. And we have no humeri from Argentinosaurus, Puertasaurus, and some other giants.

Dorsal Vertebrae

A couple of further thoughts on how the dorsal vertebrae of Patagotitan compare to those of Argentinosaurus. First, now that I’ve had some time to think about it, I have a hard time seeing how the dorsal polygon method used by Carballido et al. in the Patagotitan paper has any biological meaning. In their example figure, the polygon around the Puertasaurus vertebra is mostly full of bone, and the one around Patagotitan has a lot of empty space. It’s easy to imagine an alternative metric, like “area of the minimum polygon actually filled by bone”, that would lead to a different ‘winner’. But that wouldn’t mean much, either.

Something that probably does have a real and important biomechanical meaning is the surface area of the articular face of the centrum, because that’s the area of bone that has to bear the compressive load, which is directly related to the animal’s mass. The biggest Patagotitan centrum is that of MPEF-PV 3400/5, which is at least a local maximum since has smaller centra both ahead and behind. The posterior face measures 59cm wide by 42.5cm tall. Abstracted as an ellipse, which may not be perfectly accurate, those measurements give a surface area of (pi)(29.5)(21.25)=1970 cm^2. For Argentinosaurus, the largest complete centrum has a posterior face measuring 60cm wide by 47cm tall (Bonaparte and Coria 1993: p. 5), giving an elliptical surface area of (pi)(30)(23.5)=2210 cm^2. (I’d use hi-res images of the centra to measure the actual surface areas if I could, but AFAIK those images either don’t exist or at least have not yet been made public, for either taxon.) So although the Argentinosaurus dorsal seems like it is only a bit bigger in linear terms, it’s 12% larger in surface area, and that might actually be a meaningful difference.

Cervical Vertebrae

One thing I haven’t commented on yet – Patagotitan is the newest member of the “world’s longest vertebrae” club. The longest Patagotitan cervical, MPEF-PV 3400/3, is listed in the ESM as having a centrum length of 120cm, but it’s also listed as incomplete. In the skeletal recon in the paper, the centrum is colored in as present, but the neural spine is missing. So is the centrum complete in terms of length? I don’t think it’s clear right now.

Anyway, here’s the current rundown of the longest cervical centra of sauropods (and therefore, the longest vertebrae among animals):

  • BYU 9024, possibly referable to Supersaurus or Barosaurus: 137cm
  • Price River 2 titanosauriform: 129cm
  • OMNH 53062, Sauroposeidon holotype: 125cm
  • KLR1508-77-2, Ruyangosaurus giganteus referred specimen: 124cm
  • MPEF-PV 3400/3, Patagotitan holotype: 120cm (+?)
  • MPM 10002, Puertasaurus holotype: 118cm

You may be surprised to see the Price River 2 cervical in there. It was reported in an SVP abstract a few years ago (I’ll dig up that ref and update this post), and Mike and I saw it last year on the Sauropocalypse. We measured the centrum at 129cm, making it just a bit longer than the longest centrum of Sauroposeidon, and therefore the second-longest vertebra of anything ever.

Aside – I’m probably getting a reputation as a big ole meanie when it comes to debunking “world’s largest dinosaur” claims. If I’m willing to take the lead in kicking my own dinosaur down the ladder, don’t expect me to be kind to yours. I follow where the numbers lead.

Now, here’s an interesting thing – now that Sauroposeidon is coming out as a basal titanosaur, rather than a brachiosaur, it might not have been a skinny freak. The 120cm cervical of Patagotitan makes the 125cm cervical of Sauroposeidon and the 129cm cervical from Price River 2 look even more tantalizing. Maybe it’s super-giant sauropods all the way down.

“But wait, Matt”, I hear you thinking. “Every news agency in the world is tripping over themselves declaring Patagotitan the biggest dinosaur of all time. Why are you going in the other direction?”

Because I’ve been through this a few times now. But mostly because I can friggin’ read.

Maximum dorsal centrum diameter in Argentinosaurus is 60cm (specimen MCF-PVPH-1, Bonaparte and Coria 1993). In Puertasaurus it is also 60cm (MPM 10002, Novas et al. 2005). In Patagotitan it is 59cm (MPEF-PV 3400/5, Carballido et al. 2017). (For more big centra, see this post.)

Femoral midshaft circumference is 118cm in an incomplete femur of Argentinosaurus estimated to be 2.5m long when complete (Mazzetta et al. 2004). A smaller Argentinosaurus femur is 2.25m long with a circumference of 111.4cm (Benson et al. 2014). The largest reported femur of Patagotitan, MPEF-PV 3399/44, is 2.38m long and has a circumference of either 101cm (as reported in the Electronic Supplementary Materials to Carballido et al 2017) or 110cm (as reported in the media in 2014*).

TL;DR: 60>59, and 118>111>110>101, and in both cases Argentinosaurus > Patagotitan, at least a little bit.

Now, Carballido et al (2017) estimated that Patagotitan was sliiiiightly more massive than Argentinosaurus and Puertasaurus by doing a sort of 2D minimum convex hull dorsal vertebra area thingy, which the Patagotitan vertebra “wins” because it has a taller neural spine than either Argentinosaurus or Puertasaurus, and slightly wider transverse processes than Argentinosaurus (138cm vs 128cm) – but way narrower transverse processes than Puertasaurus (138cm vs 168cm). But vertebrae with taller or wider sticky-out bits do not a more massive dinosaur make, otherwise Rebbachisaurus would outweigh Giraffatitan.

Now, in truth, it’s basically a three-way tie between Argentinosaurus, Puertasaurus, and Patagotitan. Given how little we have of the first two, and how large the error bars are on any legit size comparison, there is no real way to tell which of them was the longest or the most massive. Still, to get to the conclusion that Patagotitan was in any sense larger than Argentinosaurus you have to physically drag yourself over the following jaggedly awkward facts:

  1. The weight-bearing parts of the anterior dorsal vertebrae are larger in diameter in both Argentinosaurus and Puertasaurus than in Patagotitan. Very slightly, but still, Patagotitan is the smallest of the three.
  2. The femora of Argentinosaurus are fatter than those of Patagotitan, even at shorter length. The biggest femora of Argentinosaurus are longer, too.

So all of the measurements of body parts that have to do with supporting mass are still larger in Argentinosaurus than in Patagotitan.

Now, it is very cool that we now have a decent chunk of the skeleton of a super-giant titanosaur, instead of little bits and bobs. And it’s nice to know that the numbers reported in the media back in 2014 turned out to be accurate. But Patagotitan is not the “world’s largest dinosaur”. At best, it’s the third-largest contender among near equals.

Parting shot to all the science reporters who didn’t report the same numbers I did here: instead of getting hype-notized by assumption-laden estimates, how about doing an hour’s worth of research making the most obvious possible comparisons?

Almost immediate UPDATE: Okay, that parting shot wasn’t entirely fair. As far as I know, the measurements of Patagotitan were not available until the embargo lifted. Which is in itself odd – if someone claims to have the world’s largest dinosaur, but doesn’t put any measurements in the paper, doesn’t that make your antennae twitch? Either demand some measurements so you can make those obvious comparisons, or approach with extreme skepticism – especially if the “world’s largest dino” claim was pre-debunked three years ago!

* From this article in the Boston Globe:

Paleobiologist Paul Upchurch of University College London believes size estimates are more reliable when extrapolated from the circumference of bones.

He said this femur is a whopping 43.3 inches around, about the same as the Argentinosaurus’ thigh bone.

‘‘Whether or not the new animal really will be the largest sauropod we know remains to be seen,’’ said Upchurch, who was not involved in this discovery but has seen the bones first-hand.

Some prophetically appropriate caution from Paul Upchurch there, who has also lived through a few of these “biggest dinosaur ever” bubbles.

References

Suppose that I and Matt were right in our SVPCA talk this year, and the
Supersaurus” cervical BYU 9024 really is the C9 of a gigantic Barosaurus. As we noted in our abstract, its total length of 1370 mm is exactly twice that of the C9 in AMNH 6341, which suggests its neck was twice as long over all — not 8.5 m but 17 m.

How horrifying is that?

I realised one good way to picture it is next to the entire mounted skeleton of Giraffatitan at the Museum für Naturkunde Berlin. That skeleton is 13.27 m tall. At 17 m, the giant barosaur neck would be 28% longer than the total height of Giraffatitan.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman's Supersaurus skeleton reconstruction.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman’s Supersaurus skeleton reconstruction.

Yes, this looks ridiculous. But it’s what the numbers tell us. Measure the skeleton’s height and the neck length off the image yourself if you don’t believe me.

(Note, too, that the size of the C9 in that big neck is about right, compared with a previous scaled image that Matt prepared, showing the “Supersaurus” vertebra in isolation alongside the Chicago Brachiosaurus.)

Clash of the Titans from above

Here’s the “Clash of the Titans” exhibit at the Sam Noble Oklahoma Museum of Natural History, featuring the reconstructed skeletons of the giant Oklahoma Apatosaurus – which I guess should now be called the giant Oklahoma apatosaurine until someone sorts out its phylogenetic position – and the darn-near-T. rex-sized Saurophaganax maximus, which may be Allosaurus maximus depending on who you’re reading.

Now, I love this exhibit in both concept and execution. But one thing that is more obvious in this view from the upper level balcony is that despite its impressive weaponry, a lone 3-to-5 ton Saurophaganax had an Arctic ice cap’s chance in the Anthropocene of taking down a healthy 30-meter, 40-50 ton apatosaur (which is to say, none). I like to imagine that in the photo above, the apatosaur is laughing at the pathetically tiny theropod and its delusions of grandeur.

Clash of the Titans from behind

In this shot from behind, you get a better look at the baby apatosaur standing under the big one, and it hints at a far more likely target for Saurophaganax and other large Morrison theropods: sauropods that were not fully-grown, which was almost all of them. I am hip to the fact that golden eagles kill deer, and some lions will attack elephants – as Cookie Monster says, “Sometime food, not anytime food” – but not only were smaller sauropods easier prey, they were far more numerous given the inevitable population structure of animals that started reproducing at a young age and made more eggs the bigger they got (as essentially all egg-laying animals do).

In fact, as discussed in our recent paper on dinosaur ontogeny (Hone et al. 2016), there may have been times when the number of fully-grown sauropods in a given population was zero, and the species was maintained by reproducing juveniles. The giant Oklahoma apatosaurine is a unique specimen today – by far the largest apatosaurine we have fossils of – but it may also have been an anomaly in its own time, the rare individual that made it through the survivorship gauntlet to something approaching full size.

Amazingly enough, there is evidence that even it was not fully mature, but that’s a discussion for another day. Parting shot:

Oklahoma Apatosaurus neck and head

Reference