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ABSTRACT
We study the homology of a filteredd-dimensional simplicial com-
plex K as a single algebraic entity and establish a correspondence
that provides a simple description over fields. Our analysis enables
us to derive a natural algorithm for computing persistent homology
over an arbitrary field in any dimension. Our study also implies
the lack of a simple classification over non-fields. Instead, we give
an algorithm for computing individual persistent homology groups
over an arbitrary PIDs in any dimension.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Computations on discrete structures; G.4 [Mathemati-
cal Software]: Algorithm design and analysis

General Terms:Algorithms, Theory

Keywords: computational topology, persistent homology

1. INTRODUCTION
In this paper, we study the homology of a filteredd-dimensional

simplicial complexK, allowing an arbitrary PIDD as the ground
ring of coefficients. A filtered complex is an increasing sequence
of simplicial complexes, as shown in Figure 1. It determines anin-
ductive systemof homology groups, i.e. a family of Abelian groups
{Gi}i≥0 together with homomorphismsGi → Gi+1. If the ho-
mology is taken with field coefficients, we obtain an inductive sys-
tem of vector spaces over the field. Each vector space is determined
up to isomorphism by its dimension. In this paper, we obtain a sim-
ple classification of an inductive system of vector spaces. The clas-
sification is in terms of a graded module over the graded ringF [t]
of polynomials over the fieldF , which can be parametrized up to

∗Research by the first author is partially supported by NSF under grant
CCR-00-86013. Research by the second author is partially supported by
NSF under grant DMS-0101364. Research by both authors is partially sup-
ported by NSF under grant DMS-0138456.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04,June 8–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

d

a b

c

2 cd, ad

d

a b

cd

a b

cd

a b

c

3 ac 4 abc 5 acd

a b

d

a b

c

1 c, d,a, b0 ab, bc

Figure 1: A filtered complex with newly added simplices high-
lighted.

isomorphism by finite families of intervals with integer endpoints.
We also derive a natural algorithm for computing this family of in-
tervals. Using this family, we may identify homological features
that persist within the filtration, thepersistent homologyof the fil-
tered complex.

Furthermore, our interpretation makes it clear that if the ground
ring is not a field, there exists no similarly simple classification of
persistent homology. Rather, the structures are very complicated,
and although we may assign interesting invariants to them, no sim-
ple classification is, or is likely ever to be, available. In this case,
we provide an algorithm for computing a single persistent group
for the filtration.

In the rest of this section, we first motivate our study through
three examples in which filtered complexes arise whose persistent
homology is of interest. We then discuss prior work and its rela-
tionship to our work. We conclude this section with an outline of
the paper.

1.1 Motivation
We call a filtered simplicial complex, along with its associated

chain and boundary maps, apersistence complex. We will formal-
ize this concept in section 3. Persistence complexes arise natu-
rally whenever one is attempting to study topological invariants of
a space computationally. Often, our knowledge of this space is
limited and imprecise. Consequently, we must utilize a multi-scale
approach to capture the connectivity of the space, giving us a per-
sistence complex.

Example 1.1 (point cloud data) Suppose we are given a finite set
of points X from a subspaceX ∈ Rn. We call X point cloud
data or PCD for short. It is reasonable to believe that if the sam-
pling is dense enough, we should be able to compute the topolog-
ical invariants ofX directly from the PCD. To do so, we may ei-
ther compute theCěchcomplex, or approximate it via aRipscom-
plex [11]. The latter complexRε(X) hasX as its vertex set. We
declareσ = {x0, x1, . . . , xk} to span ak-simplex ofRε(X) iff



d(xi, xj) ≤ ε for all pairsxi, xj ∈ σ. There is an obvious in-
clusionRε(X) → Rε′(X) wheneverε < ε′. In other words, for
any increasing sequence of non-negative real numbers, we obtain a
persistence complex.

Example 1.2 (density)Often, our samples are not from a geomet-
ric object, but are heavily concentrated on it. It is important, there-
fore, to compute a measure of density of the data around each sam-
ple. For instance, we may count the number of samplesρ(x) con-
tained in a ball of sizeε around each samplex. We may then define
Rr

ε (X) ⊆ Rε to be the Rips subcomplex on the vertices for which
ρ(x) ≤ r. Again, for any increasing sequence of non-negative real
numbersr, we obtain a persistence complex. We must analyze this
complex to compute topological invariants attached to the geomet-
ric object around which our data is concentrated.

Example 1.3 (Morse functions)Given a manifoldM equipped
with a Morse functionf , we may filterM via the excursion sets
Mr = {m ∈ M | f(m) ≤ r}. We again choose an increasing
sequence of non-negative numbers to get a persistence complex. If
the Morse function is a height function attached to some embedding
of M in Rn, persistent homology can now give information about
the shape of the submanifolds, as well the homological invariants
of the total manifold.

1.2 Prior work

We assume familiarity with basic group theory and refer the
reader to Dummit and Foote [6] for an introduction. We make ex-
tensive use of Munkres [12] in our description of algebraic homol-
ogy and recommend it as an accessible resource to non-specialists.
There is a large body of work on the efficient computation of ho-
mology groups and their ranks [1, 4, 5, 9]. Persistent homology
groups were initially defined only for three-dimensional simplicial
complexes and coefficients inZ2 [7, 14]. The authors also provided
an algorithm for generating a particular set of intervals for subcom-
plexes ofS3 overZ2. Surprisingly, they showed that these intervals
allowed the correct computation of the rank of persistent homology
groups.

1.3 Our work

Viewing an inductive system of vector spaces as a single concep-
tual entity, we show that the algorithm in [7] extends to any induc-
tive system of chain complexes and does not depend on simplicial
complexes arising from coverings of sets inR3. We extend and
generalize this algorithm to arbitrary dimensions and ground fields
by deriving it from the classic reduction scheme. In this manner,
we illustrate how the algorithm derives its simple structure from the
properties of the rich algebraic structures. We also show that if we
consider integer coefficients or coefficients in some ringR, there
is no similar simple classification of inductive systems of modules
overR. This negative result suggests the possibility of interesting
yet incomplete invariants of inductive systems. For now, we give an
algorithm for classifying a single homology group over an arbitrary
PID.

We finally observe that any filtered complex gives rise to aspec-
tral sequence. In principle, we may use this method to compute the
result of our algorithm. However, the method does not provide an
algorithm, but aschemethat must be tailored for each problem in-
dependently. Our techniques, on the other hand, provide a complete
and effective algorithm.

1.4 Outline
We review concepts from algebra and simplicial homology in

Section 2. We also re-introduce persistent homology over integers
and arbitrary dimensions. In Section 3, we define and study the
persistence module, a structure that represents the homology of a
filtered complex. In addition, we establish a relationship between
our results and prior work. Using our analysis, we derive an algo-
rithm for computation over fields in Section 4. For non-fields, we
describe an algorithm in Section 5 that computes individual persis-
tent groups. We conclude the paper in Section 7 with a discussion
of current and future work.

2. BACKGROUND
In this section, we review the mathematical and algorithmic back-

ground necessary for our work. We begin by reviewing the struc-
ture of finitely generated modules over principal ideal domains. We
then discuss simplicial complexes and their associated chain com-
plexes. Putting these concepts together, we define simplicial ho-
mology and outline the standard algorithm for its computation. We
conclude this section by describing persistent homology.

2.1 Algebra
Throughout this paper, we assume a ringR to be commutative

with unity. A polynomialf(t) with coefficients inR is a formal
sum

∑∞
i=0 ait

i, whereai ∈ R andt is the indeterminate. The set
of all polynomialsf(t) overR forms a commutative ringR[t] with
unity. If R has no divisors of zero, and all its ideals are principal,
it is a principal ideal domain (PID), e.g.R, Q, Z, Zp for p prime,
andF [t] for F a field.

A graded ringis a ring 〈R, +,⊗〉 equipped with a direct sum
decomposition of Abelian groupsR ∼=

⊕
i Ri, i ∈ Z, so that

multiplication is defined by bilinear pairingsRn ⊗Rm → Rn+m.
Elements in a singleRi are calledhomogeneousand havedegreei,
dege = i for all e ∈ Ri. A graded moduleM over a graded ring
R is a module equipped with a direct sum decomposition,M ∼=⊕

i Mi, i ∈ Z, so that the action ofR onM is defined by bilinear
pairingsRn ⊗ Mm → Mn+m. A graded ring (module) isnon-
negatively gradedif Ri = 0 (Mi = 0) for all i < 0. We may
gradeR[t] non-negatively with thestandard grading(tn) = tn ·
R[t], n ≥ 0.

The standard structure theorem describes finitely generated mod-
ules and graded modules over PIDs.

Theorem 2.1 (structure) If D is a PID, then every finitely gener-
atedD-module is isomorphic to a direct sum of cyclicD-modules.
That is, it decomposes uniquely into the form

Dβ ⊕

(
m⊕

i=1

D / diD

)
, (1)

for di ∈ D, β ∈ Z, such thatdi|di+1. Similarly, every graded
moduleM over a graded PIDD decomposes uniquely into the
form (

n⊕
i=1

ΣαiD

)
⊕

(
m⊕

j=1

Σγj D/djD

)
, (2)

wheredj ∈ D are homogeneous elements so thatdj |dj+1, αi, γj ∈
Z, andΣα denotes anα-shift upward in grading.

In both cases, the theorem decomposes the structures into free (left)
and torsion (right) parts. In the latter case, the torsional elements
are also homogeneous.



2.2 Simplicial Complexes
A simplicial complexis a setK, together with a collectionS

of subsets ofK calledsimplices(singularsimplex) such that for
all v ∈ K, {v} ∈ S, and if τ ⊆ σ ∈ S, then τ ∈ S. We
call the sets{v} the verticesof K. When it is clear from con-
text whatS is, we refer to setK as a complex. We sayσ ∈ S

is a k-simplexof dimensionk if |σ| = k + 1. If τ ⊆ σ, τ is a
faceof σ, andσ is a cofaceof τ . An orientationof a k-simplex
σ, σ = {v0, . . . , vk}, is an equivalence class of orderings of the
vertices ofσ, where(v0, . . . , vk) ∼ (vτ(0), . . . , vτ(k)) are equiva-
lent if the sign ofτ is 1. We denote anoriented simplexby [σ].
A simplex may be realized geometrically as the convex hull of
k + 1 affinely independent points inRd, d ≥ k. A realization
gives us the familiar low-dimensionalk-simplices:vertices, edges,
triangles, andtetrahedra, for 0 ≤ k ≤ 3.Within a realized com-
plex, the simplices must meet along common faces. Asubcomplex
of a simplicial complexK is a simplicial complexL ⊆ K. A
filtration of a complexK is a nested subsequence of complexes
∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = K. For generality, we let
Ki = Km for all i ≥ m. We callK a filtered complex. We show
a small filtered complex in Figure 1.

2.3 Chain Complex
The kth chain groupCk of K is the free Abelian group on its

set of orientedk-simplices, where[σ] = −[τ ] if σ = τ andσ
andτ are differently oriented.. An elementc ∈ Ck is a k-chain,
c =

∑
i ni[σi], σi ∈ K with coefficientsni ∈ Z. Theboundary

operator∂k : Ck → Ck−1 is a homomorphism defined linearly on
a chainc by its action on any simplexσ = [v0, v1, . . . , vk] ∈ c,

∂kσ =
∑

i

(−1)i[v0, v1, . . . , v̂i, . . . , vk],

wherev̂i indicates thatvi is deleted from the sequence. The bound-
ary operator connects the chain groups into achain complexC∗:

. . . → Ck+1

∂k+1−−−→ Ck
∂k−→ Ck−1 → . . . .

We may also define subgroups ofCk using the boundary opera-
tor: thecycle groupZk = ker ∂k and theboundary groupBk =
im ∂k+1. We show examples of cycles in Figure 2. An important
property of the boundary operators is that the boundary of a bound-
ary is always empty,∂k∂k+1 = ∅. This fact, along with the defi-
nitions, implies that the defined subgroups are nested,Bk ⊆ Zk ⊆
Ck, as in Figure 3. For generality, we often define null boundary
operators in dimensions whereCk is empty.

2.4 Homology
The kth homology groupis Hk = Zk / Bk. Its elements are

classes ofhomologouscycles. To describe its structure, we view
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Figure 2: The dashed 1-boundary rests on the surface of a
torus. The two solid 1-cycles form a basis for the first homology
class of the torus. These cycles are non-bounding: neither is a
boundary of a piece of surface.
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Figure 3: A chain complex with its internals: chain, cycle, and
boundary groups, and their images under the boundary opera-
tors.

the Abelian groups we have defined so far as modules over the
integers. This view allows alternate ground rings of coefficients,
including fields. If the ring is a PIDD, Hk is aD-module and The-
orem (2.1) applies:β, the rank of the free submodule, is theBetti
numberof the module, anddi are itstorsion coefficients. When
the ground ring isZ, the theorem above describes the structure of
finitely generated Abelian groups. Over a field, such asR, Q, or
Zp for p a prime, the torsion submodule disappears. The module is
a vector space that is fully described by a single integer, its rankβ,
which depends on the chosen field.

2.5 Reduction
The standard method for computing homology is the reduction

algorithm. We describe this method for integer coefficients as it
is the more familiar ring. The method extends to modules over
arbitrary PIDs, however.

As Ck is free, the orientedk-simplices form thestandard basis
for it. We represent the boundary operator∂k : Ck → Ck−1 rela-
tive to the standard bases of the chain groups as an integer matrix
Mk with entries in{−1, 0, 1}. The matrixMk is called thestan-
dard matrix representationof ∂k. It hasmk columns andmk−1

rows (the number ofk- and(k − 1)-simplices, respectively.) The
null-space ofMk corresponds toZk and its range-space toBk−1,
as manifested in Figure 3. Thereduction algorithmderives alter-
nate bases for the chain groups, relative to which the matrix for∂k

is diagonal. The algorithm utilizes the followingelementary row
operationsonMk:

1. exchange rowi and rowj,

2. multiply row i by−1,

3. replace rowi by (row i)+q(row j), whereq is an integer and
j 6= i.

The algorithm also useselementary column operationsthat are sim-
ilarly defined. Each column (row) operation corresponds to a change
in the basis forCk (Ck−1). For example, ifei andej are theith
andjth basis elements forCk, respectively, a column operation of
type (3) amounts to replacingei with ei + qej . A similar row op-
eration on basis elementŝei and êj for Ck−1, however, replaces
êj by êj − qêi. We shall make use of this fact in Section 4. The
algorithm systematically modifies the bases ofCk andCk−1 using
elementary operations to reduceMk to its (Smith) normal form:

M̃k =



b1 0
. . . 0

0 blk

0 0


,



wherelk = rank Mk = rank M̃k, bi ≥ 1, andbi|bi+1 for all
1 ≤ i < lk. The algorithm can also compute corresponding bases
{ej} and{êi} for Ck andCk−1, respectively, although this is un-
necessary if a decomposition is all that is needed. Computing the
normal form in all dimensions, we get a full characterization ofHk:

(i) the torsion coefficients ofHk−1 (di in (1)) are precisely the
diagonal entriesbi greater than one.

(ii) {ei | lk + 1 ≤ i ≤ mk} is a basis forZk. Therefore,
rank Zk = mk − lk.

(iii) {biêi | 1 ≤ i ≤ lk} is a basis forBk−1. Equivalently,
rank Bk = rank Mk+1 = lk+1.

Combining (ii) and (iii), we have

βk = rank Zk − rank Bk = mk − lk − lk+1. (3)

For the complex in Figure 1, the standard matrix representation of
∂1 is

M1 =


ab bc cd ad ac

a −1 0 0 −1 −1
b 1 −1 0 0 0
c 0 1 −1 0 1
d 0 0 1 1 0

 ,

where we show the bases within the matrix. Reducing the matrix,
we get the normal form

M̃1 =


cd bc ab z1 z2

d− c 1 0 0 0 0
c− b 0 1 0 0 0
b− a 0 0 1 0 0

a 0 0 0 0 0

 ,

wherez1 = ad− bc− cd−ab andz2 = ac− bc−ab form a basis
for Z1 and{d− c, c− b, b− a} is a basis forB0.

We may use a similar procedure to compute homology over graded
PIDs. A homogeneous basisis a basis of homogeneous elements.
We begin by representing∂k relative to the standard basis ofCk

(which is homogeneous) and a homogeneous basis forZk−1. Re-
ducing to normal form, we read off the description provided by
direct sum (2) using the new basis{êj} for Zk−1:

(i) zero rowi contributes a free term with shiftαi = degêi,

(ii) row with diagonal termbi contributes a torsional term with
homogeneousdj = bj and shiftγj = degêj .

The reduction algorithm requiresO(m3) elementary operations,
wherem is the number of simplices inK. The operations, however,
must be performed in exact integer arithmetic. This is problematic
in practice, as the entries of the intermediate matrices may become
extremely large.

2.6 Persistence
We end this section with by re-introducing persistence. Given

a filtered complex, theith complexKi has associated boundary
operators∂i

k, matricesM i
k, and groupsCi

k, Zi
k, Bi

k andHi
k for all

i, k ≥ 0. Note that superscripts indicate the filtration index and are
not related to cohomology.

Thep-persistentkth homology group ofKi is

Hi,p
k = Zi

k / (Bi+p
k ∩ Zi

k). (4)

The definition is well-defined: both groups in the denominator are
subgroups ofCl+p

k , so their intersection is also a group, a subgroup

of the numerator. Thep-persistentkth Betti number ofKi is βi,p
k ,

the rank of the free subgroup ofHi,p
k . We may also define per-

sistent homology groups using the injectionηi,p
k : Hi

k → Hi+p
k ,

that maps a homology class into the one that contains it. Then,
im ηi,p

k ' Hi,p
k [7]. We extend this definition over arbitrary

PIDs, as before. Persistent homology groups are modules and The-
orem 2.1 describes their structure.

3. THE PERSISTENCE MODULE

In this section, we take a different view of persistent homology
in order to understand its structure. Intuitively, the computation of
persistence requires compatible bases forHi

k andHi+p
k . It is not

clear when a succinct description is available for the compatible
bases. We begin this section by combining the homology of all
the complexes in the filtration into a single algebraic structure. We
then establish a correspondence that reveals a simple description
over fields. We end this section by illustrating the relationship of
our view to the persistence equation (Equation (4).)

Definition 3.1 (persistence complex)A persistence complexC is
a family of chain complexes{C i

∗}i≥0 overR, together with chain
map’sf i : C i

∗ → C i+1
∗ , so that we have the following diagram:

C 0
∗

f0

−→ C 1
∗

f1

−→ C 2
∗

f2

−→ · · · .

Our filtered complexK with inclusion maps for the simplices be-
comes a persistence complex. Below, we show a portion of a per-
sistence complex, with the chain complexes expanded. The filtra-
tion index increases horizontally to the right under the chain maps
f i, and the dimension decreases vertically to the bottom under the
boundary operators∂k.

∂3

y ∂3

y ∂3

y
C0

2
f0

−−−−−→ C1
2

f1

−−−−−→ C2
2

f2

−−−−−→ · · ·

∂2

y ∂2

y ∂2

y
C0

1
f0

−−−−−→ C1
1

f1

−−−−−→ C2
1

f2

−−−−−→ · · ·

∂1

y ∂1

y ∂1

y
C0

0
f0

−−−−−→ C1
0

f1

−−−−−→ C2
0

f2

−−−−−→ · · ·

Definition 3.2 (persistence module)A persistence moduleM is a
family of R-modulesM i, together with homomorphismsϕi : M i →
M i+1.

For example, the homology of a persistence complex is a persis-
tence module, whereϕi simply maps a homology class to the one
that contains it.

Definition 3.3 (finite type) A persistence complex{Ci
∗, f

i} (per-
sistence module{M i, ϕi}) is of finite typeif each component com-
plex (module) is a finitely generatedR-module, and if the mapsf i

(ϕi, respectively) are isomorphisms fori ≥ m for some integerm.

As our complexK is finite, it generates a persistence complexC

of finite type, whose homology is a persistence moduleM of finite
type. We showed in the introduction how such complexes arise in
practice.



3.1 Correspondence

Suppose we have a persistence moduleM = {M i, ϕi}i≥0 over
ring R. We now equipR[t] with the standard grading and define a
graded module overR[t] by

α(M) =

∞⊕
i=0

M i,

where theR-module structure is simply the sum of the structures
on the individual components, and where the action oft is given by

t · (m0, m1, m2, . . .) = (0, ϕ0(m0), ϕ1(m1), ϕ2(m2), . . .).

That is,t simply shifts elements of the module up in the gradation.

Theorem 3.1 (correspondence)The correspondenceα defines an
equivalence of categories between the category of persistence mod-
ules of finite type overR and the category of finitely generated
non-negatively graded modules overR[t].

The proof is the Artin-Rees theory in commutative algebra [8].

The correspondence established by Theorem 3.1 shows that there
exists no simple classification of persistence modules over a ground
ring, such asZ, that is not a field. It is well known in commutative
algebra that the classification of modules overZ[t] is extremely
complicated. While it is possible to assign interesting invariants to
Z[t]-modules, a simple classification is not available, nor is it likely
ever to be available.

On the other hand, the correspondence gives us a simple decom-
position when the ground ring is a fieldF . Here, the graded ring
F [t] is a PID and its only graded ideals are homogeneous of form
(tn), so the structure of theF [t]-module is described by sum (2) in
Theorem 2.1:(

n⊕
i=1

ΣαiF [t]

)
⊕

(
m⊕

j=1

Σγj F [t]/(tnj )

)
. (5)

We wish to parametrize the isomorphism classes ofF [t]-modules
by suitable objects.

Definition 3.4 (P-interval) A P-interval is an ordered pair(i, j)
with 0 ≤ i < j ∈ Z∞ = Z ∪ {+∞}.

We associate a gradedF [t]-module to a setS of P-intervals via a
bijection Q. We defineQ(i, j) = ΣiF [t]/(tj−i) for P-interval
(i, j). Of course,Q(i, +∞) = ΣiF [t]. For a set ofP-intervals
S = {(i1, j1), (i2, j2) . . . , (in, jn)}, we define

Q(S) =

n⊕
l=1

Q(il, jl).

Our correspondence may now be restated as follows.

Corollary 3.1 The correspondenceS → Q(S) defines a bijec-
tion between the finite sets ofP-intervals and the finitely generated
graded modules over the graded ringF [t]. Consequently, the iso-
morphism classes of persistence modules of finite type overF are
in bijective correspondence with the finite sets ofP-intervals.
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persistence (p)

index (l)

(i, 0)

(i, j − i)

(j, 0)(i, j − i)

(j, 0)(i, 0)

l+
p <

 j

Figure 4: The inequalitiesp ≥ 0, l ≥ i, and l + p < j define
a triangular region in the index-persistence plane. This region
defines when the cycle is a basis element for the homology vec-
tor space.

3.2 Interpretation
Before proceeding any further, we recap our work so far and

relate it to prior results. Recall that our input is a filtered complex
K and we are interested in itskth homology. In each dimension,
the homology of complexKi becomes a vector space over a field,
described fully by is rankβi

k. We need to choose compatible bases
across the filtration in order to compute persistent homology for the
entire filtration. So, we form the persistence module corresponding
to K, a direct sum of these vector spaces. The structure theorem
states that a basis exists for this module that provides compatible
bases for all the vector spaces. In particular, eachP-interval(i, j)
describes a basis element for the homology vector spaces starting at
timei until timej−1. This element is ak-cyclee that is completed
at time i, forming a new homology class. It also remains non-
bounding until timej, at which time it joins the boundary groupBj

k.
Therefore, theP-intervals discussed here are precisely the so-called
k-intervals utilized in [7] to describe persistentZ2-homology. That
is, while component homology groups are torsion-less, persistence
appears as torsional and free elements of the persistence module.

Our interpretation also allows us to ask whene + Bl
k is a basis

element for the persistent groupsHl,p
k . Recall Equation (4). As

e 6∈ Bl
k for all l < j, we know thate 6∈ Bl+p

k for l + p < j. Along
with l ≥ i andp ≥ 0, the three inequalities define a triangular
region in the index-persistence plane, as drawn in Figure 4. The
region gives us the values for which thek-cyclee is a basis element
for Hl,p

k . In other words, we have just shown a direct proof of the
k-triangle Lemmain [7], which we restate here in a different form.

Lemma 3.1 Let T be the set of triangles defined byP-intervals for
thek-dimensional persistence module. The rankβl,p

k of Hl,p
k is the

number of triangles inT containing the point(l, p).

Consequently, computing persistent homology over a field is equiv-
alent to finding the corresponding set ofP-intervals.

4. ALGORITHM FOR FIELDS
In this section, we devise an algorithm for computing persistent

homology over a field. Given the theoretical development of the
last section, our approach is rather simple: we simplify the standard
reduction algorithm using the properties of the persistence module.



Our arguments give an algorithm for computing theP-intervals for
a filtered complex directly over the fieldF , without the need for
constructing the persistence module. This algorithm is a general-
ized version of the pairing algorithm shown in [7].

4.1 Derivation

We use the small filtration in Figure 1 as a running example and
compute overZ2, although any field will do. The persistence mod-
ule corresponds to aZ2[t]-module by the correspondence estab-
lished in Theorem 2.1. Table 1 reviews the degrees of the simplices
of our filtration as homogeneous elements of this module.

a b c d ab bc cd ad ac abc acd
0 0 1 1 1 1 2 2 3 4 5

Table 1: Degree of simplices of filtration in Figure 1

Throughout this section, we use{ej} and{êi} to represent ho-
mogeneous bases forCk andCk−1, respectively. Relative to ho-
mogeneous bases, any representationMk of ∂k has the following
basic property:

degêi + degMk(i, j) = degej , (6)

whereMk(i, j) denotes the element at location(i, j). We get

M1 =


ab bc cd ad ac

d 0 0 t t 0
c 0 1 t 0 t2

b t t 0 0 0
a t 0 0 t2 t3

 , (7)

for ∂1 in our example. The reader may verify Equation (6) using
this example for intuition, e.g.M1(4, 4) = t2 as degad− dega =
2− 0 = 2, according to Table 1.

Clearly, the standard bases for chain groups are homogeneous.
We need to represent∂k : Ck → Ck−1 relative to the standard ba-
sis forCk and a homogeneous basis forZk−1. We then reduce the
matrix and read off the description ofHk according to our discus-
sion in Section 2.5. We compute these representations inductively
in dimension. The base case is trivial. As∂0 ≡ 0, Z0 = C0 and
the standard basis may be used for representing∂1. Now, assume
we have a matrix representationMk of ∂k relative to the standard
basis{ej} for Ck and a homogeneous basis{êi} for Zk−1. For
induction, we need to compute a homogeneous basis forZk and
represent∂k+1 relative toCk+1 and the computed basis. We begin
by sorting basiŝei in reverse degree order, as already done in the
matrix in Equation (7). We next transformMk into thecolumn-
echelon formM̃k, a lower staircase form shown in Figure 5 [13].
The steps have variable height, all landings have width equal to
one, and non-zero elements may only occur beneath the staircase.
A boxed value in the figure is apivot and a row (column) with a
pivot is called apivot row (column). From linear algebra, we know
that rank Mk = rank Bk−1 is the number of pivots in an eche-
lon form. The basis elements corresponding to non-pivot columns
form the desired basis forZk. In our example, we have

M̃1 =


cd bc ab z1 z2

d t 0 0 0 0

c t 1 0 0 0

b 0 t t 0 0
a 0 0 t 0 0

 , (8)


∗ 0 0

∗ 0 · · ·

∗ ∗ 0
...

∗ ∗ 0 · · ·
∗ ∗ 0 · · · 0


Figure 5: The column-echelon form. An∗ indicates a non-zero
value and pivots are boxed.

wherez1 = ad− cd− t · bc− t ·ab, andz2 = ac− t2 · bc− t2 ·ab
form a homogeneous basis forZ1.

The procedure that arrives at the echelon form is Gaussian elim-
ination on the columns, utilizing elementary column operations of
types (1, 3) only. Starting with the left-most column, we eliminate
non-zero entries occurring in pivot rows in order of increasing row.
To eliminate an entry, we use an elementary column operation of
type (3) that maintains the homogeneity of the basis and matrix el-
ements. We continue until we either arrive at a zero column, or we
find a new pivot. If needed, we then perform a column exchange
(type (1)) to reorder the columns appropriately.

Lemma 4.1 (Echelon Form) The pivots in column-echelon form
are the same as the diagonal elements in normal form. Moreover,
the degree of the basis elements on pivot rows is the same in both
forms.

PROOF. Because of our sort, the degree of row basis elements
êi is monotonically decreasing from the top row down. Within
each fixed columnj, degej is a constantc. By Equation (6),
degMk(i, j) = c−degêi. Therefore, the degree of the elements in
each column is monotonically increasing with row. We may elim-
inate non-zero elements below pivots using row operations that do
not change the pivot elements or the degrees of the row basis el-
ements. We then place the matrix in diagonal form with row and
column swaps.

The lemma states that if we are only interested in the degree of
the basis elements, we may read them off from the echelon form
directly. That is, we may use the following corollary of the standard
structure theorem to obtain the description.

Corollary 4.1 Let M̃k be the column-echelon form for∂k relative
to bases{ej} and{êi} for Ck and Zk−1, respectively. If rowi

has pivotM̃k(i, j) = tn, it contributesΣdegêiF [t]/tn to the de-
scription ofHk−1. Otherwise, it contributesΣdegêiF [t]. Equiva-
lently, we get(degêi, degêi + n) and(degêi,∞), respectively, as
P-intervals forHk−1.

In our example,M̃1(1, 1) = t in Equation (8). As degd = 1, the
element contributesΣ1Z2[t]/(t) or P-interval (1,2) to the descrip-
tion of H0.

We now wish to represent∂k+1 in terms of the basis we com-
puted forZk. We begin with the standard matrix representation
Mk+1 of ∂k+1. As ∂k∂k+1 = ∅, MkMk+1 = 0, as shown in Fig-
ure 6. Furthermore, this relationship is unchanged by elementary
operations. Since the domain of∂k is the codomain of∂k+1, the
elementary column operations we used to transformMk into eche-
lon form M̃k give corresponding row operations onMk+1. These
row operations zero out rows inMk+1 that correspond to non-zero
pivot columns inM̃k, and give a representation of∂k+1 relative to
the basis we just computed forZk. This is precisely what we are
after. We can get it, however, with hardly any work.



Mk+1

= 0

ij

kM

xm         mk−1        k m     mxk        k+1

j

i

Figure 6: As ∂k∂k+1 = ∅, MkMk+1 = 0 and this is un-
changed by elementary operations. WhenMk is reduced to
echelon formM̃k by column operations, the corresponding row
operations zero out rows inMk+1 that correspond to pivot
columns inM̃k.

Lemma 4.2 (Basis Change)To represent∂k+1 relative to the stan-
dard basis forCk+1 and the basis computed forZk, simply delete
rows inMk+1 that correspond to pivot columns iñMk.

PROOF. We only used elementary column operations of types
(1,3) in our variant of Gaussian elimination. Only the latter changes
values in the matrix. Suppose we replace columni by (columni)+
q(columnj) in order to eliminate an element in a pivot rowj, as
shown in Figure 6. This operation amounts to replacing column
basis elementei by ei +qej in Mk. To effect the same replacement
in the row basis for∂k+1, we need to replace rowj with (row j)−
q(row i). But rowj is eventually zeroed-out, as shown in Figure 6,
and rowsi is never changed by any such operation.

Therefore, we have no need for row operations. We simply elimi-
nate rows corresponding to pivot columns one dimension lower to
get the desired representation for∂k+1 in terms of the basis forZk.
This completes the induction. In our example, the standard matrix
representation for∂2 is

M2 =


abc acd

ac t t2

ad 0 t3

cd 0 t3

bc t3 0
ab t3 0

 .

To get a representation in terms ofC2 and the basis(z1, z2) for Z1

we computed earlier, we simply eliminate the bottom three rows.
These rows are associated with pivots iñM1, according to Equa-
tion (8). We get

M̌2 =

 abc acd
z2 t t2

z1 0 t3

 ,

where we have also replacedad and ac with the corresponding
basis elementsz1 = ad− bc− cd− ab andz2 = ac− bc− ab.

4.2 Algorithm
Our discussion gives us an algorithm for computingP-intervals

of anF [t]-module over fieldF . It turns out, however, that we can
simulate the algorithm over the field itself, without the need for
computing theF [t]-module. Rather, we use two significant ob-
servations from the derivation of the algorithm. First, Lemma 4.1
guarantees that if we eliminate pivots in the order of decreasing de-
gree, we may read off the entire description from the echelon form

and do not need to reduce to normal form. And second, Lemma 4.2
tells us that by simply noting the pivot columns in each dimension
and eliminating the corresponding rows in the next dimension, we
get the required basis change.

Therefore, we only need column operations throughout our pro-
cedure and there is no need for a matrix representation. We rep-
resent the boundary operators as a set of boundary chains corre-
sponding to the columns of the matrix. Within this representation,
column exchanges (type 1) have no meaning, and the only opera-
tion we need is of type 3. Our data structure is an arrayT with
a slot for each simplex in the filtration, as shown in Figure 7 for
our example. Each simplex gets a slot in the table. For indexing,

2 3 4 5 6 7 1098
abc acdadcdbcab

0 1
4 5 6 910

ad acb
−a

c
−b

d
−c

a b c d ac

Figure 7: Data structure after running the algorithm on the
filtration in Figure 1. Marked simplices are in bold italic.

we need a full ordering of the simplices, so we complete the par-
tial order defined by the degree of a simplex by sorting simplices
according to dimension, breaking all remaining ties arbitrarily (we
did this implicitly in the matrix representation.) We also need the
ability to marksimplices to indicate non-pivot columns.

Rather than computing homology in each dimension indepen-
dently, we compute homology in all dimensions incrementally and
concurrently. The algorithm, as shown in Figure 8, stores the list of
P-intervals forHk in Lk.

COMPUTEINTERVALS (K) {
for k = 0 to dim(K) Lk = ∅;
for j = 0 to m− 1 {

d = REMOVEPIVOTROWS (σj);
if (d = ∅) Mark σj ;
else{

i = maxindexd; k = dim σj ;
Storej andd in T [i];
Lk = Lk ∪ {(deg σi, deg σj)}

}
}
for j = 0 to m− 1 {

if σj is marked andT [j] is empty{
k = dim σj ; Lk = Lk ∪ {(deg σj ,∞)}

}
}

}

Figure 8: Algorithm COMPUTEINTERVALS processes a complex
of m simplices. It stores the sets ofP-intervals in dimension k
in Lk.

When simplexσj is added, we check via procedure REMOVEPIV-
OTROWS to see whether its boundary chaind corresponds to a zero
or pivot column. If the chain is empty, it corresponds to a zero col-
umn and we markσj : its column is a basis element forZk, and the
corresponding row should not be eliminated in the next dimension.



chain REMOVEPIVOTROWS (σ) {
k = dim σ; d = ∂kσ;
Remove unmarked terms ind;
while (d 6= ∅) {

i = maxindexd;
if T [i] is empty, break;
Let q be the coefficient ofσi in T [i];
d = d− q−1T [i];

}
returnd;

}

Figure 9: Algorithm REMOVEPIVOTROWS first eliminates rows
not marked (not corresponding to the basis forZk−1), and then
eliminates terms in pivot rows.

Otherwise, the chain corresponds to a pivot column and the term
with the maximum indexi = maxindexd is the pivot, according
the procedure described for theF [t]-module. We store indexj and
chaind representing the column inT [i]. Applying Corollary 4.1,
we getP-interval(deg σi, deg σj). We continue until we exhaust
the filtration. We then perform another pass through the filtration
in search of infiniteP-intervals: marked simplices whose slot is
empty.

We give the function REMOVEPIVOTROWS in Figure 9. Ini-
tially, the function computes the boundary chaind for the sim-
plex. It then applies Lemma 4.2, eliminating all terms involving
unmarked simplices to get a representation in terms of the basis
for Zk−1. The rest of the procedure is Gaussian elimination in the
order of decreasing degree, as dictated by our discussion for the
F [t]-module. The term with the maximum indexi = max d is
a potential pivot. IfT [i] is non-empty, a pivot already exists in
that row, and we use the inverse of its coefficient to eliminate the
row from our chain. Otherwise, we have found a pivot and our
chain is a pivot column. For our example filtration in Figure 7,
the marked 0-simplices{a, b, c, d} and 1-simplices{ad, ac} gen-
erateP-intervalsL0 = {(0,∞), (0, 1), (1, 1), (1, 2)} andL1 =
{(2, 4), (3, 5)}, respectively.

4.3 Discussion
From our derivation, it is clear that the algorithm has the same

running time as Gaussian elimination over fields. That is, it takes
O(m3) in the worst-case, wherem is the number of simplices in
the filtration. The algorithm is very simple, however, and represents
the matrices efficiently. In our preliminary experiments, we have
seen a linear time behavior for the algorithm.

5. ALGORITHM FOR PIDS
The correspondence we established in Section 3 eliminated any

hope for a simple classification of persistent groups over rings that
are not fields. Nevertheless, we may still be interested in their com-
putation. In this section, we give an algorithm to compute the per-
sistent homology groupsHi,p

k of a filtered complexK for a fixed
i andp. The algorithm we provide computes persistent homology
over any PIDD of coefficients by utilizing a reduction algorithm
over that ring.

To compute the persistent group, we need to obtain a description
of the numerator and denominator of the quotient group in Equa-
tion (4). We already know how to characterize the numerator. We

simply reduce the standard matrix representationM i
k of ∂i

k using
the reduction algorithm. The denominator,Bi,p

k = Bi+p
k ∩ Zi

k,
plays the role of the boundary group in Equation (4). Therefore,
instead of reducing matrixM i

k+1, we need to reduce an alternate
matrix M i,p

k+1 that describes this boundary group. We obtain this
matrix as follows:

(1) We reduce matrixM i
k to its normal form and obtain a basis

{zj} for Zi
k, using fact (ii) in Section 2.5. We may merge

this computation with that of the numerator.

(2) We reduce matrixM i+p
k+1 to its normal form and obtain a basis

{bl} for Bi+p
k using fact (iii) in Section 2.5.

(3) Let N = [{bl} {zj}] = [B Z], that is, the columns of
matrix N consist of the basis elements from the bases we
just computed, andB andZ are the respective submatrices
defined by the bases. We next reduceN to normal form
to find a basis{uq} for its null-space. As before, we ob-
tain this basis using fact (ii). Eachuq = [αq ζq], where
αq, ζq are vectors of coefficients of{bl}, {zj}, respectively.
Note thatNuq = Bαq + Zζq = 0 by definition. In other
words, elementBαq = −Zζq is belongs to the span of
both bases. Therefore, both{Bαq} and {Zζq} are bases
for Bi,p

k = Bi+p
k ∩ Zi

k. We form a matrixM i,p
k+1 from either.

We now reduceM i,p
k+1 to normal form and read off the torsion co-

efficients and the rank ofBi,p
k . It is clear from the procedure that

we are computing the persistent groups correctly, giving us the fol-
lowing.

Theorem 5.1 For coefficients in any PID, persistent homology
groups are computable in the order of time and space of computing
homology groups.

6. EXPERIMENTS
In this section, we discuss experiments using an implementa-

tion of the persistence algorithm for arbitrary fields. Our aim is to
further elucidate the contributions of this paper. We look at two
scenarios where the previous algorithm would not be applicable,
but where our algorithm succeeds in providing information about a
topological space.

6.1 Implementation
We have implemented our field algorithm forZp for p a prime,

andQ coefficients. Our implementation is inC and utilizes GNU
MP, a multi-precision library, for exact computation [10]. We have
a separate implementation for coefficients inZ2 as the computation
is greatly simplified in this field. The coefficients are either0, or
1, so there is no need for orienting simplices or maintaining coeffi-
cients. Ak-chain is simply a list of simplices, those with coefficient
1. Each simplex is its own inverse, reducing the group operation to
the symmetric difference, where the sum of twok-chainsc, d is
c + d = (c ∪ d) − (c ∩ d). We use a 2.2 GHz Pentium 4 Dell
PC with 1 GB RAM running Red Hat Linux 7.3 for computing the
timings.

6.2 Data
Our algorithm requires a persistence complex as input. In the

introduction, we discussed how persistence complexes arise nat-
urally in practice. In Example 1.3, we discussed generating per-
sistence complexes using excursion sets of Morse functions over



numbersk of k-simplices
0 1 2 3 4

χ

K 2,000 6,000 4,000 0 0 0
E 3,095 52,285 177,067 212,327 84,451 1
J 17,862 297,372 1,010,203 1,217,319 486,627 1

Table 2: Datasets.K is the Klein bottle, E is potential around
electrostatic charges.J is supersonic jet flow.

manifolds. We have implemented a general framework for com-
puting complexes of this type. We must emphasize, however, that
our persistence software processes persistence complexes of any
origin.

Our framework takes a tuple(K, f) as input and produces a per-
sistence complexC(K, f) as output.K is ad-dimensional simpli-
cial complex that triangulates an underlying manifold. And
f : vertK → R is a discrete function over the vertices ofK that
we extend linearly over the remaining simplices ofK. The func-
tion f acts as the Morse function over the manifold, but need not
be Morse for our purposes. Frequently, our complex is augmented
with a mapϕ : K → Rd that immerses or embeds the manifold
in Euclidean space. Our algorithm does not requireϕ for compu-
tation, butϕ is often provided as a discrete map over the vertices
of K and is extended linearly as before. For each dataset, Table 2
gives the numbersk of k-simplices, as well as the Euler character-
istic χ =

∑
k(−1)ksk. We use the Morse function to compute the

excursion set filtration for each dataset. Table 3 gives information
on the resulting filtrations.

|K| len filt (s) pers (s)
K 12,000 1,020 0.03 < 0.01
E 529,225 3,013 3.17 5.00
J 3,029,383 256 24.13 50.23

Table 3: Filtrations. The number of simplices in the filtration
|K| =

∑
i si, the length of the filtration (number of distinct

values of functionf ), time to compute the filtration, and time
to compute persistence overZ2 coefficients.

6.3 Field Coefficients

A contribution of this paper is the generalization of the persis-
tence algorithm to arbitrary fields. This contribution is important
when the manifold under study contains torsion. To make this
clear, we compute the homology of the Klein bottle using the per-
sistence algorithm. Here, we are interested only in the Betti num-
bers of the final complex in the filtration for illustrative purposes.
In homology, the non-orientability of the Klein bottle manifests
itself as a torsional 1-cyclec where2c is a boundary (indeed,
it bounds the surface itself.) The homology groups overZ are:
H0(K) = Z, H1(K) = Z × Z2, andH2(K) = {0}. Note that
β1 = rank H1 = 1. We now use the “height function” as our
Morse function,f = z, to generate the filtration in Table 3. We
then compute the homology of datasetK with field coefficients us-
ing our algorithm, as shown in Table 4.

OverZ2, we getβ1 = 2 as homology is unable to recognize the
torsional boundary2c with coefficients0 and1. Instead, it observes
an additional class of homology 1-cycles. By the Euler-Poincaré re-
lation,χ =

∑
i βi, so we also get a class of 2-cycles to compensate

for the increase inβ1 [12]. Therefore,Z2-homology misidentifies

F β0 β1 β2 time (s)
Z2 1 2 1 0.01
Z3 1 1 0 0.23
Z5 1 1 0 0.23

Z3203 1 1 0 0.23
Q 1 1 0 0.50

Table 4: Field coefficients. The Betti numbers ofK computed
over field F and time for the persistence algorithm. We use a
separate implementation forZ2 coefficients.

the Klein bottle as the torus. Over any other field, however, ho-
mology turns the torsional cycle into a boundary, as the inverse of
2 exists. In other words, while we cannot observe torsion in com-
puting homology over fields, we can deduce its existence by com-
paring our results over different coefficient sets. Similarly, we can
compare sets ofP-intervals from different computations to discover
torsion in a persistence complex.

Note that our algorithm’s performance for this dataset is about
the same over arbitrary finite fields, as the coefficients do not get
large. The computation overQ takes about twice as much time and
space, since each rational is represented as two integers in GNU
MP.

6.4 Higher Dimensions
A second contribution of this paper is the extension of the per-

sistence algorithm from subcomplexes ofS3 to complexes in arbi-
trary dimensions. We have already utilized this capability in com-
puting the homology of the Klein bottle. We now examine the
performance of this algorithm in higher dimensions. For practi-
cal motivation, we use large-scale time-varying volume data as in-
put. Advances in data acquisition systems and computing technolo-
gies have resulted in the generation of massive sets of measured or
simulated data. The datasets usually contain the time evolution of
physical variables, such as temperature, pressure, or flow velocity
at sample points in space. The goal is to identify and localize sig-
nificant phenomena within the data. We propose using persistence
as the significance measure.

The underlying space for our datasets is the four-dimensional
space-time manifold. For each dataset, we triangulate the convex
hull of the samples to get a triangulation. Each complex listed in
Table 2 is homeomorphic to a four-dimensional ball and hasχ = 1.
DatasetE contains the potential around electrostatic charges at each
vertex. DatasetJ records the supersonic flow velocity of a jet en-
gine. We use these values as Morse functions to generate the filtra-
tions. We then compute persistence overZ2 coefficients to get the
Betti numbers. We give filtration sizes and timings in Table 3. Fig-
ure 10 displaysβ2 for datasetJ. We observe large number of two-
dimensional cycles (voids), as the co-dimension is 2. Persistence
allows us to do to decompose this graph into the set ofP-intervals.
Although there are 730,692P-intervals in dimension two, most are
empty as the topological attribute is created and destroyed at the
same function level. We draw the 502 non-emptyP-intervals in
Figure 11. We note that theP-intervals represent a compact and
generalshape descriptorfor arbitrary spaces.

For the large data sets, we do not compute persistence over alter-
nate fields as the computation requires in excess of two gigabytes of
memory. In the case of finite fieldsZp, we may restrict the primep
to be so that the computation fits within an integer. This is a reason-
able restriction, as on most modern machines with 32-bit integers,
it implies p < 216 − 1. Given this restriction, any coefficient will
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Figure 10: Graph of βf
1 for dataset J, where f is the flow ve-

locity.

be less thanp and representable as a 4-byte integer. The GNU MP
exact integer format, on the other hand, requires at least 16 bytes
for representing any integer.

7. CONCLUSION
We believe the most important contribution of this paper is a

reinterpretation of persistent homology within the classical frame-
work of algebraic topology. Our interpretation allows us to:

1. establish a correspondence that fully describes the structure
of persistent homology over any field, not only overZ2, as
in the previous result,

2. and relate the previous algorithm to the classic reduction al-
gorithm, thereby extending it to arbitrary fields and arbitrary
dimensional complexes, not just subcomplexes ofS3 as in
the previous result.

We provide implementations of our algorithm for fields, and show
that they perform quite well for large datasets. Finally, we give an
algorithm for computing a persistent homology group with fixed
parameters over arbitrary PIDs.

Our software forn-dimensional complexes enables us to analyze
arbitrary-dimensional point cloud data and their derived spaces.
One current project uses this implementation for feature recogni-
tion using a novel algebraic method [2]. Another project applies
persistence to derived spaces to arrive at compact shape descriptors
for geometric objects [3]. Future theoretical work include examin-
ing invariants for persistent homology over non-fields and defining
multivariate persistence, where there is more than one persistence
dimension. An example would be tracking a Morse function as
well as density of sampling on a manifold.
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