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ABSTRACT a oyl e
We study the homology of a filteretidimensional simplicial com- ° .
plex K as a single algebraic entity and establish a correspondence a° 5({,
that provides a simple description over fields. Our analysis enables
us to derive a natural algorithm for computing persistent homology |[0 |[ a. b J|[ 1 ][5 ]|[ 2 |[cd ad]|[3 ][ ac ]|[ 4 ][ abe ]|['5 ][ acd |

over an arbitrary field in any dimension. Our study also implies

the lack of a simple classification over non-fields. Instead, we give Figyre 1: A filtered complex with newly added simplices high-
an algorithm for computing individual persistent homology groups lighted.

over an arbitrary PIDs in any dimension.

isomorphism by finite families of intervals with integer endpoints.
We also derive a natural algorithm for computing this family of in-
tervals. Using this family, we may identify homological features
that persist within the filtration, thepersistent homologgf the fil-
tered complex.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—€omputations on discrete structurés.4 [Mathemati-
cal Software]: Algorithm design and analysis

General Terms: Algorithms, Theory Furthermore, our interpretation makes it clear that if the ground
ring is not a field, there exists no similarly simple classification of

Keywords: computational topology, persistent homology persistent homology. Rather, the structures are very complicated,
and although we may assign interesting invariants to them, no sim-

1. INTRODUCTION ple classification is, or is likely ever to be, available. In this case,
we provide an algorithm for computing a single persistent group

In this paper, we study the homology of a filterédimensional for the filtration.
simplicial complexk, allowing an arbitrary PIDD as the ground In the rest of this section, we first motivate our study through

ring of coefficients. A filtered complex is an increasing sequence three examples in which filtered complexes arise whose persistent

of simplicial complexes, as shown in Figure 1. It determineBian  homology is of interest. We then discuss prior work and its rela-

ductive systeraf homology groups, i.e. a family of Abelian groups  tionship to our work. We conclude this section with an outline of

{Gi}:>0 together with homomorphisms; — G;4.. If the ho- the paper.

mology is taken with field coefficients, we obtain an inductive sys-

tem of vector spaces over the field. Each vector space is determinedl_l Motivation

up to isomorphism by its dimension. In this paper, we obtain a sim-

ple classification of an inductive system of vector spaces. The clas- We call a filtered simplicial complex, along with its associated

sification is in terms of a graded module over the graded Fiftg chain and boundary mapsparsistence compleXVe will formal-

of polynomials over the field”, which can be parametrized up to  ize this concept in section 3. Persistence complexes arise natu-

" - _ _ rally whenever one is attempting to study topological invariants of
Research by the first author is partially supported by NSF under grant 3 space computationally. Often, our knowledge of this space is

CCR-00-86013. Research by the second author is partially supported by imiteq and imprecise. Consequently, we must utilize a multi-scale

NSF under grant DMS-0101364. Research by both authors is partially sup- ht t th tivity of th L :
ported by NSF under grant DMS-0138456. approach to capture the connectivity of the space, giving us a per
sistence complex.

Example 1.1 (point cloud data) Suppose we are given a finite set
Permission to make digital or hard copies of all or part of this work for Of points X' from a subspac& € R™. We call X point cloud
personal or classroom use is granted without fee provided that copies aredataor PCD for short. It is reasonable to believe that if the sam-
not made or distributed for profit or commercial advantage and that copies pling is dense enough, we should be able to compute the topolog-
bear this notice and the full citation on the first page. To copy otherwise, to jca| invariants ofX directly from the PCD. To do so, we may ei-
republish, to post on servers or to redistribute to lists, requires prior specific ther compute th€&chcomplex, or approximate it viaRipscom-

permission and/or a fee. .
SCG'04,June 811, 2004, Brooklyn, New York, USA. plex [11]. The latter compleX.(X) hasX as its vertex set. We

Copyright 2004 ACM 1-58113-885-7/04/000655.00. declarec = {zo,1,...,z,} to span ak-simplex of R (X) iff



d(zi,z;) < efor all pairsz;,z; € o. Thereis an obvious in- 1.4 Outline
clusion R.(X) — R« (X) whenevere < €. In other words, for

any increasing sequence of non-negative real numbers, we obtain ag
persistence complex.

We review concepts from algebra and simplicial homology in
ection 2. We also re-introduce persistent homology over integers
and arbitrary dimensions. In Section 3, we define and study the
persistence module, a structure that represents the homology of a
Example 1.2 (density) Often, our samples are not from a geomet- filtered complex. In addition, we establish a relationship between
ric object, but are heavily concentrated on it. It is important, there- our results and prior work. Using our analysis, we derive an algo-
fore, to compute a measure of density of the data around each sam+ithm for computation over fields in Section 4. For non-fields, we
ple. For instance, we may count the number of samp{e$ con- describe an algorithm in Section 5 that computes individual persis-
tained in a ball of size around each sample We may then define  tent groups. We conclude the paper in Section 7 with a discussion
R{(X) C R. to be the Rips subcomplex on the vertices for which of current and future work.

p(z) < r. Again, for any increasing sequence of non-negative real

numbers-, we obtain a persistence complex. We must analyze this 2. BACKGROUND

complex to compute topological invariants attached to the geomet-

ric object around which our data is concentrated. In this section, we review the mathematical and algorithmic back-

ground necessary for our work. We begin by reviewing the struc-
) ) ] ) ture of finitely generated modules over principal ideal domains. We
Example 1.3 (Morse functions) Given a manifold} equipped  then discuss simplicial complexes and their associated chain com-
with a Morse functionf, we may filter A/ via the excursion sets  plexes. Putting these concepts together, we define simplicial ho-
M, ={m € M | f(m) < r}. We again choose an increasing mology and outline the standard algorithm for its computation. We

sequence of non-negative numbers to get a persistence complex. Igonclude this section by describing persistent homology.
the Morse function is a height function attached to some embedding

of M in R™, persistent homology can now give information about 2 1 Algebra

the shape of the submanifolds, as well the homological invariants ] )
of the total manifold. Throughout this paper, we assume a riRgo be commutative

with unity. A polynomial f(¢) with coefficients inR is a formal
. sumy 2, ait’, wherea; € R andt is the indeterminate. The set
1.2 Prior work of all polynomialsf(¢) over R forms a commutative ringe[¢] with

We assume familiarity with basic group theory and refer the unity. If R has no divisors of zero, and all its ideals are principal,

reader to Dummit and Foote [6] for an introduction. We make ex- itis aprincipal |d_eal domain (PID)e.g.R, Q, Z, Zy for p prime,
tensive use of Munkres [12] in our description of algebraic homol- andFt] for F.af!eld. . . . .

ogy and recommend it as an accessible resource to non-specialists, A gradeq_ fngis a ring (R, +,®) equpped W,'th a direct sum
There is a large body of work on the efficient computation of ho- decqm.pos_ltlorj of Abehan g_r(_)upR :@l Ri, 1 € Z, so that
mology groups and their ranks [1, 4, 5, 9]. Persistent homology mult|p||cat_|on |s_def|ned by bilinear pairings,, ® Ry, — R”+m.'
groups were initially defined only for three-dimensional simplicial Element_s In a singlé; are callechomogeneouand have:iegrea_,
complexes and coefficients &y [7, 14]. The authors also provided ~ d€9¢ = i forall e € Ri. A graded modulé\/ over a graded fng
an algorithm for generating a particular set of intervals for subcom- Risa mpdule equipped W'th. a direct sum dec.omposnm,:
plexes ofS® overZ,. Surprisingly, they showed that these intervals ; Mi, i € Z, so that the action ak on M is defined by bilinear

allowed the correct computation of the rank of persistent homolo pairings R, © M — Mpn4m. A graded ring (module) ison-
W putat persi a9y negatively gradedf R; = 0 (M; = 0) for all i < 0. We may

groups. gradeR[t] non-negatively with thetandard gradingt™) = t" -
R[t],n > 0.
1.3 Our work The standard structure theorem describes finitely generated mod-

N . . . ules and graded modules over PIDs.
Viewing an inductive system of vector spaces as a single concep-

tual entity, we show that the algorithm in [7] extends to any induc-
tive system of chain complexes and does not depend on simplicial
complexes arising from coverings of setsRi. We extend and
generalize this algorithm to arbitrary dimensions and ground fields
by deriving it from the classic reduction scheme. In this manner, m
we illustrate how the algorithm derives its simple structure from the D’ (@ D/ diD> )
properties of the rich algebraic structures. We also show that if we i=1

consider integer coefficients or coefficients in some rtyghere for d; ¢ D, € Z, such thatd;|d; 1. Similarly, every graded
is no similar simple classification of inductive systems of modules module M over a graded PIDD decomposes uniquely into the
over R. This negative result suggests the possibility of interesting form

Theorem 2.1 (structure) If D is a PID, then every finitely gener-
atedD-module is isomorphic to a direct sum of cyclizzmodules.
That is, it decomposes uniquely into the form

1)

yet incomplete invariants of inductive systems. For now, we give an n m
algorithm for classifying a single homology group over an arbitrary @ YD | @ @ Y D/d;D |, 2)
PID. i=1 j=1

We finally obser.ve .that any filtered complex gives rise spac- whered; € D are homogeneous elements so théd; 11, a;,; €
tral sequenceln principle, we may use this method to compute the 7, andx* denotes am-shift upward in grading.

result of our algorithm. However, the method does not provide an

algorithm but aschemehat must be tailored for each problem in-  In both cases, the theorem decomposes the structures into free (left)
dependently. Our techniques, on the other hand, provide a completeand torsion (right) parts. In the latter case, the torsional elements
and effective algorithm. are also homogeneous.



2.2 Simplicial Complexes

A simplicial complexs a setK, together with a collectior$
of subsets of' called simplices(singularsimpley such that for
alv € K,{v} € 8§, andifr C o € 8, thent € 8. We
call the sets{v} the verticesof K. When it is clear from con-
text what§ is, we refer to sefK’ as a complex. We say € 8
is a k-simplexof dimensionk if |[o| = k+ 1. If - C o, Tis a

faceof o, ando is acofaceof 7. An orientationof a k-simplex Figure 3: A chain complex with its internals: chain, cycle, and
o, 0 = {vo,...,vr}, is an equivalence class of orderings of the ,oundary groups, and their images under the boundary opera-
vertices ofo, where(vo, . .., vk) ~ (v, - - -, Ur(k)) are equiva- tors.

lent if the sign ofr is 1. We denote aoriented simplexy [o].
A simplex may be realized geometrically as the convex hull of

k + 1 affinely independent points i?,d > k. A realization the Abelian groups we have defined so far as modules over the
gives us the familiar low-dimension&tsimplices:vertices, edges, integers. This view allows alternate ground rings of coefficients,
triangles andtetrahedra for 0 < k < 3.Within a realized com- including fields. If the ring is a PID, Hy, is aD-module and The-
plex, the simplices must meet along common facesuBcomplex orem (2.1) appliesp, the rank of the free submodule, is tBetti

of a simplicial complexK is a simplicial complex., C K. A numberof the module, andl; are itstorsion coefficients When
filtration of a complexK is a nested subsequence of complexes the ground ring i<Z, the theorem above describes the structure of
) = K°C K' C ... C K™ = K. For generality, we let finitely generated Abelian groups. Over a field, suctiRas), or

K' = K™ forall i > m. We call K afiltered complexWe show 7Z,, for p a prime, the torsion submodule disappears. The module is
a small filtered complex in Figure 1. a vector space that is fully described by a single integer, its flank

which depends on the chosen field.

2.3 Chain Complex

The kth chain groupCy. of K is the free Abelian group on its 2.5 Reduction

set of orientedk-simplices, wherdo] = —[r] if ¢ = 7 ando The standard method for computing homology is the reduction
andr are differently oriented.. An elemente Cy is ak-chain, algorithm. We describe this method for integer coefficients as it
c =Y, nilos], oi € K with coefficientsy; € Z. Theboundary is the more familiar ring. The method extends to modules over
operatordy : Cr, — Cx_1 is a homomorphism defined linearly on  arbitrary PIDs, however.

a chainc by its action on any simplex = [vo, v1, ..., vk] € ¢, As Cy is free, the oriented-simplices form thestandard basis

for it. We represent the boundary operatar. C, — Cx_1 rela-
tive to the standard bases of the chain groups as an integer matrix
M, with entries in{—1,0, 1}. The matrix};, is called thestan-
wherev; indicates tha; is deleted from the sequence. The bound- dard matrix representationf dy. It hasm; columns andmn_;

ko = > (=1)'lvo,v1,..., b, .., k],

i

ary operator connects the chain groups inthain complexC.: rows (the number ok- and (k — 1)-simplices, respectively.) The
Os1 on null-space ofM;, corresponds t@; and its range-space &1,
= Crp1 —— Cr — Cp1 — ... as manifested in Figure 3. Thieduction algorithmderives alter-

We may also define subgroups ©f, using the boundary opera- nate bases for the chain groups, relative to which the matri®;for

tor: thecycle groupZ;, = ker 8, and theboundary groupB; — is diagonal. The algorithm utilizes the followirgjementary row
im Or+1. We show examples of cycles in Figure 2. An important operationson My
property of the boundary operators is that the boundary of a bound-

ary is always empty), 9,1 = (. This fact, along with the defi- 1. exchange row and row;,

nitions, implies that the defined subgroups are nefed; Zx C 2. multiply rowi by —1,

Ck, as in Figure 3. For generality, we often define null boundary 3. replace row by (row i)+ g(row j), whereg is an integer and
operators in dimensions whe@g, is empty. j i

2.4 Homology The algorithm also usedementary column operatiotisat are sim-

) ilarly defined. Each column (row) operation corresponds to a change

The kth homology groups Hx = Zkg/B{c- Its elements are i the basis forCy, (Ck—1). For example, ife; ande; are theith
classes ohomologousycles. To describe its structure, we view and;jth basis elements fE;, respectively, a column operation of
type (3) amounts to replacing with e; 4+ ge;. A similar row op-
eration on basis elemenés andé; for C,_1, however, replaces
é; by é; — gé;. We shall make use of this fact in Section 4. The
algorithm systematically modifies the base€gafandCy_; using
elementary operations to redugé; to its (Smith) normal form

b1 0
) : 0
Figure 2: The dashed 1-boundary rests on the surface of a M, = 0 b
torus. The two solid 1-cycles form a basis for the first homology . '
class of the torus. These cycles are non-bounding: neither is a 0 0

boundary of a piece of surface.



wherel, = rank My, = rank My, b° > 1, andb;|b;41 for all

of the numerator. The-persistentith Betti number of<* is B,i’p,

1 < i < lx. The algorithm can also compute corresponding bases the rank of the free subgroup &f,”. We may also define per-

{e;} and{é;} for Cx andCj_1, respectively, although this is un-

sistent homology groups using the injectigh? : H;, — H}'?,

necessary if a decomposition is all that is needed. Computing the that maps a homology class into the one that contains it. Then,

normal form in all dimensions, we get a full characterizatiobpf

(i) the torsion coefficients ofl;_1 (d; in (1)) are precisely the
diagonal entrie$; greater than one.
(i) {e: | I +1 < i < my} is a basis forZ,. Therefore,
rank Zx = myg — li.
(i) {b:é; | 1 < i < I} is a basis foB,_1. Equivalently,
rank By = rank My411 = lk+1.

Combining (ii) and (iii), we have

B

®)

rank Zp — rank By, = mg — I — liy1.

For the complex in Figure 1, the standard matrix representation of

o1 is

‘ ab bc cd ad ac
al—-1 0 0o -1 -1
M, = bl 1 -1 0 0 0 ,
c| O 1 -1 0 1

d| 0 0 1 1 0

where we show the bases within the matrix.
we get the normal form

‘cd be ab z1 29

B d—c|1 0 0 0 O
M, = c—-b|0 1 0 0 0|,

b—a| 0 0 1 0 O

a 0O 0 0 0 O

wherez; = ad — bc — ed — ab andzy = ac — be — ab form a basis
for Z, and{d — ¢,c — b,b — a} is a basis foBy.

We may use a similar procedure to compute homology over graded

PIDs. Ahomogeneous basis a basis of homogeneous elements.
We begin by representing relative to the standard basis ©f;
(which is homogeneous) and a homogeneous basig;for. Re-
ducing to normal form, we read off the description provided by
direct sum (2) using the new badié; } for Z;_1:

(i) zero rows contributes a free term with shift; = degé;,

(ii) row with diagonal termb; contributes a torsional term with
homogeneoud; = b; and shifty; = degeé;.

The reduction algorithm require®(m?*) elementary operations,
wherem is the number of simplices i. The operations, however,

must be performed in exact integer arithmetic. This is problematic

Reducing the matrix,

~

imn;® H}? [7]. We extend this definition over arbitrary
PIDs, as before. Persistent homology groups are modules and The-
orem 2.1 describes their structure.

3. THE PERSISTENCE MODULE

In this section, we take a different view of persistent homology
in order to understand its structure. Intuitively, the computation of
persistence requires compatible basesHprand H}jp. It is not
clear when a succinct description is available for the compatible
bases. We begin this section by combining the homology of all
the complexes in the filtration into a single algebraic structure. We
then establish a correspondence that reveals a simple description
over fields. We end this section by illustrating the relationship of
our view to the persistence equation (Equation (4).)

Definition 3.1 (persistence complex)A persistence compleX is
a family of chain complexe$C. }:>o over R, together with chain
map’sf: C! — CiT! so that we have the following diagram:

0 1 2
cllcr i el

Our filtered complexk” with inclusion maps for the simplices be-
comes a persistence complex. Below, we show a portion of a per-
sistence complex, with the chain complexes expanded. The filtra-
tion index increases horizontally to the right under the chain maps
f*, and the dimension decreases vertically to the bottom under the
boundary operatorgy.

agl agl

.|

o JEE AN S LNe S i
azl azi azl
o} S AN S SNe S
all ali all
o] JEE AN S S LN c- S

Definition 3.2 (persistence module)A persistence modulk( is a

family of R-modulesM ¢, together with homomorphisms : M* —
1+1

in practice, as the entries of the intermediate matrices may become

extremely large.

2.6 Persistence

We end this section with by re-introducing persistence. Given
a filtered complex, théth complexK*® has associated boundary
operatorsd;,, matricesM;, and group<},, Z%, Bi, andHi for all
i, k > 0. Note that superscripts indicate the filtration index and are
not related to cohomology.

The p-persistentsth homology group ok ‘ is

HL.” zi./ (B n Zj). (4)

The definition is well-defined: both groups in the denominator are
subgroups on’”, so their intersection is also a group, a subgroup

For example, the homology of a persistence complex is a persis-
tence module, wherg® simply maps a homology class to the one
that contains it.

Definition 3.3 (finite type) A persistence complekC:, f*} (per-
sistence moduléM*, ©'}) is offinite typeif each component com-
plex (module) is a finitely generate@-module, and if the mapg’
(¢*, respectively) are isomorphisms for> m for some integern.

As our complexK is finite, it generates a persistence compiex

of finite type, whose homology is a persistence modiilef finite
type. We showed in the introduction how such complexes arise in
practice.



3.1 Correspondence

Suppose we have a persistence moddle= {M?, ¢'};>0 over
ring R. We now equipR[t] with the standard grading and define a
graded module oveR][t] by

a(M) = @Mi,

where theR-module structure is simply the sum of the structures
on the individual components, and where the actiohisiven by

) = (07 ¢0(m0)7w1(m1)’¢2(m2)’ .. )

That is,t simply shifts elements of the module up in the gradation.

0 1 2
t-(m’,m ,m"°,..

Theorem 3.1 (correspondence)The correspondencedefines an

(i, 0)

index ()

(d) ouaystsiod

(ij=irf G0

Gj-i)y’

v

Figure 4: The inequalitiesp > 0,1 > 4, andl 4+ p < j define
a triangular region in the index-persistence plane. This region

equivalence of categories between the category of persistence moddefines when the cycle is a basis element for the homology vec-

ules of finite type overR and the category of finitely generated
non-negatively graded modules oveft].

The proof is the Artin-Rees theory in commutative algebra [8].

The correspondence established by Theorem 3.1 shows that ther(;el
exists no simple classification of persistence modules over a ground

ring, such a¥, that is not a field. It is well known in commutative
algebra that the classification of modules o] is extremely

complicated. While it is possible to assign interesting invariants to

Z[t]-modules, a simple classification is not available, nor is it likely
ever to be available.

tor space.

3.2 Interpretation

Before proceeding any further, we recap our work so far and
ate it to prior results. Recall that our input is a filtered complex
K and we are interested in itgsh homology. In each dimension,
the homology of compleX® becomes a vector space over a field,
described fully by is ranig;.. We need to choose compatible bases
across the filtration in order to compute persistent homology for the
entire filtration. So, we form the persistence module corresponding
to K, a direct sum of these vector spaces. The structure theorem

On the other hand, the correspondence gives us a simple decomstates that a basis exists for this module that provides compatible

position when the ground ring is a field. Here, the graded ring

bases for all the vector spaces. In particular, €Béhterval (i, 5)

F[t] is a PID and its only graded ideals are homogeneous of form describes a basis element for the homology vector spaces starting at

(t™), so the structure of th&'[t]-module is described by sum (2) in
Theorem 2.1:

(_@ zaiFm) o (@ zWFM/(t”f‘)) .

We wish to parametrize the isomorphism classe#'gf-modules
by suitable objects.

©)

Definition 3.4 (P-interval) A P-interval is an ordered paif, j)
with0 <i < j € Z* =ZU {+o0}.

We associate a gradddt]-module to a se$ of P-intervals via a
bijection Q. We defineQ(i,j) = X'F[t]/(t7~") for P-interval
(i,4). Of course,Q(i, +00) = L'F[t]. For a set ofP-intervals
8 = {(41,71), (i2,J2) - - -, (in, jn)}, We define

Q(8) = €P Qi jv)-
=1

Our correspondence may now be restated as follows.

Corollary 3.1 The correspondenc® — Q(8) defines a bijec-
tion between the finite sets &fintervals and the finitely generated
graded modules over the graded rif§¢]. Consequently, the iso-
morphism classes of persistence modules of finite type Bvare
in bijective correspondence with the finite setsPeintervals.

times until time j — 1. This element is &-cyclee that is completed

at time ¢, forming a new homology class. It also remains non-

bounding until timej, at which time it joins the boundary gro@&j .

Therefore, th&-intervals discussed here are precisely the so-called

k-intervals utilized in [7] to describe persistéii-homology. That

is, while component homology groups are torsion-less, persistence

appears as torsional and free elements of the persistence module.
Our interpretation also allows us to ask when- B}, is a basis

element for the persistent groubé;p. Recall Equation (4). As

e ¢ Bl foralll < j, we know that ¢ B for | + p < j. Along

with I > ¢ andp > 0, the three inequalities define a triangular

region in the index-persistence plane, as drawn in Figure 4. The

region gives us the values for which theyclee is a basis element

for Hﬁ;". In other words, we have just shown a direct proof of the

k-triangle Lemman [7], which we restate here in a different form.

Lemma 3.1 Let T be the set of triangles defined yintervals for
the k-dimensional persistence module. The rahK of H.? is the
number of triangles ifi” containing the pointl, p).

Consequently, computing persistent homology over a field is equiv-
alent to finding the corresponding set®intervals.

4. ALGORITHM FOR FIELDS

In this section, we devise an algorithm for computing persistent
homology over a field. Given the theoretical development of the
last section, our approach is rather simple: we simplify the standard
reduction algorithm using the properties of the persistence module.



Our arguments give an algorithm for computing fhéntervals for

a filtered complex directly over the field, without the need for
constructing the persistence module. This algorithm is a general-
ized version of the pairing algorithm shown in [7].

4.1 Derivation

We use the small filtration in Figure 1 as a running example and
compute ovefZ,, although any field will do. The persistence mod-
ule corresponds to @.[t]-module by the correspondence estab-

lished in Theorem 2.1. Table 1 reviews the degrees of the simplices

of our filtration as homogeneous elements of this module.

ab
1

be
1

cd
2

ad
2

acd
5

abc
4

ac

Table 1: Degree of simplices of filtration in Figure 1

Throughout this section, we uge;} and{é;} to represent ho-
mogeneous bases @ andCy_1, respectively. Relative to ho-
mogeneous bases, any representalifinof 0x has the following
basic property:

degéZ + deng (17.7) = degej7 (6)

whereM (i, j) denotes the element at locatiohj). We get

‘ab bc cd ad ac

dlo 0 t t 0

M, = cl0 1 t 0 |, )
bt ¢t 0 0 0
alt 0 0 & ¢

for 01 in our example. The reader may verify Equation (6) using
this example for intuition, e.gM (4,4) = t* as degid — dega =
2 — 0 = 2, according to Table 1.

0 0
0

* * 0
* 0

* * 0 0

Figure 5: The column-echelon form. Anx indicates a non-zero
value and pivots are boxed.

wherez; = ad—cd —t-bc—t-ab, andzs = ac—t2-bc—t% - ab
form a homogeneous basis 6r.

The procedure that arrives at the echelon form is Gaussian elim-
ination on the columns, utilizing elementary column operations of
types (1, 3) only. Starting with the left-most column, we eliminate
non-zero entries occurring in pivot rows in order of increasing row.
To eliminate an entry, we use an elementary column operation of
type (3) that maintains the homogeneity of the basis and matrix el-
ements. We continue until we either arrive at a zero column, or we
find a new pivot. If needed, we then perform a column exchange
(type (1)) to reorder the columns appropriately.

Lemma 4.1 (Echelon Form) The pivots in column-echelon form
are the same as the diagonal elements in normal form. Moreover,
the degree of the basis elements on pivot rows is the same in both
forms.

PrROOF Because of our sort, the degree of row basis elements
é; is monotonically decreasing from the top row down. Within
each fixed columry, dege; is a constant. By Equation (6),
degMy (i, ) = c—degé;. Therefore, the degree of the elements in
each column is monotonically increasing with row. We may elim-
inate non-zero elements below pivots using row operations that do
not change the pivot elements or the degrees of the row basis el-
ements. We then place the matrix in diagonal form with row and
column swaps. [

Clearly, the standard bases for chain groups are homogeneous.

We need to represenl. : C, — Cy_1 relative to the standard ba-
sis forCy and a homogeneous basis #y_;. We then reduce the
matrix and read off the description b, according to our discus-

The lemma states that if we are only interested in the degree of
the basis elements, we may read them off from the echelon form
directly. Thatis, we may use the following corollary of the standard

sion in Section 2.5. We compute these representations inductively structure theorem to obtain the description.

in dimension. The base case is trivial. s = 0, Zo = Co and

the standard basis may be used for represerdtingNow, assume

we have a matrix representatidd,, of Jy relative to the standard
basis{e;} for C; and a homogeneous bagig;} for Z,_,. For
induction, we need to compute a homogeneous basig faand
represendt), 1 relative toCy1 and the computed basis. We begin
by sorting basi€; in reverse degree order, as already done in the
matrix in Equation (7). We next transford}. into the column-
echelon formM, a lower staircase form shown in Figure 5 [13].
The steps have variable height, all landings have width equal to

Corollary 4.1 Let M, be the column-echelon form fé¥, relative
to bases{e;} and{é;} for C, andZ;_1, respectively. If row;
has pivotM, (4,5) = t", it contributesx%9 F'[¢] /t™ to the de-
scription ofH,_;. Otherwise, it contributeE%% F[t]. Equiva-
lently, we get(degé;, degé; + n) and(degé;, co), respectively, as
P-intervals forH; .

In our example M (1,1) = ¢ in Equation (8). As deg = 1, the
element contributeX' Z,[t]/(t) or P-interval (1,2) to the descrip-

one, and non-zero elements may only occur beneath the staircasetion of Ho.

A boxed value in the figure is pivot and a row (column) with a
pivot is called gpivot row (column) From linear algebra, we know
thatrank My = rank By_; is the number of pivots in an eche-
lon form. The basis elements corresponding to non-pivot columns
form the desired basis f&;. In our example, we have

‘ ed bec ab z1 2o
d 0 0 0 O
M = cl| t 0o 0 0 |, (8)
bl o ¢ 0 0
al0O 0 ¢t 0 O

We now wish to represerdl;; in terms of the basis we com-
puted forZ,. We begin with the standard matrix representation
M1 of Oky1. ASOrOks1 = 0, M My1+1 = 0, as shown in Fig-
ure 6. Furthermore, this relationship is unchanged by elementary
operations. Since the domain @f is the codomain 01, the
elementary column operations we used to transfdfgminto eche-
lon form M, give corresponding row operations ifi. 1. These
row operations zero out rows i1 that correspond to non-zero
pivot columns inMy, and give a representation &f ., relative to
the basis we just computed fdy,. This is precisely what we are
after. We can get it, however, with hardly any work.



my_;xm, my xmy g
Figure 6: As 8x0x4+1 = 0, M M;4+1 = 0 and this is un-
changed by elementary operations. When\M{y, is reduced to
echelon form M}, by column operations, the corresponding row
operations zero out rows in M1 that correspond to pivot
columns in M.

Lemma 4.2 (Basis Change)To represend;; relative to the stan-
dard basis foCy,1 and the basis computed fdy;, simply delete
rows in My that correspond to pivot columns ivy.

PROOF We only used elementary column operations of types
(1,3) in our variant of Gaussian elimination. Only the latter changes
values in the matrix. Suppose we replace coluron (columni) +
g(columnj) in order to eliminate an element in a pivot rgwas
shown in Figure 6. This operation amounts to replacing column
basis elemery; by e; 4 ge; in M}, To effect the same replacement
in the row basis fob1, we need to replace roywwith (row j5) —
q(row 7). But row is eventually zeroed-out, as shown in Figure 6,
and rowsi is never changed by any such operatiofi]

Therefore, we have no need for row operations. We simply elimi-
nate rows corresponding to pivot columns one dimension lower to
get the desired representation &y, in terms of the basis fafx.

This completes the induction. In our example, the standard matrix
representation fod, is

To get a representation in terms®f and the basi$z, z2) for Z;

we computed earlier, we simply eliminate the bottom three rows.
These rows are associated with pivotsiif, according to Equa-
tion (8). We get

where we have also replaced and ac with the corresponding
basis elements; = ad — bc — ¢d — ab andzz = ac — be — ab.

4.2 Algorithm

Our discussion gives us an algorithm for computihintervals
of an F'[t]-module over fieldF'. It turns out, however, that we can
simulate the algorithm over the field itself, without the need for
computing theF[t]-module. Rather, we use two significant ob-
servations from the derivation of the algorithm. First, Lemma 4.1

guarantees that if we eliminate pivots in the order of decreasing de-

gree, we may read off the entire description from the echelon form

and do not need to reduce to normal form. And second, Lemma 4.2
tells us that by simply noting the pivot columns in each dimension

and eliminating the corresponding rows in the next dimension, we
get the required basis change.

Therefore, we only need column operations throughout our pro-
cedure and there is no need for a matrix representation. We rep-
resent the boundary operators as a set of boundary chains corre-
sponding to the columns of the matrix. Within this representation,
column exchanges (type 1) have no meaning, and the only opera-
tion we need is of type 3. Our data structure is an affayith
a slot for each simplex in the filtration, as shown in Figure 7 for
our example. Each simplex gets a slot in the table. For indexing,

a b ¢ d ab bc cd ad ac abc acd
0 1 3 4 5 6 7 8 9 10
lINWTTW
b ¢ d ad ac

-a -b -c

Figure 7: Data structure after running the algorithm on the
filtration in Figure 1. Marked simplices are in bold italic.

we need a full ordering of the simplices, so we complete the par-
tial order defined by the degree of a simplex by sorting simplices
according to dimension, breaking all remaining ties arbitrarily (we
did this implicitly in the matrix representation.) We also need the
ability to mark simplices to indicate non-pivot columns.

Rather than computing homology in each dimension indepen-
dently, we compute homology in all dimensions incrementally and
concurrently. The algorithm, as shown in Figure 8, stores the list of
P-intervals forHy, in Ly.

COMPUTEINTERVALS (K) {
for k = 0todim(K) Ly = 0;
forj=0tom—1{
d = REMOVEPIVOTROWS (07);
if (d = 0) Mark o;
else{
i = maxindexd; k = dim o”;
Storej andd in T'[7];
Ly = Ly U {(dego’,dega?)}

}
forj=0tom—1{
if o7 is marked and[j] is empty{
k=dimoe?; L, = Ly U {(degaj7 00)}
}
}
}

Figure 8: Algorithm COMPUTEINTERVALS processes a complex
of m simplices. It stores the sets ofP-intervals in dimension k
in Ly.

When simplex’ is added, we check via procedureRovePIv-
oTRowsto see whether its boundary chaircorresponds to a zero
or pivot column. If the chain is empty, it corresponds to a zero col-
umn and we mark’: its column is a basis element fa, and the
corresponding row should not be eliminated in the next dimension.



chain REMOVEPIVOTRoOWS (o) {

k =dimo; d = Oy0;

Remove unmarked terms ih

while (d # 0) {
1 = maxindexd,
if T'[i] is empty, break;
Let g be the coefficient o&* in T'[i];
d=d—q 'T[i];

returnd,

}

Figure 9: Algorithm ReEmoVEPIVOTRowsfirst eliminates rows
not marked (not corresponding to the basis forZ,,_1), and then
eliminates terms in pivot rows.

Otherwise, the chain corresponds to a pivot column and the term
with the maximum indeX = maxindexd is the pivot, according
the procedure described for tfi&t]-module. We store indexand
chaind representing the column i[;]. Applying Corollary 4.1,
we getP-interval (deg o*, deg o). We continue until we exhaust
the filtration. We then perform another pass through the filtration
in search of infiniteP-intervals: marked simplices whose slot is
empty.

We give the function RMOVEPIVOTROWS in Figure 9. Ini-
tially, the function computes the boundary chairfor the sim-
plex. It then applies Lemma 4.2, eliminating all terms involving

unmarked simplices to get a representation in terms of the basis

for Z,_1. The rest of the procedure is Gaussian elimination in the

simply reduce the standard matrix representaMb of 9% using

the reduction algorithm. The denominat®,” = B}'" n Z,
plays the role of the boundary group in Equation (4). Therefore,
instead of reducing matri®/}, ,, we need to reduce an alternate

matrix M,i’fl that describes this boundary group. We obtain this

matrix as follows:

(1) We reduce matriX//{ to its normal form and obtain a basis
{27} for Z},, using fact (ii) in Section 2.5. We may merge
this computation with that of the numerator.

(2) We reduce matriM,ij;’l’ to its normal form and obtain a basis

{b'} for BL using fact (iii) in Section 2.5.

(3) Let N = [{b'} {2’}] = [B Z], that is, the columns of
matrix NV consist of the basis elements from the bases we
just computed, an® and Z are the respective submatrices
defined by the bases. We next redu¥eto normal form
to find a basis{u?} for its null-space. As before, we ob-
tain this basis using fact (ii). Each? = [a? ¢?], where
a?,¢? are vectors of coefficients db'}, {27}, respectively.
Note thatNu? = Ba? + Z¢? = 0 by definition. In other
words, elementBa? = —Z(? is belongs to the span of
both bases. Therefore, boffBa?} and {Z(?} are bases
for B;? = B,"” N Zj.. We form a matrix\Z,*, from either.

We now reduceM]if1 to normal form and read off the torsion co-

efficients and the rank d@;”. It is clear from the procedure that

we are computing the persistent groups correctly, giving us the fol-
lowing.

Theorem 5.1 For coefficients in any PID, persistent homology

order of decreasing degree, as dictated by our discussion for thegroups are computable in the order of time and space of computing

F[t]-module. The term with the maximum indéx= maxd is

a potential pivot. If7[¢] is non-empty, a pivot already exists in
that row, and we use the inverse of its coefficient to eliminate the
row from our chain. Otherwise, we have found a pivot and our
chain is a pivot column. For our example filtration in Figure 7,
the marked O-simpliceéa, b, ¢, d} and 1-simpliceqad, ac} gen-
erateP-intervals Ly, = {(0,00),(0,1),(1,1),(1,2)} and L,
{(2,4), (3,5)}, respectively.

4.3 Discussion

From our derivation, it is clear that the algorithm has the same
running time as Gaussian elimination over fields. That is, it takes
O(m?®) in the worst-case, wher is the number of simplices in
the filtration. The algorithmis very simple, however, and represents
the matrices efficiently. In our preliminary experiments, we have
seen a linear time behavior for the algorithm.

5. ALGORITHM FOR PIDS

The correspondence we established in Section 3 eliminated any

hope for a simple classification of persistent groups over rings that
are not fields. Nevertheless, we may still be interested in their com-
putation. In this section, we give an algorithm to compute the per-
sistent homology group#,’” of a filtered complexk for a fixed

7 andp. The algorithm we provide computes persistent homology
over any PIDD of coefficients by utilizing a reduction algorithm
over that ring.

homology groups.

6. EXPERIMENTS

In this section, we discuss experiments using an implementa-
tion of the persistence algorithm for arbitrary fields. Our aim is to
further elucidate the contributions of this paper. We look at two
scenarios where the previous algorithm would not be applicable,
but where our algorithm succeeds in providing information about a
topological space.

6.1 Implementation

We have implemented our field algorithm fay, for p a prime,
andQ coefficients. Our implementation is i@ and utilizes GNU
MP, a multi-precision library, for exact computation [10]. We have
a separate implementation for coefficient&inas the computation
is greatly simplified in this field. The coefficients are eiteror
1, so there is no need for orienting simplices or maintaining coeffi-
cients. Ak-chain is simply a list of simplices, those with coefficient
1. Each simplex is its own inverse, reducing the group operation to
the symmetric differengewhere the sum of twd-chainsc, d is
c+d=(cUd)— (cnd). Weuse a 2.2 GHz Pentium 4 Dell
PC with 1 GB RAM running Red Hat Linux 7.3 for computing the
timings.

6.2 Data

Our algorithm requires a persistence complex as input. In the

To compute the persistent group, we need to obtain a descriptionintroduction, we discussed how persistence complexes arise nat-
of the numerator and denominator of the quotient group in Equa- urally in practice. In Example 1.3, we discussed generating per-
tion (4). We already know how to characterize the numerator. We sistence complexes using excursion sets of Morse functions over



numbersy, of k-simplices x

0 1 [ 2 [ 3 [ 4
K 2,000 6,000 4,000 0 off o
E 3,095| 52,285| 177,067| 212,327 84,451| 1
J || 17,862 | 297,372| 1,010,203| 1,217,319| 486,627 | 1

Table 2: Datasets.K is the Klein bottle, E is potential around
electrostatic charges.JJ is supersonic jet flow.

manifolds. We have implemented a general framework for com-

puting complexes of this type. We must emphasize, however, that

F Bo | B1 | B2 || time(s)
Zo 1 2 1 0.01
Z3 1 1 0 0.23
Zs 1 1 0 0.23
73203 1 1 0 0.23
Q 1 1 0 0.50

Table 4: Field coefficients. The Betti numbers ofi computed
over field F' and time for the persistence algorithm. We use a
separate implementation forZ. coefficients.

our persistence software processes persistence complexes of anY e Klein bottle as the torus. Over any other field, however, ho-

origin.

Our framework takes a tuplds, f) as input and produces a per-
sistence compleg (K, f) as output.K is ad-dimensional simpli-
cial complex that triangulates an underlying manifold. And
f:vertK — R is a discrete function over the vertices &f that
we extend linearly over the remaining simplicesff The func-
tion f acts as the Morse function over the manifold, but need not

mology turns the torsional cycle into a boundary, as the inverse of
2 exists. In other words, while we cannot observe torsion in com-
puting homology over fields, we can deduce its existence by com-
paring our results over different coefficient sets. Similarly, we can
compare sets df-intervals from different computations to discover
torsion in a persistence complex.

Note that our algorithm’s performance for this dataset is about

be Morse for our purposes. Frequently, our complex is augmentedinhe same over arbitrary finite fields, as the coefficients do not get

with a mapy : K — R? that immerses or embeds the manifold
in Euclidean space. Our algorithm does not requir®r compu-
tation, buty is often provided as a discrete map over the vertices

of K and is extended linearly as before. For each dataset, Table 2

gives the numbes;. of k-simplices, as well as the Euler character-
istic x = >, (—1)"si. We use the Morse function to compute the
excursion set filtration for each dataset. Table 3 gives information
on the resulting filtrations.

|K| len filt (s) | pers (s)
K 12,000| 1,020| 0.03| <0.01
E 529,225| 3,013 || 3.17 5.00
J || 3,029,383| 256 | 24.13 50.23

Table 3: Filtrations. The number of simplices in the filtration
|K| = >, s:, the length of the filtration (number of distinct
values of function f), time to compute the filtration, and time
to compute persistence oveZ, coefficients.

6.3 Field Coefficients

A contribution of this paper is the generalization of the persis-
tence algorithm to arbitrary fields. This contribution is important
when the manifold under study contains torsion. To make this
clear, we compute the homology of the Klein bottle using the per-
sistence algorithm. Here, we are interested only in the Betti num-
bers of the final complex in the filtration for illustrative purposes.
In homology, the non-orientability of the Klein bottle manifests
itself as a torsional 1-cycle where2c is a boundary (indeed,
it bounds the surface itself.) The homology groups d¥eare:
Ho(K) =7, Hl(K) =7 X Zso, anng(K) = {0} Note that
51 rankH; = 1. We now use the “height function” as our
Morse function,f = z, to generate the filtration in Table 3. We
then compute the homology of dataketwith field coefficients us-
ing our algorithm, as shown in Table 4.

OverZs, we get3; = 2 as homology is unable to recognize the
torsional boundargc with coefficient9) and1. Instead, it observes
an additional class of homology 1-cycles. By the Euler-Poimoar
lation,x = >", 8:, so we also get a class of 2-cycles to compensate
for the increase ip; [12]. Therefore/Z.-homology misidentifies

large. The computation ové€) takes about twice as much time and
space, since each rational is represented as two integers in GNU
MP.

6.4 Higher Dimensions

A second contribution of this paper is the extension of the per-
sistence algorithm from subcomplexesSdfto complexes in arbi-
trary dimensions. We have already utilized this capability in com-
puting the homology of the Klein bottle. We now examine the
performance of this algorithm in higher dimensions. For practi-
cal motivation, we use large-scale time-varying volume data as in-
put. Advances in data acquisition systems and computing technolo-
gies have resulted in the generation of massive sets of measured or
simulated data. The datasets usually contain the time evolution of
physical variables, such as temperature, pressure, or flow velocity
at sample points in space. The goal is to identify and localize sig-
nificant phenomena within the data. We propose using persistence
as the significance measure.

The underlying space for our datasets is the four-dimensional
space-time manifold. For each dataset, we triangulate the convex
hull of the samples to get a triangulation. Each complex listed in
Table 2 is homeomorphic to a four-dimensional ball andyhas 1.
DataseE contains the potential around electrostatic charges at each
vertex. Datased records the supersonic flow velocity of a jet en-
gine. We use these values as Morse functions to generate the filtra-
tions. We then compute persistence o¥ercoefficients to get the
Betti numbers. We give filtration sizes and timings in Table 3. Fig-
ure 10 displaygs, for datasetl. We observe large number of two-
dimensional cycles (voids), as the co-dimension is 2. Persistence
allows us to do to decompose this graph into the sét-oftervals.
Although there are 730,692-intervals in dimension two, most are
empty as the topological attribute is created and destroyed at the
same function level. We draw the 502 non-emfftyntervals in
Figure 11. We note that th@-intervals represent a compact and
generakhape descriptofor arbitrary spaces.

For the large data sets, we do not compute persistence over alter-
nate fields as the computation requires in excess of two gigabytes of
memory. In the case of finite field,, we may restrict the primg
to be so that the computation fits within an integer. This is a reason-
able restriction, as on most modern machines with 32-bit integers,
itimpliesp < 2'® — 1. Given this restriction, any coefficient will
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Figure 10: Graph of [3{ for dataset J, where f is the flow ve-
locity.

be less thap and representable as a 4-byte integer. The GNU MP

exact integer format, on the other hand, requires at least 16 bytes

for representing any integer.

7. CONCLUSION

We believe the most important contribution of this paper is a
reinterpretation of persistent homology within the classical frame-
work of algebraic topology. Our interpretation allows us to:

1. establish a correspondence that fully describes the structure

of persistent homology over any field, not only ov&y, as
in the previous result,

. and relate the previous algorithm to the classic reduction al-
gorithm, thereby extending it to arbitrary fields and arbitrary
dimensional complexes, not just subcomplexe§ds in
the previous result.

We provide implementations of our algorithm for fields, and show
that they perform quite well for large datasets. Finally, we give an
algorithm for computing a persistent homology group with fixed
parameters over arbitrary PIDs.

Our software fom-dimensional complexes enables us to analyze
arbitrary-dimensional point cloud data and their derived spaces.
One current project uses this implementation for feature recogni-
tion using a novel algebraic method [2]. Another project applies

Figure 11: The 502 non-emptyP-intervals for datasetJ in di-
mension two. The amalgamation of these intervals gives the
graph in Figure 10.
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