www.fgks.org   »   [go: up one dir, main page]

RealClimate logo


Cosmic rays and clouds: Potential mechanisms

Filed under: — group @ 26 September 2011

Guest Commentary by Jeffrey Pierce (Dalhousie U.)

I’ve written this post to help readers understand potential physical mechanisms behind cosmic-ray/cloud connections. But first I briefly want to explain my motivation.

Prior to the publication of the aerosol nucleation results from the CLOUD experiment at CERN in Nature several weeks ago [Kirkby et al, 2011], I was asked by Nature Geoscience to write a “News and Views” on the CLOUD results for a general science audience. As an aerosol scientist, I found the results showing the detailed measurements of the influences of ammonia, organics and ions from galactic cosmic rays on aerosol formation exciting. While none of the results were entirely unexpected, the paper still represents a major step forward in our understanding of particle formation. This excitement is what I tried to convey to the general scientific audience in the News and Views piece. However, I only used a small portion of the editorial to discuss the implications to cosmic rays and clouds because (1) I felt that these implications represented only a small portion of the CLOUD findings, and (2) the CLOUD results address only one of several necessary conditions for cosmic rays to affect clouds, and have not yet tested the others.

Many of the news articles and blog posts covering the CLOUD article understandably focused much more on the cosmic-ray/cloud connection as it is easy to tie this connection into the climate debate. While many of the articles did a good job at reporting the CLOUD results within the big picture of cosmic-ray/cloud connections, some articles erroneously claimed that the CLOUD results proved the physics behind a strong cosmic-ray/cloud/climate connection, and others still just got it very muddled. A person hoping to learn more about cosmic rays and clouds likely ended up confused after reading the range of articles published. This potential confusion (along with many great questions and comments in Gavin’s CLOUD post) motivated me to write a general overview of the potential physical mechanisms for cosmic rays affecting clouds. In this post, I will focus on what we know and don’t know regarding the two major proposed physical mechanisms connecting cosmic rays to clouds and climate.
More »

References

  1. J. Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy, S. Ehrhart, A. Franchin, S. Gagné, L. Ickes, A. Kürten, A. Kupc, A. Metzger, F. Riccobono, L. Rondo, S. Schobesberger, G. Tsagkogeorgas, D. Wimmer, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, J. Dommen, A. Downard, M. Ehn, R.C. Flagan, S. Haider, A. Hansel, D. Hauser, W. Jud, H. Junninen, F. Kreissl, A. Kvashin, A. Laaksonen, K. Lehtipalo, J. Lima, E.R. Lovejoy, V. Makhmutov, S. Mathot, J. Mikkilä, P. Minginette, S. Mogo, T. Nieminen, A. Onnela, P. Pereira, T. Petäjä, R. Schnitzhofer, J.H. Seinfeld, M. Sipilä, Y. Stozhkov, F. Stratmann, A. Tomé, J. Vanhanen, Y. Viisanen, A. Vrtala, P.E. Wagner, H. Walther, E. Weingartner, H. Wex, P.M. Winkler, K.S. Carslaw, D.R. Worsnop, U. Baltensperger, and M. Kulmala, "Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation", Nature, vol. 476, 2011, pp. 429-433. DOI.

An exercise about meaningful numbers: examples from celestial “attribution studies”

Filed under: — rasmus @ 30 August 2011

Is the number 2.14159 (here rounded off to 5 decimal points) a fundamentally meaningful one? Add one, and you get

π = 3.14159 = 2.14159 + 1.

Of course, π is a fundamentally meaningful number, but you can split up this number in infinite ways, as in the example above, and most of the different terms have no fundamental meaning. They are just numbers.

But what does this have to do with climate? My interpretation of Daniel Bedford’s paper in Journal of Geography, is that such demonstrations may provide a useful teaching tool for climate science. He uses the phrase ‘agnotology’, which is “the study of how and why we do not know things”.

More »

The CERN/CLOUD results are surprisingly interesting…

Filed under: — gavin @ 24 August 2011

The long-awaited first paper from the CERN/CLOUD project has just been published in Nature. The paper, by Kirkby et al, describes changes in aerosol nucleation as a function of increasing sulphates, ammonia and ionisation in the CERN-based ‘CLOUD’ chamber. Perhaps surprisingly, the key innovation in this experimental set up is not the presence of the controllable ionisation source (from the Proton Synchrotron accelerator), but rather the state-of-the-art instrumentation of the chamber that has allowed them to see in unprecedented detail what is going on in the aerosol nucleation process (this is according to a couple of aerosol people I’ve spoken about this with).

This paper is actually remarkably free of the over-the-top spin that has accompanied previous papers, and that bodes very well for making actual scientific progress on this topic.
More »

How large were the past changes in the sun?

Filed under: — rasmus @ 23 August 2011

We only have direct observations of total solar irradiance (TSI) since the beginning of the satellite era and substantial evidence for variations in the level of solar activity (from cosmogenic isotopes or sunspot records) in the past. Tying those factors together in order to estimate solar irradiance variations in the past is crucial for attributing past climate changes, particularly in the pre-industrial.

In the May issue of Astronomy & Astrophysics, Shapiro et al. present a new long-term reconstruction of the solar irradiance that implies much greater variation over the last 7000 years than any previously reconstruction. What is the basis for this difference?
More »

What if the Sun went into a new Grand Minimum?

Filed under: — group @ 19 June 2011

Guest commentary by Georg Feulner

During a meeting of the Solar Physics Division of the American Astronomical Society, solar physicists have just announced a prediction that the Sun might enter an extended period of low activity (a ‘grand minimum’) similar to the Maunder Minimum in the 17th century. In this post I will explore the background of this announcement and discuss implications for Earth’s climate.
More »