www.fgks.org   »   [go: up one dir, main page]

Arctic Sea Ice Volume Anomaly, version 2

Daily Ice Volume

Arctic sea ice volume anomaly from PIOMAS updated once a month. Daily Sea Ice volume anomalies for each day are computed relative to the 1979 to 2010 average for that day of the year. The trend for the period 1979- present  is shown in blue. Shaded areas show one and two standard deviations from the trend. Error bars indicate the uncertainty of the  monthly anomaly plotted once per year.

November Ice Volume Anomaly

Total Arctic sea ice volume from PIOMAS showing the volume of the mean annual cycle, the current year,  and 2007 (the year of minimum sea ice extent in September). Shaded areas indicate one and two standard deviations from the mean.

Arctic Sea Ice Volume Anomaly

Sea Ice Volume is calculated using the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003) developed at APL/PSC.  Anomalies for each day are calculated relative to the average over the 1979 -2010 period for that day of the year to remove the annual cycle. The model mean annual cycle of sea ice volume over this period ranges from 28,700 km3 in April to 12,300 km3 in September.  The blue line represents the trend calculated from January 1 1979 to the most recent date indicated on the figure.  Monthly averaged ice volume for August 2011 was 5,000 km3. This value is 62% lower than the mean over this period, 72% lower than the maximum in 1979, and 2.3 standard deviations below the trend. Shaded areas represent one and two standard deviations of the residuals of the anomaly from the trend. Updates will be generated at approximately one-month intervals.

Purpose

Sea ice volume is an important climate indicator. It depends on both ice thickness and extent and therefore more directly tied to climate forcing than extent alone.  However,  Arctic sea ice volume cannot currently be observed continuously.  Observations from satellites, Navy submarines, moorings, and field measurements are all limited in space and time.  The assimilation of observations into numerical models currently provides one way of estimating sea ice volume changes on a continous basis. Volume estimates using age of sea ice as a proxy for ice thickness are another useful method (see here and here).  Comparisons of the model estimates of the ice thickness with observations help test our understanding of the processes represented in the model that are important for sea ice formation and melt.

 

New Version

This time series of ice volume is generated with an updated version of PIOMAS (June-15,2011).  This updated version improves on prior versions by assimilating sea surface temperatures (SST) for ice-free areas and by using a different parameterization for the strength of the ice. Comparisons of PIOMAS estimates with ice thickness observations show reduced errors over the prior version.  The long term trend is reduced to about -2.8 10km3/decade from -3.6 km3 103/decade in the last version. Our comparisons with data and alternate model runs indicate that this new trend is a conservative estimate of the actual trend.  New with this version we provide uncertainty statistics. More details can be found in Schweiger et al. 2011.  Model improvement is an ongoing research activity at PSC and model upgrades may occur at irregular intervals.  When model upgrades occur, the entire time series will be reprocessed and posted.

 

Model and Assimilation Procedure

PIOMAS is a numerical model with components for sea ice and ocean and the capacity for assimilating some kinds of observations. For the ice volume simulations shown here, sea ice concentration information from the NSIDC near-real time product are assimilated into the model to improve ice thickness estimates and SST data from the NCEP/NCAR Reanalysis are assimilated in the ice-free areas.  NCEP/NCAR reanalysis SST data are based on the global daily high-resolution Reynolds SST analyses using satellite and in situ observations (Reynolds and Marsico, 1993; Reynolds et al., 2007). Atmospheric information to drive the model, specifically wind, surface air temperature, and cloud cover to compute solar and long wave radiation are specified from the NCEP/NCAR reanalysis. The pan-Arctic ocean model is forced with input from a global ocean model at its open boundaries located at 45 degrees North.

 

Model Validation and Uncertainty

PIOMAS has been extensively validated through comparisons with observations from US-Navy submarines, oceanographic moorings, and satellites. In addition model runs were performed in which model parameters and assimilation procedures were altered.  From these validation studies we arrive at conservative estimates of the uncertainty in the trend of  ± 1.0 103 km3/decade. The uncertainty of the  monthly averaged ice volume anomaly is estimated as ±0.75  103 km3. Total volume uncertainties are larger than those for the anomaly because model biases are removed when calculating the anomalies. The uncertainty for October total ice volume is estimated to be  ±1.35 103 km3 .  Comparison of winter  total volumes with other volume estimates need to account for the fact that the PIOMAS domain currently does not extend southward far enough to cover all areas that can have winter time ice cover.  Areas in the Sea of Okhotsk and in the Gulf of St. Lawrence are partially excluded from the domain.  Details on model validation can be found in Schweiger et al. 2011 (pdf) and (here). Additional information on PIOMAS can be found (here)

Data

By popular request we now make the data used to generate the PIOMAS anomaly figure available (here).