www.fgks.org   »   [go: up one dir, main page]

 
Loading...

Nuclear Power in Hungary

(Updated April 2010)

  • Hungary has four nuclear reactors generating more than one-third of its electricity.
  • Its first commercial nuclear power reactor began operating in 1982.
  • The Hungarian Parliament has expressed overwhelming support for building two new power reactors.

In 2007, total electricity generation in Hungary was 40.0 billion kWh (gross), of which nuclear accounted for 14.7 billion kWh (37%)a. Gas accounted for 15.2 billion kWh (38%) and coal 7.5 billion kWh (19%). About 4 billion kWh (net) was imported in 2007, mainly from Slovakia. Electricity consumption in Hungary is growing modestly and in 2007 was 3350 kWh per capita.

Nuclear generation costs are well below those from other sources in Hungary. In 2007, the price of a kilowatt-hour of electricity from Paks was HUF 9.43 (3.58 Euro cents/kWh).

Operating Hungarian power reactors

Reactor Model Net MWe First power Scheduled close
Paks 1 VVER-440/V-213 470 1982 2012
Paks 2 VVER-440/V-213 470 1984 2014
Paks 3 VVER-440/V-213 470
1986 2016
Paks 4 VVER-440/V-213 470 1987 2017
Total (4)
1880 MWe

Nuclear industry development

Hungary's National Atomic Energy Committee (OAB) was set up in 1956 and the country's first research reactor went critical in 1959. An interstate treaty between Hungary and Soviet Union to build a nuclear power plant was signed in 1966 and, in 1967, the Paks site 100 km south of Budapest was chosen. An 880 MWe nuclear plant was ordered in 1971, and construction of the first two units by Atomenergoexport started in 1974, with the second two in 1979. The four VVER-440 reactors (model V-213) started up between 1982 and 1987.

The Paks plant is owned and operated by Paks Nuclear Power Plant Ltd, which is a subsidiary company of state-owned Hungarian Power Companies Ltd (Magyar Villamos Művek, MVM).

Operating lifetime extension

The design lifetime of the reactors is 30 years, so the four units at Paks would reach the end of their service lifetimes between 2012 and 2017. A feasibility study on extending the operational lifetimes of the units by 20 years carried out in 2000 (and updated in 2005) found no technical or safety objection to a 50-year service life. In November 2005, the Hungarian Parliament overwhelmingly supported a 20-year life extension project for Paks. The Hungarian Atomic Energy Authority (HAEA) has approved the lifetime extension program (submitted in November 2008) and the application for the extension of the operating licence of the first unit is due to be submitted to the HAEA before the end of 2011.

Capacity increase

Though originally 440 MWe gross, the units were upgraded in the 1990s to 470 MWe. An 8% uprate was then carried out between 2002 and 2009 to give 500-510 MWe gross, so that each now has a net capacity of about 470 MWe1. A contract signed in May 2007 with Atomstroyexport relates to this work2, in particular: new design fuel assemblies, modernisation of the in-core monitoring system, the reconstruction of the primary pressure control system, and the modification of the turbine and the turbine control system.

New build

In the 1980s, the government planned to construct two VVER-1000 units as Paks 5 & 6 (each 950 MWe). Preparations were almost completed when the project was cancelled in 1989 due to decreased power demand.

In 1996-97, Paks Nuclear Power Plant proposed building a further one or two units of 600-700 MWe capacity – either the Westinghouse AP600 design, the AECL Candu-6, or the Atomstroyexport/Siemens VVER-640. This was later rejected by MVM because it did not fit government policy at that time and the preliminary environmental impact study was not completed.

With the need to build about 6000 MWe of new generating capacity by 2030, new nuclear plant is again under consideration, and two 1000 MWe units for the Paks site are proposed. In March 2009, the Hungarian Parliament (330 for; 6 against; 10 abstentions) gave preliminary approval to this, though some foreign investment would be needed. Paks expects to issue an invitation to tender in 2011, with a decision in 2012 and is considering four reactor types: Areva's EPR; the Areva-Mitsubishi Atmea; Atomstroyexport's VVER-1000; and the Westinghouse AP1000.3 The first unit is expected to begin operation soon after 2020, the second after 2025.

Proposed Hungarian power reactors

Reactor Model MWe First power
Paks 5
? 1100 approx
2020
Paks 6
? 1100 approx
2025
Total (2)
2200 MWe

Fuel cycle

Hungary has some uranium resources around the Mecsek deposit in the south of the country, but no present production. The Mecsek underground mine near Pécs operated from 1958 to 1997. Initially ore was shipped to Estonia for milling, but from 1963 it was milled on site and the concentrate was exported to the Soviet Union. A total of about 21,000 tU was produced at an average recovery of 50-60%. Since 1997, the mine has been decommissioned and remediated at considerable expense (about €110 million).

In August 2008, the Australian company Wildhorse Energy Ltd joined with state-owned Mecsekérc to assess the feasibility of restarting uranium mining at Mecsek Hills. This led to an agreement with Mecsekérc and Mecsek‐Öko signed in October 2009 which covered all of the uranium resources in the Mecsek region over some 72 sq kmb. A decision on proceeding with a pre-feasibility study on mining is expected in 2010 once a technical review is completed.  Wildhorse has an 11,600 tU JORC-compliant inferred resource, plus the adjacent Mecsek underground mine lease and four exploration areas in the vicinity.

All fuel supply is contracted from Tvel in Russia.

A program to chemically clean partially used fuel was curtailed following an accident, which was rated Level 3 on the International Nuclear Event Scale (INES)c. In 2001, unit 2 at Paks was the first ever reactor to be reloaded with fuel that had been chemically cleaned4; however, in April 2003, at the same unit, 30 fuel assemblies were damaged inside a cleaning tank due to insufficient cooling5.

Radioactive waste management

Although preparations are being made for direct disposal of used fuel without reprocessing, there is no policy decision on reprocessing and it appears unlikely that used nuclear fuel will be reprocessed. In the past, some used fuel has been returned to Russia for reprocessing, but without repatriation of separated fissile materials.

Since 1998, a levy on nuclear power production is paid into the Central Nuclear Financial Fund to pay for storage and disposal of radioactive wastes, including used fuel, and decommissioning.

The state-owned body responsible for all waste management, waste disposal and decommissioning is the Public Limited Company for Radioactive Waste Management (Radioaktív Hulladékokat Kezelő Kft., RHK Kft), formerly the Public Agency for Radioactive Waste Management (PURAM).

Under 1995 policy, used fuel is stored in pools at Paks for five years then transferred to an interim dry storage facility there.

For low- and intermediate-level wastes, the Püspökszilágy Radioactive Waste Treatment and Disposal Facility (RWTDF) began operation in 1977d. The RWTDF also accepted wastes from Paks until 1996 and the 5040 m3 capacity facility became full in 2005.

Following the decision to construct a new repository for low- and intermediate-level wastes from Pakse, PURAM carried out geological investigations over a decade, and finally focused on a repository site in the south of the country, about 30 km from Pécs. In mid-2005, the residents of Bátaapáti voted to approve construction of a repository for low- and intermediate-level wastes there, and this was approved by Parliament. In December 2006, the government declared the Bátaapáti site an "investment of extraordinary significance", paving the way for accelerated licensing. The €150 million surface facilities were opened in October 2008, and construction of underground vaults for intermediate-level wastes is expected to be completed in 2010, allowing operation from 2011.6

Paks waste that was sent to RWTDF at Püspökszilágy will eventually be moved to Bátaapáti for final disposal, so that waste disposed at RWTDF will only derive from institutional (i.e. non-power) sources.

For high-level wastes, a claystone formation near Buda in the southwest is being investigated, and a preliminary safety analysis has been made for a deep geological repository theref.

Research & development

The Atomic Energy Research Institute (KFK AEKI) operates the Budapest research reactor of 10 MW, which started up in 1959 and was rebuilt in 1991. In 2009, it was converted to operate on low-enriched uranium. The Technical University of Budapest (BUTE) operates a training reactor of 100 kW. A zero-power critical assembly has been decommissioned.

Regulation and safety

Under the amended Atomic Energy Act 1996, the Hungarian Atomic Energy Authority (HAEA) is responsible for safety policy, safeguards arrangements, licensing, safety, wastes and regulation. The Nuclear Safety Directorate of the HAEA is responsible for the safety of nuclear installations.

Handling of radioactive materials and wastes, together with radiation protection generally, is regulated by the Minster of Health. However, ensuring low levels of release and exposure are among HAEA's responsibilities.

The Hungarian Energy Office advises on tariffs for both grid network and the public service, and these are set by the Minister for Economy & Transport.

Non-proliferation

Hungary is a party to the Nuclear Non-Proliferation Treaty (NPT) since 1969 as a non-nuclear weapons state. It is member of the Nuclear Suppliers Group and since May 2004, of Euratom. The Additional Protocol in relation to its safeguards agreements with the International Atomic Energy Agency came into force in 2000.


Further Information

Notes

a. In 2009, total gross electricity production was 35.9 billion kWh, of which 15.4 billion kWh (43%) was from nuclear. Net nuclear generation in 2009 was 14.6 billion kWh. [Back]

b. WildHorse executed a cooperation agreement with Mecsekérc and Mecsek‐Öko in October 2009 to develop the Mecsek Hills Uranium Project Area, which includes WildHorse’s Pécs uranium licence and the MML‐E licence held by Mecsek‐Öko. The Hungarian state-owned mining agencies Mecsek‐Öko and Mecsekérc hold the mining concession for the areas covering the closed Mecsek uranium mine, which joins the western boundary of the WildHorse Pécs and Abaliget licences, acquired in 2006. The Mecsek Hills Project Area has an exploration target of 41-54,000 tonnes U3O8, with a grade range of 0.08‐0.12% U3O8.

Mecsek‐Öko is responsible for the environmental remediation, reclamation and monitoring works associated with the historic Mecsek uranium industry. Mecsekérc is involved in radioactive waste disposal and various environmental remediation projects, as well as geological, hydrogeological and mineral resource prospecting. [Back]

c. Chemical cleaning of partially used fuel assemblies is only known to have been carried out on used fuel at Paks. The fuel assemblies supplied by Russian manufacturer Mashinostroitelny Zavod (MSZ) had been in the reactor core for between 0.5 and 2.5 years. During this time, corrosion products had built up on the assemblies, restricting the flow of coolant. A method of cleaning these fuel assemblies was developed by Framatome ANP by adapting the chemical oxidation reduction decontamination (CORD) process, which uses permanganic acid (for oxidation) and oxalic acid (for reduction). [Back]

d. An isotope burial site at Solymár, located about 20 km north of Budapest, operated from 1960 until 1975, by which time a total volume of 900 m3 radioactive waste had been accepted. Between 1977 and 1980, the waste was moved to the Püspökszilágy facility and the storage facility in Solymár was decommissioned. [Back]

e. Expansion of the Püspökszilágy Radioactive Waste Treatment and Disposal facility (RWTDF) to meet the requirements of the Paks power plant was ruled out for a number of reasons. Paks Nuclear Power Plant then attempted to find an alternative site but initially failed when, in 1990, the local citizens of Ófalu opposed the construction of a facility there. As an interim solution, the capacity of RWTDF was expanded and, between 1992 and 1996, waste from Paks was sent to RWTDF.

After extensive surveys covering the whole country, in 1996, the region of Üveghuta (not far from the Paks nuclear plant) was chosen for further investigation. Site studies over the next few years eventually resulted in a final report in 2003 that concluded that the Bátaapáti (Üveghuta) site is geologically appropriate for the disposal of low- and intermediate-level waste (LILW). Underground investigation work commenced at the beginning of 2005 and Parliament gave preliminary approval by an overwhelming majority later that year. A 2006 Government Decree declared construction of the Bátaapáti waste repository to be a priority investment project. [Back]

f. Investigations in the Boda Claystone in the west part of Mecsek began in 1993. However, in 1999, the government rejected a proposal to establish an underground research laboratory there. A new investigation program in the same area commenced in 2003. Subject to the results of the site qualification test program and regulatory approval, construction of an underground research laboratory is expected to commence by 2020. [Back]

References

1. Paks Nuclear Power Plant operates at 2000 MW power, Paks Nuclear Power Plant press release (20 November 2009) [Back]

2. More power for Paks, World Nuclear News (25 May 2007) [Back]

3. MVM Zrt Board of Directors accepts the concept for preparation of capacity expansion, Paks Nuclear Power Plant press release (26 February 2010) [Back]

4. Chemical cleaning of fuel assemblies, Nuclear Engineering International (30 August 2001) [Back]

5. INES level 3 for Paks, Nuclear Engineering International (17 May 2003) [Back]

6. Hungary inaugurates permanent waste repository, World Nuclear News (9 October 2008) [Back]

General sources

Public Limited Company for Radioactive Waste Management (RHK, formerly PURAM) website (www.rhk.hu)
Paks Nuclear Power Plant website (www.atomeromu.hu)
Hungarian Atomic Energy Authority (HAEA) website (www.haea.gov.hu)
Country Nuclear Power Profiles: Hungary, International Atomic Energy Agency

Loading...

 

Blog  |  Nuclear PortalGlossary  |  eShop Picture Library  |  Jobs

© World Nuclear Association. All Rights Reserved
'Promoting the peaceful worldwide use of nuclear power as a sustainable energy resource'