
Roadmap

Projects

Coding

❍ Module
Owners

❍ Hacking

❍ Get the
Source

❍ Build It

Testing

❍ Releases

❍ Nightly
Builds

❍ Report A
Bug

Tools

❍ Bugzilla

❍ Tinderbox

❍ Bonsai

❍ LXR

FAQs

Using Web Standards in Your Web Pages

"Browser makers are no longer the problem. The problem lies with designers and developers
chained to the browser-quirk-oriented markup of the 1990s-often because they don't realize it is
possible to support current standards while accommodating old browsers."

Web Standards Project

A number of elements and practices for adding DHTML to web pages were excluded from the W3C HTML 4.01
and Document Object Model (DOM) specifications. Elements like <LAYER> and collection of objects
like document.layers[] (Netscape 4) or document.all (Internet Explorer 5+), for example, are actually not a
part of any web standard. Browsers that comply with the W3C web standards, such as Firefox, Mozilla and
Netscape 6/7, do not support these non-compliant elements and these proprietary DOM collections.

This article provides an overview of the process for upgrading the content of your web pages to conform to the
W3C web standards. The various sections identify some practices which are at odds with the standards and
suggest replacements. Every proposed web standards replacement in this article has been tested,
verified and is working without a problem in modern browsers like MSIE 6, Netscape 7.x, Firefox 1.
x, Opera 7+, Safari 1.2+, Konqueror 3.x, etc. The final section, Summary of Changes, outlines all the
changes described in this article.

In this document:

1. Upgrading Layer Elements (Netscape 4)
2. Deprecated Elements

1. Applet
2. Font
3. Other Deprecated

3. Other Excluded Elements
4. Using the W3C DOM

1. Unsupported DOM-related Properties
2. Accessing Elements with the W3C DOM
3. Manipulating Document Style and Content

5. Developing Cross Browser/Cross Platform Pages
1. Browser identification: not best, not reliable
2. Object/Feature detection: best, most reliable

6. Summary of Changes

Upgrading Layer Elements (Netscape 4)

This section explains how to replace Netscape 4 <layer> and <ilayer> elements with standards-compliant

Using Web Standards in Your Web Pages

search mozilla:

http://www.mozilla.org/docs/web-developer/upgrade_2.html (1 of 14)6/20/2005 4:00:23 PM

Mozilla

AboutDevelopersStoreSupportProducts

http://www.mozilla.org/roadmap.html
http://www.mozilla.org/projects/
http://www.mozilla.org/developer/
http://www.mozilla.org/owners.html
http://www.mozilla.org/owners.html
http://www.mozilla.org/hacking/
http://www.mozilla.org/source.html
http://www.mozilla.org/source.html
http://www.mozilla.org/build/
http://www.mozilla.org/quality/
http://www.mozilla.org/releases/
http://ftp.mozilla.org/pub/mozilla.org/mozilla/nightly/latest-trunk/
http://ftp.mozilla.org/pub/mozilla.org/mozilla/nightly/latest-trunk/
https://bugzilla.mozilla.org/enter_bug.cgi?format=guided
https://bugzilla.mozilla.org/enter_bug.cgi?format=guided
http://www.mozilla.org/tools.html
https://bugzilla.mozilla.org/
http://tinderbox.mozilla.org/showbuilds.cgi?tree=SeaMonkey
http://bonsai.mozilla.org/cvsqueryform.cgi?
http://lxr.mozilla.org/seamonkey/
http://www.mozilla.org/faq.html
http://webstandards.org/about/history/
http://www.w3.org/
http://www.mozilla.org/

Using Web Standards in Your Web Pages

HTML 4.01. Because <layer> and <ilayer> elements are not part of any W3C web standards, Netscape 6/7,
Firefox and Mozilla and other browsers that comply with the W3C web standards do not
support <layer> and <ilayer> elements.

The document.layers[] collection of objects and other specific features of the Netscape 4 Layer DOM are not
supported either and are discussed the DOM section below.

In Netscape 4, <layer> elements are used primarly for 2 purposes:

● to embed external HTML content inside a webpage and
● to position a defined block of HTML content; such block of HTML content is usually named, referred as

layer or DHTML layer by web authors, books and references.

Replacing <layer> and <ilayer> as embedded external HTML content

If you have:

<LAYER SRC="foo.html" height="300" width="400"> </LAYER>

... then you can for HTML 4.01 Transitional documents replace it with:

<iframe src="foo.html" height="300" width="400">
 Foo content
</iframe>

User agents and very old visual browsers which do not support IFRAME (like Netscape 4) will render its content:
here, it is a link. In this manner, accessibility to content (content degradation) for older browsers is assured and
is as graceful as it can be.

... or, for HTML 4.01 Strict documents, you can replace it with:

<object data="foo.html" type="text/html" height="300" width="400">
 Foo content
</object>

Again, the link will be rendered in user agents and browsers which do not support the object element, therefore
assuring access to content.

The general accessibility strategy when using <iframe> or <object> is to embed the most common and most
supported element inside <iframe> or <object>: that way, an user agent which is not able to render
the <iframe> or <object> will render its content serving it as an alternative. The general rule applied by most
browsers when meeting an unknown element is to render its content as best as it can. Note 1

More on embedding HTML content:
Notes on embedded documents from W3C HTML 4.01
Note 1 "If a user agent encounters an element it does not recognize, it should try to render the element's
content.": Notes on invalid documents

http://www.mozilla.org/docs/web-developer/upgrade_2.html (2 of 14)6/20/2005 4:00:23 PM

http://www.w3.org/TR/html401/struct/objects.html#h-13.5
http://www.w3.org/TR/html4/appendix/notes.html#h-B.1

Using Web Standards in Your Web Pages

Replacing <layer> as positioned block of HTML content

To upgrade positioned <layer> elements, the best W3C web standards compliant replacement is to use <div>.
A <div> element can not transclude, can not import HTML content external to the webpage; so, defining a src
attribute in a <div> element will be ignored by W3C compliant browsers.

If you have

<LAYER style="position: absolute;" top="50" left="100"
width="150" height="200">
 ... content here ...
</LAYER>

then you can replace it with:

<div style="position: absolute; top: 50px; left: 100px;
width: 150px; height: 200px;">
 ... content here ...
</div>

Deprecated elements

Elements deprecated in HTML 4.01 are typically in wide use, but have been supplanted by other techniques.

The function of several of the deprecated tags (and of some excluded tags, as well) has been assumed by the
W3C Cascading Style Sheets recommendation. Style sheets provide powerful presentation and organization
capabilities. A full discussion of CSS is beyond the scope of this document.

APPLET

The APPLET element has been deprecated in HTML 4.01 in favor of OBJECT.

<p>
<applet code="HelloWorldApplet.class" height="200" width="350"></applet>
</p>

can be converted to:

<p>
<object classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
codebase=
"http://java.sun.com/products/plugin/autodl/jinstall-1_4_2-windows-i586.
cab#Version=1,4,2,0"
codetype="application/java" standby="Loading of applet in progress..."
height="200" width="350">
<param name="code" value="HelloWorldApplet.class">
<!--[if !IE]>
Mozilla 1.x, Firefox 1.x, Netscape 7.x and others will use the inner

http://www.mozilla.org/docs/web-developer/upgrade_2.html (3 of 14)6/20/2005 4:00:23 PM

http://www.w3.org/TR/REC-CSS2/

Using Web Standards in Your Web Pages

object, the nested object
-->
 <object classid="java:HelloWorldApplet.class"
 standby="Loading of applet in progress..."
 height="200" width="350">
 <p>Your browser does not seem to have java support enabled
 or it does not have a Java Plug-in.

 You can download
 the latest Java Plug-in here. (free download; 15MB)</p>
 </object>
<!--<![endif]-->
</object>
</p>

The above code will work for MSIE 6, Mozilla-based browsers and other standards-based browsers; also, it will
validate in either HTML 4.01 transitional or HTML 4.01 strict.

Explanations on the code:

According to HTML 4.01 recommendation, when an <object> is not rendered (because its content type is
unsupported e.g. the browser does not support the ActiveX control called, requested by the <object>), then the
browser should render its contents instead: here, it is another <object>, an alternate <object>. Here, the inner
<object> will be rendered by browsers not supporting java plug-in triggered by an ActiveX.

classid="clsid:8AD9C840-044E-11D1-B3E9-00805F499D93":
this clsid value will make the MSIE 6 browser use the highest possible version (installed on the user's
machine) of JRE. Sometimes, MSIE 6 users have several JRE plug-in versions installed.

codebase=
"http://java.sun.com/products/plugin/autodl/jinstall-1_4_2-windows-i586.cab#Version=1,4,2,0":

the codebase defines the minimum version for the JRE; here it is 1.4.2. In case the browser does not have a
java plug-in or if its version is earlier than 1.4.2, then an automatic download of the latest 1.4.2 version will
start. This may be a debatable choice: on one hand, the latest available JRE plug-in has several security
patches and bug fixes, on the other hand, forcing a 15MB download without a prior explicit consent of the
user can not be best.

More on applet to object conversion:

● Java applet using <object> tag by Shayne Steele
● HTML 4.01 on Including an applet
● HTML 4.01 on Including an object

FONT

The deprecated FONT element is widely used to specify typeface, color and size of the enclosed text. This
functionality has been offloaded from HTML to CSS. The FONT element can be directly replaced with a SPAN
element that includes the same style information:

<P>
A really big shoe.
</P>

http://www.mozilla.org/docs/web-developer/upgrade_2.html (4 of 14)6/20/2005 4:00:23 PM

http://ww2.cs.fsu.edu/~steele/XHTML/appletObject.html
http://www.w3.org/TR/html401/struct/objects.html#edef-APPLET
http://www.w3.org/TR/html401/struct/objects.html#edef-OBJECT

Using Web Standards in Your Web Pages

... becomes:

<P>
A really big shoe.
</P>

... or even more concisely:

<P style="color: blue; font-family: Helvetica, sans-serif;">
A really big shoe.
</P>

This is appropriate usage for a local change to the font. However, this is not the best use of styles; the strength
of CSS lies in the ability to gather text and other styling into logical groupings that can be applied across a
document, without repeating the specific styling on every element that requires it.

More on conversion of :
W3C Quality Assurance tip for webmaster:
Care With Font Size, Recommended Practices: Forget , use CSS

Other deprecated elements

Deprecated Element and
Attribute

W3C Replacement

CENTER or align="center" CSS1: text-align: center
The text-align property specifies how text or inline elements are aligned
within an element.

CENTER or align="center" CSS1: margin-left: auto; margin-right: auto; for block-level elements
When both margin-left and margin-right are auto they are set to equal
values, thus centering a block-level element within its parent.
CSS1 horizontal formating
Worth mentioning is the excellent tutorial:
Centring using CSS by D. Dorward

bgcolor attribute CSS1: background-color: ;
CSS1 background-color

S
STRIKE

CSS1: text-decoration: line-through;

U CSS1: text-decoration: underline;

DIR
MENU

HTML 4.01:

Other Excluded Elements

There are a number of proprietary elements used for animation and other tricks that are not a part of any web
standard. This section highlights those elements and suggests practices for achieving the same effect with W3C
HTML 4.01:

http://www.mozilla.org/docs/web-developer/upgrade_2.html (5 of 14)6/20/2005 4:00:23 PM

http://www.w3.org/QA/Tips/font-size#goodpractice
http://www.w3.org/QA/Tips/font-size#goodpractice
http://www.w3.org/TR/REC-CSS1#text-align
http://www.w3.org/TR/REC-CSS1#horizontal-formatting
http://dorward.me.uk/www/centre/
http://www.w3.org/TR/CSS1#background-color

Using Web Standards in Your Web Pages

Excluded
Element

W3C Replacement

BLINK
Nav2+

CSS1 text-decoration: blink;
User agents are required by the CSS1 specification to recognize the blink keyword, but not to
support the blink effect, so CSS1-compliant browsers may or may not make the text blink on
the screen. The best approach is not to make content blink at all.

MARQUEE
IE2+

HTML 4.01 DIV or SPAN, with content string rotated over time by JavaScript via the DOM level
1.
As with blinking text, this sort of effect is discouraged. Studies have shown that constantly
moving objects or moving text disturb reading and weakens peripherical vision. DHTML
marquee also greatly consumes user system resources (cpu, RAM) on tested browsers and
will put modest systems under considerable stress. If after webpage assessment and
consideration, you still want to include a marquee effect in your page, then you can use the
following tutorials:
Cross-browser and web standard compliant Stock Ticker example by D. Rosenberg
Comprehensive web standard compliant alternative to <marquee> by D. Rosenberg
Mozilla 1.4+, NS 7.2 and Firefox 1.x support the non-standard <marquee> element. On the
other hand, users can disable such support using this tip

BGSOUND
IE2+

HTML 4.01 OBJECT, e.g.:
<OBJECT data="audiofile.wav" type="audio/wav" ...></OBJECT>
See this DevEdge article for information on rendering a sound OBJECT invisible within the
page.
Web page background sound often slows down considerably web page loading; like the text
effects above, music or sound accompanying a page is seldom appreciated. According to the
survey page What we really hate on the web, 41.9% of survey respondents will avoid sites
that automatically play music; 71.1% strongly dislike sites that automatically play music.
Why Playing Music on your Web Site is a Bad Idea by A. Gulez

EMBED
Nav2+,IE3+

HTML 4.01 OBJECT. See this DevEdge article for information on translating EMBED tags
into OBJECT tags.
EMBED has never been part of a W3C HTML recommendation, yet it is still supported by Gecko
and other modern browsers. Quality of support varies; Internet Explorer's support is
incompatible with most Netscape plug-ins. Support for OBJECT is not universal, either,
particularly for older browsers.

Using the W3C DOM

The document objects for some browsers have properties for accessing arrays of elements and types of
elements. document.all[], for example, is used by Internet Explorer to access particular elements within the
document. Many of these arrays were not made a part of the W3C specification for the Document Object Model
and will cause JavaScript errors in standards-compliant browsers like Mozilla, Firefox and Netscape 6/7.

The W3C Document Object Model exposes almost all of the elements in an HTML page as scriptable objects. In
general the attributes and methods of the W3C DOM are more powerful than the proprietary object models
used in DHTML programming. The attributes and methods of the W3C DOM are overall well supported
by modern browsers like MSIE 6, Opera 7+, Safari 1.x, Konqueror 3.x and Mozilla-based browsers
(Firefox, Mozilla, Netscape 6/7): so there is no gain from relying on proprietary object models.

Unsupported DOM-related Properties

The following document object properties are not supported in the W3C Document Object Model:

http://www.mozilla.org/docs/web-developer/upgrade_2.html (6 of 14)6/20/2005 4:00:23 PM

http://developer-test.mozilla.org/docs/DHTML_Demonstrations_Using_DOM/Style:Stock_Ticker
http://devedge-temp.mozilla.org/toolbox/examples/2002/xb/xbMarquee/index_en.html
http://www.mozilla.org/support/firefox/tips#lay_marquee
http://devedge-temp.mozilla.org/library/manuals/2002/plugin/1.0/intro.html#1003240
http://www.lowendmac.com/musings/02/0528.html
http://www.wowwebdesigns.com/power_guides/music_off.php
http://devedge-temp.mozilla.org/library/manuals/2002/plugin/1.0/intro.html#1003240
http://www.w3.org/DOM/DOMTR

Using Web Standards in Your Web Pages

● document.layers[]
● document.elementName

(i.e., getting a reference to the element <p name="yooneek"> with document.yooneek)
● id_attribute_value
● document.all.id_attribute_value
● document.all[id_attribute_value]

The following element properties (originally from Internet Explorer) are not supported in the W3C Document
Object Model:

● FormName.InputName.value
● document.forms(0)
● element.innerText

Scripts that use these properties will not execute in Firefox, Mozilla and Netscape 6/7 or other standards-
compliant browsers. Instead, use the W3C DOM access attributes and access methods described in the next
section; since these are supported by Internet Explorer too, then there is no need to use MSIE-specific
attributes and methods.

Accessing Elements with the W3C DOM

The best and most supported practice for getting scriptable access to an element in an HTML page is
to use document.getElementById(id). All modern browsers (NS 6+, Mozilla, MSIE 5+, Firefox, Opera 6+,
Safari 1.x, Konqueror 3.x, etc.) support document.getElementById(id). This method returns an object reference
to the uniquely identified element, which can then be used to script that element. For example, the following
short sample dynamically sets the left margin of a div element with an id of "inset" to half an inch:

// in the HTML: <div id="inset">Sample Text</div>
document.getElementById("inset").style.marginLeft = ".5in";

IE-specific ways to access elements W3C web standards replacements

id_attribute_value document.getElementById(id_attribute_value)

document.all.id_attribute_value document.getElementById(id_attribute_value)

document.all[id_attribute_value] document.getElementById(id_attribute_value)

FormName.InputName.value document.forms["FormName"].InputName.value or
document.forms["FormName"].elements["InputName"].value

document.forms(0) document.forms[0]

More on accessing forms and form elements:
Referencing Forms and Form Controls by comp.lang.javascript newsgroup FAQ notes
DOM 1 specification on accessing forms and form elements

For accessing a group of elements, the DOM specification also includes getElementsByTagName, which returns a
list of all the elements with the given tag name in the order they appear in the document:

http://www.mozilla.org/docs/web-developer/upgrade_2.html (7 of 14)6/20/2005 4:00:23 PM

http://jibbering.com/faq/faq_notes/form_access.html
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html#ID-40002357

Using Web Standards in Your Web Pages

var arrCollection_Of_Anchors = document.getElementsByTagName("a");
var objFirst_Anchor = arrCollection_Of_Anchors[0];
alert("The url of the first link is " + objFirst_Anchor.href);

In addition to these access methods, the W3C DOM2 specifications provide methods for creating new elements
and inserting them in a document, for creating attributes, new content, for traversing the content tree and for
handling events raised as the user interacts with the document itself.

Manipulating Document Style and Content

Changing an Element's Style Using the DOM

The following table describes standards-based methods for accessing and updating style rules defined for
various HTML elements in a web page. See the W3C DOM2 Recommendation, CSS2 Extended Interface.

DOM level 2 provides for the assignment of new values to the CSS properties of an element using
the element.style object reference. You can get the element to which that style corresponds by using the
DOM's getElementById or one of the other methods described in the DOM access section above.

Deprecated coding practices Appropriate DOM 2 replacements

Nav4: element.visibility = value; DOM level 2: element.style.visibility = value;

Nav4: element.left
IE4/5: element.style.pixelLeft

DOM level 2: parseInt(element.style.left, 10)

Nav4: element.top
IE4/5: element.style.pixelTop

DOM level 2: parseInt(element.style.top, 10)

Nav4: element.moveTo(x,y);
IE4/5: element.style.pixelLeft = x;
element.style.pixelTop = y;

DOM level 2:
element.style.left = x + "px";
element.style.top = y + "px";

W3C DOM2 Reflection of an Element's CSS Properties

Keep in mind that according to the W3C Recommendation, the values returned by the style property of an
element reflect static settings in the element's STYLE attribute only, not the total "computed style" that includes
any inherited style settings from parent elements. Therefore, if you wish to read and write these properties
from JavaScript through the DOM2, use one of these two approaches:

● Place all of the element's static CSS declarations (if it has any) in the element's STYLE attribute.
● Use no static CSS declarations for the element and initialize its CSS properties from JavaScript through

the DOM.

W3C DOM2 Reflection of an Element's CSS Positioning Properties

The values returned by the W3C DOM2 style.left and style.top properties are strings that include the CSS

http://www.mozilla.org/docs/web-developer/upgrade_2.html (8 of 14)6/20/2005 4:00:23 PM

http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-20001113/css.html#CSS-extended

Using Web Standards in Your Web Pages

unit suffix (such as "px"), whereas Netscape 4 element.left and IE4/5 element.style.pixelLeft (and the
corresponding properties for top) return an integer. So, if you want to get the element's inline STYLE settings
for left and top as integers, parse the integer from the string by using parseInt(). Conversely, if you want to
set the element's inline STYLE settings for left and top, make sure to construct a string that includes the unit
(such as "140px") by appending the unit string to the integer value.

CSS1 and CSS 2.x specifications require that non-zero values must be specified with a length unit;
otherwise, the css declaration will be ignored. Mozilla-based browsers, MSIE 6, Opera 7+ and other W3C
standards-compliant browsers enforce such handling of parsing error.
CSS1 Forward-compatible parsing
CSS2.1 Rules for handling parsing errors

Changing an Element's Text Using the DOM

Changing the actual text content of an element has changed substantially compared to the normal means of
operation. Each element's content is broken up into a set of child nodes, consisting of plain text and sub-
elements. In order to change the text of the element, the script operates on the node.

The node structure and supporting methods are defined in the W3C DOM level 1 recommendation.

If the element has no sub-elements, just text, then it (normally) has one child node, accessed
as element.childNodes[0]. In such precise case, the W3C web standards equivalent of element.innerText
is element.childNodes[0].nodeValue.

The following examples show how to modify the text of a SPAN element that already exists in the HTML file.

<body>
 <P>Papa's got a lot of nerve!</P>

 <script type="text/javascript">
 // get reference to the SPAN element
 var span_el = document.getElementById("dynatext");

 // implement span_el.innerText = "a brand new bag"
 var new_txt = document.createTextNode("a brand new bag");
 span_el.replaceChild(new_txt, span_el.childNodes[0]);

 // alternate, slightly more dangerous implementation
 // (will not work if childNodes[0] is not a text node)
 span_el.childNodes[0].nodeValue = "a brand new bag";

 // implement span_el.innerHTML = "a brand new bag"
 var new_el = document.createElement(span_el.nodeName);
 new_el.appendChild(document.createTextNode("a brand "));
 var bold_el = document.createElement("B");
 bold_el.appendChild(document.createTextNode("new"));
 new_el.appendChild(bold_el);
 new_el.appendChild(document.createTextNode(" bag"));
 span_el.parentNode.replaceChild(new_el, span_el);
 </script>
</body>

The first example shows the relatively simple method of replacing the text in the SPAN by substituting a new
http://www.mozilla.org/docs/web-developer/upgrade_2.html (9 of 14)6/20/2005 4:00:23 PM

http://www.w3.org/TR/REC-CSS1#forward-compatible-parsing
http://www.w3.org/TR/CSS21/syndata.html#parsing-errors
http://www.w3.org/TR/REC-DOM-Level-1/

Using Web Standards in Your Web Pages

text node for the original. The assumption here is that the SPAN has a single, text child; the code would work
even if that were not true, but the results might be unexpected.

The second example shows a more concise but brute-force technique of accomplishing the same thing. As
noted, if the first child node is not a text node, this action will not work: although sub-element nodes have
a nodeValue, the contents of that field are not displayed in the document.

The final example shows a technique equivalent to setting innerHTML. First, it constructs a new element,
created as the same type (SPAN) as the original. Next it adds three nodes: an initial text node, a B element with
its own text node, and a final text node. The script then accesses the SPAN element's parent (the P element),
and substitutes the new element for the original SPAN in the parent's list of child nodes.

It should be clear that translating scripts to modify document content is not a trivial undertaking. The benefit of
such a conversion is that the script will work in modern, W3C DOM-compliant browsers such as Netscape 6/7
and other Gecko-based programs. Requirements of backward compatibility, however, will not only prolong but
worsen the difficulties of dealing with multiple platforms.

Developing Cross Browser/Cross Platform Pages

An important practice when doing cross-browser, cross-platform pages and DHTML development involves the
ability to determine the capabilities of the browser which loads your web page. As a web author, you
understandably want to avoid script errors and page layout problems and you may want to ensure your scripts
reach as wide an audience as possible. There are 2 known approaches for such goals: the browser identification
(also known as userAgent string detection and often referred as "browser sniffing") and the Object/Feature
support detection. The browser identification approach is now known to be complicated, unreliable and difficult
to maintain.

Browser identification (aka "browser sniffing"): not best, not reliable approach

This approach, still commonly used nowadays, attempts to identify the browser and makes the web author at
design time decide what that implies in terms of capabilities of the visiting browser. Such approach is fraught
with problems and difficulties. It requires from the web author to have knowledge of the capabilities of all
current browsers that may visit the page and then to code appropriately for these. It requires from the web
author to make assumptions about what will happen with future browsers or to decide to provide future
browsers a safe fallback service. It assumes that web authors are able to correctly identify browsers and
browser versions in the first place... which is far from being a reliable and easy task to achieve.

The browser identification approach relies on functions that check the browser type string value and browser
version string value and that search for certains characters or sub-strings in the navigator.userAgent
property string. Once "detected", the web author then uses different functions (aka code branching) or points
the user to different pages (aka site branching) or web content. Site branching can be particularly dangerous as
people may enter a page through a link, bookmark, search engine or cache with a "wrong" browser.

Let's see a basic example of this approach.

if (navigator.appVersion.charAt(0) == "7")
{
 if (navigator.appName == "Netscape")
 {
 isNS7 = true;

http://www.mozilla.org/docs/web-developer/upgrade_2.html (10 of 14)6/20/2005 4:00:23 PM

Using Web Standards in Your Web Pages

 alert("NS7");
 };
}
else if (navigator.appVersion.indexOf("MSIE") != -1)
 {
 isIE = true;
 alert("IE");
 };

While this kind of checking in the above code can work in a crude sense, sharp readers may wonder
what happens when IE 7 is released or when an Opera 7.x user visits the page or even when an user
with any non-Netscape browser starting with a "7" character in the appVersion string visits that page.
As new browsers are released, it becomes necessary to make updates to such code which attempts to
narrow down the browser and browser version and to make the appropriate switches.

Another major problem with this approach is that the browser identity can be "spoofed" because, in many
modern browsers, the navigator.appVersion and navigator.userAgent string properties are user
configurable strings. For example,

● Mozilla 1.x uses the preference "general.useragent.override"
● Opera 6+ allows users to set the browser identification string via a menu
● MSIE uses the Windows registry
● Safari and ICab browsers mask their browser identity under Internet Explorer or Netscape labels
● etc..

A user or browser distributor can put what they want in the navigator.userAgent string and this may
trick your code into executing a "wrong" block of code. Moreover, there are many cases where even the
accurately-identified browser does not perform as it is reputed/expected to.

So if "browser sniffing" is unreliable and difficult, how do you code safely for different browsers and different
browser versions? ...

Using Object/Feature detection: best and overall most reliable

When you use object/feature detection, you only implement those features whose support you have first tested
and verified on the visiting browser. This method has the advantage of not requiring you to test for anything
except whether the particular features you code are supported in the visiting browser.

Let's see a basic, simple object detection example.

function hideElement(id_attribute_value)
{
 if (document.getElementById &&
 document.getElementById(id_attribute_value) &&
 document.getElementById(id_attribute_value).style)
 {
 document.getElementById(id_attribute_value).style.visibility="hidden";
 };
}

http://www.mozilla.org/docs/web-developer/upgrade_2.html (11 of 14)6/20/2005 4:00:23 PM

Using Web Standards in Your Web Pages

// example:
// <button type="button" onclick="hideElement('d1');">hide div</button>
// <div id="d1">Some text</div>

These repeated calls to document.getElementById are not the most efficient way to check for the
existence of particular objects or features in the browser's DOM implementation, but they serve to
illustrate clearly how object detection works.

The top-level if clause looks to see if there's an object called getElementById on the document object,
which is the one of the most basic levels of support for the DOM in a browser. If there is, the code sees
if getElementById(id_attribute_value) returns an element, which it then checks for a style object. If
the style object exists on the element, then it sets that object's visibility property. The browser will not
error if you set this unimplemented property, so you do not need to check that the visiblity property
itself exists.

So, instead of needing to know which browsers and browser versions support a particular DOM method (or DOM
attribute or DOM feature), you can verify the support for that particular method in the visiting browser. With
this approach, you ensure that all browsers -- including future releases and browsers whose userAgent strings
you do not know about -- will continue working with your code.

More on object/feature detection:
A Strategy That Works: Object/Feature Detecting by comp.lang.javascript newsgroup FAQ notes
Browser detection - No; Object detection - Yes by Peter-Paul Koch

Summary of Changes

This section outlines all of the element and practice updates described in this article. For a complete discussion
of these items, see the sections in which they are described.

Proprietary or Deprecated Feature W3C Feature or Recommended Replacement
NS 4 LAYER as positioned
block of HTML content

HTML 4.01 DIV

NS 4 ILAYER iframe in HTML 4.01 transitional or
object in HTML 4.01 strict

NS 4 LAYER SRC=, DIV SRC= iframe src= in HTML 4.01 transitional or
object data= in HTML 4.01 strict

IE2+ MARQUEE HTML 4.01 DIV plus scripting

Nav2+ BLINK CSS1 text-decoration: blink;

IE2+ BGSOUND HTML 4.01 OBJECT

Nav 2+, IE3+ EMBED HTML 4.01 OBJECT

deprecated APPLET HTML 4.01 OBJECT

deprecated FONT HTML 4.01 SPAN plus
CSS1 color: ; font-family: ; font-size: ;

deprecated CENTER or align="center" CSS1 text-align: center; for inline elements

http://www.mozilla.org/docs/web-developer/upgrade_2.html (12 of 14)6/20/2005 4:00:23 PM

http://jibbering.com/faq/faq_notes/not_browser_detect.html#bdFD
http://www.quirksmode.org/js/support.html

Using Web Standards in Your Web Pages

deprecated CENTER or align="center" CSS1 margin-left: auto; margin-right: auto;
for block-level elements

deprecated bgcolor CSS1 background-color: ;

deprecated U, S, STRIKE CSS1 text-decoration: underline, line-through;

deprecated DIR, MENU HTML 4.01 UL

Proprietary or Deprecated Feature W3C Feature or Recommended Replacement
Nav4 document.layers[] DOM level 2:

document.getElementById(id)

IE5/6
id_attribute_value
document.all.id_attribute_value
document.all[id_attribute_value]

DOM level 2:
document.getElementById(id_attribute_value)

IE5/6 FormName.InputName.value DOM level 1:
document.forms["FormName"].InputName.value

IE5/6 document.forms(0) DOM level 1:
document.forms[0]

Nav4 document.layers[id].document.write()
IE element.innerText

DOM Level 1 (Core) interface

Nav4 element.visibility = value; DOM level 2:
element.style.visibility = value;

Nav4 element.left
IE4/5 element.style.pixelLeft

DOM level 2: parseInt(element.style.left, 10)

Nav4 element.top
IE4/5 element.style.pixelTop

DOM level 2: parseInt(element.style.top, 10)

Nav4 element.moveTo(x, y);
IE4/5 element.style.pixelLeft = x;
element.style.pixelTop = y;

DOM level 2:
element.style.left = x + "px";
element.style.top = y + "px";

Nav4/IE4/5 document.elementName DOM access methods

Proprietary or Deprecated Feature W3C Feature or Recommended Replacement

You can learn more on using web standards from these sites:
What are web standards and why should I use them?
What are the advantages of using web standards? from Web Standards Project
Web Quality Assurance tips for webmasters:
My Web site is standard! And yours? from W3C Quality Assurance
Making A Commercial Case for Adopting Web Standards
Case Study in a Successful Standards-Based Migration
Web Standards Group
Web Page Development: Best Practices
Mozilla Web Author FAQ

http://www.mozilla.org/docs/web-developer/upgrade_2.html (13 of 14)6/20/2005 4:00:23 PM

http://webstandards.org/learn/faq/#p3
http://webstandards.org/learn/faq/#p3
http://webstandards.org/
http://www.w3.org/QA/2002/04/Web-Quality
http://www.w3.org/QA/2002/04/Web-Quality
http://www.w3.org/QA/Tips/
http://maccaws.org/
http://devedge-temp.mozilla.org/viewsource/2003/media-farm/index_en.html
http://webstandardsgroup.org/standards/
http://developer.apple.com/internet/webcontent/bestwebdev.html
http://www.mozilla.org/docs/web-developer/faq.html

Using Web Standards in Your Web Pages

Mike Cowperthwaite, Marcio Galli, Jim Ley, Ian Oeschger, Simon Paquet, Gérard Talbot

Site MapSecurity UpdatesContact UsDonate

Portions of this content are © 1998–2005 by individual mozilla.org contributors; content available under a Creative Commons license | Details.

Last modified May 12, 2005 Document History Edit this Page (or via CVS)

http://www.mozilla.org/docs/web-developer/upgrade_2.html (14 of 14)6/20/2005 4:00:23 PM

http://www.mozilla.org/sitemap.html
http://www.mozilla.org/security/
http://www.mozilla.org/contact/
http://www.mozilla.org/foundation/donate.html
http://www.mozilla.org/foundation/licensing/website-content.html
http://cvs-www.mozilla.org/webtools/bonsai/cvslog.cgi?file=mozilla-org/html/docs/web-developer/upgrade_2.html&rev=&root=/cvsroot/
http://doctor.mozilla.org/?file=mozilla-org/html/docs/web-developer/upgrade_2.html
http://www.mozilla.org/contribute/writing/cvs

	mozilla.org
	Using Web Standards in Your Web Pages

	MIDCAMLENEIGNCADAFOCPDBNJKHALKCE:
	form1:
	x:
	f1: LW:174;LH:60;L:http://www.mozilla.org/images/mlogosm.gif;GIMP:#cc0000;T:black;ALC:#0000ff;GFNT:grey;LC:#990000;BGC:white;AH:center;VLC:purple;GL:0;GALT:#666633;AWFID:9262c37cefe23a86;
	f2: mozilla.org
	f3: mozilla.org
	f4:

	f5:

