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Broad Overview

I Biostatisticians in the drug and medical device industries are
increasingly faced with data that are:

I highly multivariate, with many important predictors and
response variables

I temporally correlated (longitudinal, survival studies)
I costly and difficult to obtain, but often with historical data on

previous but similar drugs or devices

I Recently, the FDA Center for Devices has encouraged
hierarchical Bayesian statistical approaches –

I Methods are not terribly novel: Bayes (1763)!
I But their practical application has only become feasible in the

last decade or so due to advances in computing via Markov
chain Monte Carlo (MCMC) methods and related WinBUGS
and BRugs (BUGS within R) software
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Bayesian advantages in clinical trials research

I Probabilities of parameters: all unknowns have both prior
(pre-data) and posterior (post-data) probability distributions,
permitting direct statements about the probability of efficacy,
toxicity, and so on at any time during a trial.

I Using all available evidence: from previous data, expert
opinion, known structural relationships, etc. Also, via
hierarchical modeling it is easy to borrow estimative power
across similar but independent experiments (metaanalysis)

I Flexibility: Strictly speaking, frequentist measures require a
complete experiment, carried out according to a prespecified
design. BUT:

I Bayesian inferences can be updated continually as data
accumulate, and are not tied to the design chosen; in
particular, the sample size need not be chosen in advance.
Deviations from the original plan are possible, and we can stop
for any reason we like (safety, futility, efficacy, etc.)
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Bayesian advantages in clinical trials research
I Role of randomization: it minimizes the possibility of selection

bias, and it tends to balance the treatment groups over
covariates, both known and unknown. BUT:

I Frequentist: also serves as the basis for inference
I Bayesian: randomization not essential for inference!

I Predictive probabilities:
I Frequentist: probabilities of future observations are possible

only by conditioning on particular values of the parameters
I Bayesian: average these probabilities over unknown parameters

(unconditional probability is the expected value of conditional
probabilities)

I Decision making: Bayesian approach is readily tailored to
decision problems, e.g.,

I designing the trial, or drawing a conclusion from it
I allocating resources among R&D projects
I when to stop device or drug development

Each has costs and benefits, naturally weighted by Bayes. But
the frequentist approach is poorly suited here.
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Specific examples of Bayes in drug/device settings

I Safety/efficacy studies: Historical data and/or information
from published literature can be used to reduce sample size,
reducing time and expense. Unlimited looks at accumulating
data are also permitted (due to different framework for
testing).

I Equivalence studies: Bayes allows one to make direct
statements about the probability that one drug is equivalent
to another, rather than merely “failing to reject” the
hypothesis of no difference.

I Meta-analysis: Bayes facilitates combining disparate but
similar studies of a common drug or device.

I Hierarchical models: Realistic models can be fit to
complicated, multilevel data (e.g., multiple observations per
patient, or multiple patients per clinical site), accounting for
all sources of uncertainty.
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Brad’s Fall Semester Leave Site
The University of Texas M.D. Anderson Cancer Center (MDACC)!

I Created by the Texas state legislature in 1941

I Largest component of the UT system

I One of the first 3 NCI Comprehensive Cancer Centers

I more than 25 buildings and 17,000 employees; nearly 1,400
faculty and more than 1,600 volunteers

I ranks first in number of NCI grants and total NCI grant dollars

MDACC is a tremendous resource for clinical research:

I Hundreds of clinical trials for every cancer

I Nearly 800,000 cancer patients registered since 1944
I statistics for most recent reporting year:

I More than 79,000 persons with cancer received care
I approximately 27,000 new patients
I more than 11,500 patients in therapeutic clinical studies

Largest such program in the nation
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Brad’s Fall Semester Leave Site (more specific)

Division of Quantitative Sciences, MDACC

I 36 full-time and part-time faculty in two departments:
I Department of Biostatistics (23 faculty)
I Department of Bioinformatics and Computational Biology (13)

Lots of prominent Bayesians: Don Berry (chair since 1999),
Peter Thall, Peter Müller, J. Jack Lee, Val Johnson, Gary
Rosner, Nebi Bekele, Guosheng Yin, Jeff Morris, Ying Yuan,
Veera Baladandayuthapani, Yuan (formerly Steven) Ji (MS
1999, Biostatistics, U of Minnesota!)

The Department of Biostatistics runs a lot of Bayesian studies:
During March 2007 – Feb 2009, of 677 protocols reviewed:

I 244/677 (36%) were designed by department faculty

I 89/244 (36%) were Bayesian

So while most trials are still run traditionally, MDACC has the
highest number and concentration of Bayesian trials on earth!
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Bayesian design of experiments

I In traditional sample size formulae, one often plugs in a “best
guess” or “smallest clinically significant difference” for θ ⇒
“Everyone is a Bayesian at the design stage.” – T.A. Louis

I In practice, frequentist and Bayesian outlooks arise:
I Applicants may have a more Bayesian outlook:

I to take advantage of historical data or expert opinion (and
possibly stop the trial sooner), or

I to “peek” at the accumulating data without affecting their
ability to analyze it later

I Regulatory agencies may appreciate this, but also retain many
elements of frequentist thinking:

I to ensure that in the long run they will only rarely approve a
useless or harmful product, or expose patients to unacceptable
levels of risk

Bayesian applicants must thus design their trials accordingly;
i.e., ensure their designs have good frequentist operating
characteristics!
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Bayesian clinical trial design

Example: an N-patient safety study, in which we must show θ, the
probability of freedom from severe device-related adverse events at
3 months, has 95% lower confidence bound at least 0.85.

I To find optimal Bayesian design in R:
I For j = 1, . . . ,Nrep, draw θj from the design prior, followed by

Xj from the corresponding Bin(N, θj) likelihood
I Estimate the posterior under the analysis (or fitting) prior,

perhaps by calling BUGS from within R if necessary
I Check to see if the 2.5% point of the estimated posterior is in

fact greater than 0.85.
I The observed proportion of times this happens is the

“Bayesian power”!

I Repeat this over several possible sample sizes N, and several
priors. This then produces the “Bayesian sample size table”!

I Note there is no need to use the same prior at the design and
analysis stages; the latter is typically more conservative.
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Type I error rate calculation

I The design calculations on the previous slide are Bayesian
because θj is being sampled from a design prior

I Frequentist operating characteristics arise by fixing θ at some
“true” value. For example, to find Type I error, fix θ = 0, and
generate only the Xj for each of the Nrep iterations.

I Note that while Bayesians are free to look at their data at any
time without affecting the inference, multiple looks will alter
the frequentist Type I error behavior of the procedure. If this
is of interest, the algorithm must be modified to explicitly
include these multiple looks, checking for early stopping after
each look.

I Note also that making the stopping rule adaptive (say,
increasing allocation to the treatment that is winning) or
multi-purpose (say, for futility or efficacy) do not materially
complicate these calculations
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Using Historical Data

I Email 8 Sep 2008 from Dr. Telba Irony, FDA: “When we try
to borrow strength from only one historical study (be it a
control group or a treatment group) ... [the results] become
VERY sensitive to the hyperprior [on the variance parameters
that control the amount of borrowing].”

I Borrowing from historical data offers advantages:
I reduced sample size (at least in control group) hence lower

cost and ethical hazard, plus higher power

but also disadvantages:
I higher Type I error, plus a possibly lengthier trial if the

informative prior turns out to be wrong

I Thus what is needed is a recipe for how much strength to
borrow from the historical data

I One possibility: “back out” this amount based on Type I error
and power considerations. This is often done, but tends to
defeat the historical data’s original purpose!
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Proposed solution: Power Priors

Introduced by Ibrahim and Chen (2000, Statistical Science)

I IC (2000) define historical data as “data arising from previous
similar studies”

I Let D0 = (n0, x0) denote historical data and suppose θ is the
inference parameter

I Suppose π0(θ) is the prior distribution on θ before D0 is
observed, the initial prior

I The power prior on θ for the current study is proportional to
the initial prior times the historical data likelihood raised to
power α0, where α0 ∈ [0, 1]:

π(θ|α0,D0) ∝ π0(θ)L(θ|D0)α0 ,

or just L(θ|D0)α0 for flat initial priors (which are all we use).
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Power Priors (cont’d)

I The power parameter, α0, “can be interpreted as a relative
precision parameter for the historical data” (IC, 2000, p.48)

I certainly apparent if x0i
iid∼ N(θ, σ2

0), i = 1, . . . , n0, since then
under a flat initial prior we get a N

(
x̄0, σ

2
0/(α0n0)

)
power prior

for θ, with α0n0 “effective historical controls”

I As α0 → 1, q(θ|D,D0, α0) approaches full borrowing

I As α0 → 0, q(θ|D,D0, α0)→ q(θ|D) hence no borrowing

I As such, we might use a Beta(a, b) hyperprior on α0, to try to
learn about α0 rather than just fix it

I For given n, the amount of borrowing from the historical data
depends on how consistent with the current data we think it
is, with the “degree of consistency” controlled by the Beta
hyperparameters, a and b
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Hierarchical Power Priors
I Under the Beta(a, b) hyperprior on the power parameter α0,

we obtain the joint posterior for θ and α0 given D and D0,

q(θ, α0|D0,D) ∝ αa−1
0 (1− α0)b−1π0(θ)L(θ|D0)α0L(θ|D) .

I Problem: Only D0 (not D) can inform about α0, and it can’t
say much: marginal posterior can be flat or multimodal

I Potential solution: Assume instead that α0 ∼ Bernoulli(p)
and p ∼ Beta(c, d), so that now α0 ∈ {0, 1} has a two-point
mixture prior with mixing probability p ∈ [0, 1]. Now

q(θ, α0, p|D0,D) ∝ pα0+c−1(1−p)d−α0π0(θ)L(θ|D0)α0L(θ|D) .

I Now borrowing is conceptually an “all or nothing”
proposition, and could be made even more so by marginalizing
out p as follows: If p̂ = argmaxp q(p|D0,D) > 1/2, fix α0 = 1
and proceed with the full borrowing design; otherwise proceed
with no borrowing (α0 = 0) — quasi-empirical Bayes!
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Example: Power Prior Model for a One-Arm Trial

Suppose a pilot study suggests that a true treatment effect for a
particular drug exists and is indicated by µ 6= 0

Historical Data

I Suppose x0 = (x01, ..., x0n0) ∼ Normal(µ, σ2
0) i.i.d.

where D0 = (x0, n0, σ
2
0) and σ2

0 is known

I π0(µ) ∝ 1

I q(µ|D0) = Normal(x̄0,
σ2

0
n0

)

Power Prior Model

I Suppose x = (x1, ..., xn) ∼ Normal(µ, σ2) i.i.d.
where D = (x, n, σ2) and σ2 is known

I π(µ|α0,D0) = [q(µ|D0)]α0 , where α0 ∈ [0, 1]

I π(α0) = Beta(a, b)

MCMC: Gibbs-Metropolis steps for µ and α0
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Power Prior Model Operating Characteristics

Compare frequentist properties of power prior models to no
borrowing (α0 = 0) and full borrowing (α0 = 1) for testing the null
hypothesis H0 : µ = 0 (no treatment effect).

I Define µ0 be the true mean of the historical data

I Fix µ0 = 2 (trt historically effective), n0 = 30, σ0 = σ = 1

I Compute empirical probability of rejecting null hypothesis and
covering µ for µ = (0, 0.25, 0.5, 1, 2) and n = (1, 5, 10, 20, 30)

Simulation procedure:

1. Given true µ, draw x0i
iid∼ N(µ0, σ

2
0) and xi

iid∼ N(µ, σ2)

2. Run MCMC and compute the 95% marginal posterior credible
interval for µ

3. Repeat Nrep = 500 times, recording the number of times 0 is
excluded and µ is covered to obtain empirical probabilities
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Power Prior Model Operating Characteristics

Power Parameter Priors

1. Uniform power parameter prior: π(α0) = Beta(1, 1)

2. Optimistic power parameter prior: π(α0) = Beta(4, 1)

Remarks

I Optimism with respect to exchangeability of historical and
current data

I For Beta(a, 1) power parameter prior, increasing a increases
optimism

I Choose a relative to n and desired type I error rate. We can
“afford” larger a (more power) by increasing n and/or
decreasing the Type I error rate.
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n
µ 1 5 10 20 30
0 (1.00,0.34) (0.78,0.11) (0.40,0.07) (0.19,0.06) (0.14,0.05)

(0.05,1.00) (0.05,1.00) (0.05,1.00) (0.05,1.00) (0.05,1.00)

0.25 (1.00,0.45) (0.90,0.23) (0.67,0.20) (0.60,0.31) (0.59,0.37)
(0.06,1.00) (0.09,1.00) (0.12,1.00) (0.20,1.00) (0.28,1.00)

0.50 (1.00,0.56) (0.97,0.45) (0.91,0.54) (0.92,0.71) (0.95,0.85)
(0.08,1.00) (0.20,1.00) (0.35,1.00) (0.61,1.00) (0.78,1.00)

1 (1.00,0.74) (1.00,0.82) (1.00,0.95) (1.00,1.00) (1.00,1.00)
(0.17,1.00) (0.61,1.00) (0.89,1.00) (0.99,1.00) (1.00,1.00)

2 (1.00,0.94) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00)
(0.52,1.00) (0.99,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00)

Empirical probabilities of rejecting the null hypothesis µ = 0 for µ0 = 2,
n0 = 30, and σ0 = σ = 1; color key: optimistic power parameter prior,
uniform power parameter prior, no borrowing, and full borrowing.
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n
µ 1 5 10 20 30
0 (0.00,0.66) (0.23,0.89) (0.60,0.94) (0.81,0.93) (0.87,0.93)

(0.95,0.00) (0.95,0.00) (0.95,0.00) (0.95,0.00) (0.95,0.00)

0.25 (0.00,0.64) (0.15,0.88) (0.51,0.93) (0.75,0.94) (0.85,0.93)
(0.95,0.00) (0.95,0.00) (0.95,0.00) (0.95,0.00) (0.95,0.00)

0.50 (0.00,0.65) (0.08,0.83) (0.35,0.90) (0.63,0.94) (0.77,0.94)
(0.95,0.00) (0.95,0.00) (0.95,0.00) (0.95,0.00) (0.95,0.00)

1 (0.00,0.68) (0.04,0.80) (0.18,0.83) (0.45,0.89) (0.59,0.94)
(0.95,0.00) (0.95,0.00) (0.95,0.00) (0.95,0.01) (0.95,0.03)

2 (0.95,0.95) (0.95,0.95) (0.95,0.95) (0.95,0.95) (0.95,0.95)
(0.95,0.95) (0.95,0.95) (0.95,0.95) (0.95,0.95) (0.95,0.95)

Empirical probabilities of 95% posterior credible interval covering µ for
µ0 = 2, n0 = 30, and σ0 = σ = 1; color key: optimistic power parameter
prior, uniform power parameter prior, no borrowing, and full borrowing.
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n = 1 n = 5 n = 30
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Posteriors for α0 (top) and µ for true µ = 0, µ0 = 2, n0 = 30, and σ0 = σ = 1;
color key: optimistic power parameter prior, uniform power parameter prior, no
borrowing, and full borrowing.
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n = 1 n = 5 n = 30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

a0

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

a0
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

a0

de
ns

ity

−1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

mu

de
ns

ity

−1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

mu

de
ns

ity

−1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

mu

de
ns

ity
Posteriors for α0 (top) and µ for true µ = 1, µ0 = 2, n0 = 30, and σ0 = σ = 1;
color key: optimistic power parameter prior, uniform power parameter prior, no
borrowing, and full borrowing.
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n = 1 n = 5 n = 30
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Posteriors for α0 (top) and µ for true µ = 2, µ0 = 2, n0 = 30, and σ0 = σ = 1;
color key: optimistic power parameter prior, uniform power parameter prior, no
borrowing, and full borrowing.
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Time Sensitive Power Prior Model

Model borrows disproportionately from historical data by imposing
high influence on recent observations, but allowing influence to
decrease with time. The power prior parameter, α0(tj), is now a
function of tj , the time passed since observing the jth outcome.

General Time Sensitive Power Prior Model

I Suppose x = (x1, ..., xn) ∼ Normal(µ, σ2) i.i.d.
where D = (x, n, σ2) and σ2 is known

I We now have n0 distinct power parameters, α0(t1), ..., α0(tn0)

I The power prior in our Gaussian case is thus

π(µ|D0, α0(t)) =

 n0∏
j=1

(2πσ2
0)−

α0(tj )

2

 e
− 1

2σ2
0

∑n0
j=1 α0(tj )(µ−x0j )

2
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Time Sensitive Power Prior Model

Logistic Time Sensitive Power Prior Model

I Let logit [α0(tj)] = β0 − β1tj
I Fix β0 = 3 so α0(0) = 1

1+e−3
∼= 1

I Assume π(β1) = Gamma(c , d) (influence non-increasing in t)

I Choose c and d to achieve acceptable Type I error by enabling
large β1 when the historical and current data are inconsistent

Full conditional posterior distribution for µ|D,D0, β1:

q(µ|D,D0, β1) ∝ e
− 1

2σ2
0

∑n0
j=1

(
1

1+e
−(3−β1tj )

)
(µ−x0j )

2+ n
σ2 (x̄−µ)2

MCMC: Again, Gibbs-Metropolis steps
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Adaptive Power Prior for Controlled Trial
Power prior models for controlled trials naturally advocate a
randomization scheme that is “optimal” with respect to α0 by defining
the allocation ratio as function of the number of the “effective historical
controls”, n0α0

I Let sj and rj denote the number of subjects randomized to new and
control devices in the current trial after the jth enrollment

I Define ηj to be the proportion of “effective historical controls” and
current controls after the jth enrollment

ηj =
rj + n0α0

sj + rj + n0α0

I Use median q(ηj |Dj ,D0j ,Gj , α0j) as the probability that the j + 1st

subject is assigned to the new device, to encourage balance by
imposing optimal use of new subjects relative to amount of
incorporated prior information

I Update posterior in blocks after initial period using ηj=1/2
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Randomized Controlled Colorectal Cancer Trial

Patients randomized (N=795) May 1999 to April 2001

1. irinotecan and bolus fluorouracil plus leucovorin (IFL) (n = 264)
regulatory standard in March 2000

2. oxaliplatin and infused fluorouracil plus leucovorin (FOLFOX)
(n = 267) new regimen

3. irinotecan and oxaliplatin (IROX) (n = 264) new regimen

Analysis with Power Prior Model

I Longest diameter (cm) of 1 to 9 tumors measured every 6 weeks for
the first 42 weeks or until a response (death or disease progression)

I Compare IFL, IROX, and FOLFOX for median change in tumor sum
from BL in patients with measurable tumors and at least two cycles
(N = 590)

I IFL historical controls: patients enrolled before Oct. 2000
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Analysis of Colorectal Cancer Data with Power Priors

Suppose (v0, v , y1, y2) are responses for (historical IFL, current IFL,
FOLFOX, IROX) and

I v0i
iid∼ Normal(µ, σ2), i = 1, . . . , n0 = 82

I vi
iid∼ Normal(µ, σ2), i = 1, . . . , n = 120

I y1i
iid∼ Normal(λ1, τ

2
1 ), i = 1, . . . ,m1 = 200

I y2i
iid∼ Normal(λ2, τ

2
2 ), i = 1, . . . ,m2 = 188

Analysis of historical IFL, v0

I π0(µ) ∝ 1

I π0(σ) = Log-Normal(−5,
√

10)

I q(µ|v0) = Normal(v̄0,
σ2

n0
) (historical posterior)

I q∗(σ|v0) ∝ 1
σ

n0+1
exp

(
− 1

2
(v0−µ)T (v0−µ)

σ2 + (log σ+5)2

√
10

)
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Analysis of Colorectal Cancer Data with Power Priors

Since FOLFOX and IROX are new regimens, let π(λj) ∝ 1, j = 1, 2
Power Priors for current IFL, (v), FOLFOX, (y1), and IROX, (y2)

I π(µ|α0, v0) = [q(µ|v0)]α0

I π(σ|φ0, v0) = [q∗(σ|v0)]φ0

I π(τj |ω0j , v0) = [q∗(τj |v0)]ω0j , j = 1, 2

Power Parameter Priors

I π(α0) = Beta(1, 1), π(φ0) = Beta(1, 1), and π(ω0j) = Beta(1, 1) ,
j = 1, 2

Full conditional distributions for mean parameters:

I f (λj |rest) = N(ȳj ,
τ 2

j

mj
), j = 1, 2

I f (µ|rest) = N
(
τ 2

1 τ
2
2 (nv̄+n0v̄0(α0+φ0))+σ2n0v̄0(τ 2

2ω01+τ 2
1ω02)

σ2τ 2
1 τ

2
2

V , V
)

where V =
σ2τ 2

1 τ
2
2

τ 2
1 τ

2
2 (n+n0(α0+φ0))+σ2n0(τ 2

2ω01+τ 2
1ω02)
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Analysis of Colorectal Cancer Data with Power Priors
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Top row: posteriors for α0 (left) and φ0, ω01, ω02 (right). Bottom row, posteriors
for µ, λ1, λ2 (left; dashed line is historical posterior for µ) and for σ, τ1, τ2 (right).

I FOLFOX doing marginally better than IROX (λ1 < λ2)

I But α0 posterior ≈ flat ⇒ try a less overparametrized model?
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Hierarchical Model for a Doubly Controlled Trial
Now suppose the full “Telba model” where historical data exists
for both the treatment and control groups

To address this for future FDA applicant audiences we step back
from power priors to a straight hierarchical modeling framework
using standard components:
Let g = 0, 1 indicate group (historical or current), and let
i = 1, . . . , ng index the patients in each group

Alternative hierarchical model:

Likelihood: Ygi
ind∼ N(θg + βgxgi , σ

2
g )

where xgi =

{
0 if patient gi received control
1 if patient gi received treatment

Prior: θg
iid∼ N(µθ, τ

2
θ )

and βg
iid∼ N(µβ, τ

2
β)
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Hierarchical Model for a Doubly Controlled Trial
Prior shrinkage

I If τ2
θ = 0, then θg = µθ for all g , and we have no borrowing

among the control groups
I If τ2

β = 0, then βg = µθ for all g , and we have no borrowing
among the treatment groups

Hyperprior

I Take flat hyperpriors on the mean parameters µθ and µβ.
I For the variances, work (like WinBUGS) on the precision scale,

assuming η ∼ G (aθ, bθ) and ηβ ∼ G (aβ, bβ) where η = 1/τ2

I So if aβ = 1000 and bβ = 10⇒ ηβ ≈ 100⇒ τβ ≈ 0.1, a
high-shrinkage hyperprior

I If aβ = 40 and bβ = 4, this is a vaguer prior having
ηβ ≈ 10⇒ τβ ≈ 0.3, a moderate-shrinkage hyperprior

I If aβ = bβ = ε = 0.1, the hyperprior is vague and the data
must do all the work a low-shrinkage hyperprior

Differing levels of shrinkage would also be assigned to the
control group via aθ and bθ.



Introduction Models Data Example Alternative HMs Doubly controlled trials Operating Characteristics Conclusions

Simulation of Operating Characteristics

Suppose we take n0 = n1 = 20, and without loss of generality take
σ2

g = 1. Simulate frequentist power under a couple different
scenarios:

I θ0 = θ1 = 0, β0 = β1 = 0: complete homogeneity; no reason
not to borrow

I θ0 = θ1 = 0, β0 = 0, β1 = 2: slight heterogeneity across
treatment groups; borrowing suspect

I θ0 = 0, θ1 = 30, β0 = 0, β1 = 2: Enormous heterogeneity
across control groups, slight heterogeneity across treatment
groups; borrowing very suspect

In each case, we would lay out a grid of “true” β1 values, choose
the shrinkage level in the treatment and control group hyperpriors,
and simulate frequentist power under various hypotheses....
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Test for treatment effect in current trial
Hypotheses: H0 : β1 = 0 vs. Ha : β1 6= 0

Rule: Reject H0 if the central 95% credible interval excludes 0

Results for θ0 = 0, θ1 = 30, and β0 = 0 (left) vs. β0 = 2 (right)
under “moderate shrinkage” prior for the θ’s:
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Note high-shrinkage does well when β0 = 0 (left panel) even
though θ1 6= 0, but has high Type I error when β0 6= 0 (right panel)
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Test whether “To pool or not to pool”

Hypotheses: Define ∆ = β1 − β0, and test H0 : ∆ ∈ (−c , c) for
some c > 0, vs. Ha : ∆ /∈ (−c , c)

Rule: Reject H0 if P(∆ ∈ (−1, 1)|y) < 0.80

Results for θ0 = θ1 = 0, and β0 = 0 (left) vs. β0 = 2 (right) under
“low shrinkage” prior for the θ’s:
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Conclusions
I We’ve investigated several frameworks for sensible use of

Bayesian adaptive methods in clinical trial design and analysis
I Power priors emerge as effective tools for borrowing strength

from historical data
I nagging question: Data-based estimation of α0?

I For the doubly controlled trial, the alternative hierarchical
models offer a viable power prior-free approach, and also
answer a company’s question, “May we pool these two data
sets in our FDA application?”

I Future work:
I re: the “nagging question,”

I Try empirical Bayes (EB) methods to estimate model
variances, then use power priors only on the mean parameters

I Investigate identifiability of power parameters, and extend to
models that “parametrize commensurability” (similarity
between D and D0) so this can be used to help

I Extending our basic power prior models to the binary and
time-to-event data settings
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