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Compartments' in food webs are subgroups of taxa in which
many strong interactions occur within the subgroups and few
weak interactions occur between the subgroups’. Theoretically,
compartments increase the stability in networks'~, such as food
webs. Compartments have been difficult to detect in empirical
food webs because of incompatible approaches®” or insufficient
methodological rigour®'®"'. Here we show that a method for
detecting compartments from the social networking science'>™"*
identified significant compartments in three of five complex,
empirical food webs. Detection of compartments was influenced
by food web resolution, such as interactions with weights.
Because the method identifies compartmental boundaries in
which interactions are concentrated, it is compatible with the
definition of compartments. The method is rigorous because it
maximizes an explicit function, identifies the number of non-
overlapping compartments, assigns membership to compart-
ments, and tests the statistical significance of the results’>'*. A
graphical presentation'* reveals systemic relationships and taxa-
specific positions as structured by compartments. From this
graphic, we explore two scenarios of disturbance to develop a
hypothesis for testing how compartmentalized interactions
increase stability in food webs'>™"’.

Similarity between human social networks and food webs has
recently been noted through exchanges between ecologists and
sociologists'®'?. In the social sciences, cohesive subgroups in
human communities have been an important concept since the
1950s, when it was proposed that social systems were more efficient
and durable when composed of subgroups in which interactions
were concentrated>***'. The concept of cohesive subgroups has had
strong theoretical support, but the methodologies needed to apply
the concept to communities were lacking'>'*. This is also the case for
food-web compartments in ecology, wherein methods for identify-
ing compartments have often emphasized the similarity of prey and
predators between taxa®”®, which results in little direct interaction or
carbon exchange within compartments.

Here we use a recently developed social network method'>'* for
identifying cohesive subgroups to detect compartments in empiri-
cal food webs. The method identifies compartments in which
interactions are concentrated, thus conserving the flow of energy
and organic material, for example, within compartments, just as
information and influence flow primarily within human subgroups
in which interactions are concentrated. Although the algorithm
identifies compartments in which interactions are concentrated,
interactions are not exclusively confined within compartments.
Thus there are critical cross-compartment interactions that inte-
grate the compartments into a food web', just as interactions
between people in different subgroups sustain social systems and
societies™*!.

Crucial to the network method is the criterion defining the
concentration of interactions within compartments, where an
interaction is predator taxon i consuming prey taxon i'. The
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criterion is the increase in the odds of an interaction occurring
(as opposed to not occurring) given that two taxa are in the same
compartment as opposed to in different compartments. This odds
ratio corresponds to [(AXD)/(BXC)] as defined in Table 1 and can
be interpreted as a comparison of density of interactions within
versus between compartments and is thus associated with key
parameters for social network models'>. The statistical significance
of the odds ratio is determined by Monte Carlo simulations (see
Methods). In the food-web literature®, density is analogous to
interactive connectance (IC), with overall IC defined by [(B+D)/
(A4+B+C+D)] and interpreted as the proportion of realized inter-
actions out of all possible interactions.

The algorithm we employed has four features'*™* that are crucial
for our application®*. First, taxa are assigned to non-overlapping
compartments as a result of the odds ratio being a flexible cri-
terion'>™**. Thus, the assignment of each taxon contributes to the
concentration of interactions within all of the compartments of the
food web'. Second, the algorithm generally does not require a
priori specification of the number of compartments. This feature
removes a key subjective decision from the procedure and assists in
simulating a sampling distribution for the odds ratio. Third, the
algorithm was calibrated by applying it to extensive simulated data
with known compartment assignments'>". Fourth, compartment
boundaries can be embedded in a graphical presentation of the food
web"?, thus facilitating the interpretation of the roles of compart-
ments and their taxa within food webs. None of the previous
methodologies in either social networks''™'* or ecology®"! have all
four of these important features.

We applied this method to five food webs: Ythan Estuary®, Little
Rock Lake**?*, St Martin Island*®, Chesapeake Bay*** and a cypress
wetland (See Supplementary Information A). Seventeen separate
versions of these food webs with various levels of aggregation of
taxa, weight of interactions and season were considered. Seven of
them yielded odds ratios that were statistically significantly greater
than would be expected by chance alone (Table 2; o = 0.05). Six of
these would still be statistically significant when adjusting for the
number of tests by using a Bonferroni correction of a. As we
expected, IC within compartments was higher and IC between
compartments was lower than the overall IC (by factors of 1.9 to 3.5
and 0.003 to 0.27 respectively). The algorithm did not detect
compartments in St Martin Island, a narrow food web focused
on two lizard species and not likely to have compartments, but
did detect compartments in broader food webs (for example,
Chesapeake Bay). This is consistent with our claim that the method
is able to detect the presence or absence of compartments with
reasonable accuracy.

The resolution of a food web can affect the detection of compart-
ments. We detected compartmentalization in only 1 of 14 less
complex food webs originally analysed®® (Supplementary Infor-
mation B) as opposed to three of five more complex food webs
presented here. No compartments were detected in the aggregated
version of Little Rock Lake or in the unweighted versions of
Chesapeake Bay and the cypress wetland, whereas compartments
were detected in alternative versions. These inconsistencies suggest
that ignoring weights when aggregating taxa decreases the number
of analysed interactions and can obscure strong relationships that
contribute to compartmentalization. Note that the range in weights
for interactions in all of our food-web versions was at the upper
limit for the method. Ideally, the range should be narrower (for
example, from 1 to 100). A wide range in weights (for example, from
1 t0 99,999) can result from high aggregation in the basal taxa and
low aggregation in top predators, such as in our weighted food
webs.

The graphical presentation (Fig. 1) shows the compartmental
structure of the Chesapeake Bay food web with 45 taxa and weighted
by interaction strength. Although the detail in this graphic seems
complex™, the image reveals an intuitive understanding of the food
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Table 1 Association between compartment membership and occurrence of interactions between taxa

Interaction occurring

No Yes
Compartment membership Different A B n(n—1) = Egng(ng — 1)
Same C D Lgng(ng — 1)
nin—1)— L5 X T X nin—1)

Xir represents the presence (1) or absence (0) of an interaction between taxon/and taxon ", n the number of taxa in the food web, and n4 the number of taxa in compartment g. Interactions between
predator taxon /i and prey taxon i’ can be weighted by integers from 0 to W, the maximum weight across all ii" interactions. Weights are included in the above table by multiplying X;: by the weight
assigned to the ii" interaction and by multiplying n(n — 1) and Z,ng(ng — 1) by Wi, (ref. 13). A represents unrealized interactions between compartments, B realized interactions between

compartments, C unrealized interactions within compartments, and D realized interactions within compartments.

web. Compartment A has 28 taxa, most of which would be
considered pelagic (in the water column) and compartment B has
17 taxa that are primarily benthic (in sediments). Some taxa
placements might seem counterintuitive when considering the
physical component of habitat. For example, clams (27, 28 and
29) and oyster (30) physically reside in the benthos, like the clams
(25 and 26) in compartment B. Our results demonstrate that the
biotic habitat of 27, 28, 29 and 30 is in the pelagia because of their
strong interactions with bacteria (3, 4 and 5) and ciliates (7, 8 and 9)
in compartment A, which supports previous research®’. Compart-
ments should measure biotic habitat®'®"', and compartment mem-
bership from our other significant results (Supplementary
Information C) lend additional support. At the system level,
compartments A and B are linked through cross-compartment
interactions. The few weak interactions indicate the level of iso-
lation between the two compartments. The interactions that com-
partment B has with A are more evenly dispersed within its
compartment, where 65% of its taxa interact with A. Conversely,
only 30% of the taxa in compartment A interact with B and these
interactions are concentrated within specific areas of A.

Placement of a taxon indicates its role within its compartment.
For compartment B, taxa 2, 22 and 45 are centrally located,
indicating their importance to compartmental interactions, par-
ticularly in comparison with those taxa around the periphery of
compartment B, such as 21, 33 and 41. Central to compartment A is
afood chain (1, 6 and 14). Of the 25 other taxa in A, 23 interact with
one of these three taxa. Peripheral taxa placed near to another
compartment relate more strongly to that compartment than
peripheral taxa placed further away. For example, peripheral
taxon 16 has two interactions within compartment A and interacts
with taxa that only interact within A, so 16’s position is far from
B. Conversely, peripheral taxon 41 has one interaction within
compartment B and one that goes to A, so its position within B is
close to A. Taxon 36 has the role of a bridging taxon between

compartments A and B, where most of the interactions between A
and B are attributable to 36.

Because previous work relates compartments to stability'>, we
developed a hypothesis of stability by simulating two disturbance
scenarios on our food web in Fig. 1. The first removes weakfish (36),
which could occur with overfishing. This disturbance'” translates to
a decrease in the number of taxa (—2% = taxa loss). Our overall IC,
a variable of interest'>'7, was —1.5-fold the taxa loss. The IC within
compartment A, where 36 was a member, was —3-fold the taxa loss,
whereas the IC within B showed no change. Between IC was 18-fold
the taxa loss because 36 was a dominant bridging taxon. In our
second scenario we considered replacing Acartia tonsa (6), a central
taxon in compartment A, with an invading zooplankton, a periph-
eral taxon, that preys only on large bacteria (5) and macrociliates (8)
in A and is unpalatable to predators. This new invader reduces
realized interactions (—5% = interaction loss). In response to this
disturbance, the overall IC changed by the same percentage (1-fold
the interaction loss, as expected), as did the IC within compartment
A. The IC within compartment B was —0.3-fold the interaction loss
and the between IC was 1.5-fold the interaction loss. Because the
factoral change in IC values in relation to the disturbance index
(taxa or interaction loss) indicates resistance', we propose that
compartment B would be the most resistant and the exchange
between A and B would be the least resistant to both disturbance
events. That is, compartmentalization retains the impacts of a
disturbance within a single compartment, minimizing impacts on
other compartments and thus providing the stabilizing structure to
food webs. This hypothesis is consistent with previous studies'® that
found that weak interactions buffer the effect of disturbances,
demonstrated by compartment B’s resistance to disturbances occur-
ring in A.

An empirical test® of hypotheses such as ours requires longi-
tudinal data for multiple food webs, compartmentalized and
uncompartmentalized'~, that have undergone disturbance events'”.

Table 2 Compartment analysis for five food webs

Name n Weight of QOdds ratio P Number of Overall IC Within IC Between IC
interaction compartments
Ythan Estuary 134 None 4.19 =0.999 3 0.033 - -
Little Rock Lake 92 None 3.14 =0.999 2 0.12 - -
181 None 10.04 =0.001* 4 0.072 0.17 0.020
St Martin Island 44 None 4.20 =0.907 5 0.11 - -
44 Frequency 28.93 =0.803 6 0.0065 - -
Chesapeake Bay 33 None 8.61 =0.751 3 0.067 - -
33 Strength 642.55 =0.001* 2 0.0029 0.0059 0.0000093
33 Carbon 618.75 =0.012* 2 0.0035 0.0071 0.000012
45 None 9.63 =0.200 4 0.069 - -
45 Strength 114.92 =0.001* 2 0.0052 0.0099 0.000087
45 Carbon 165.84 =0.001* 3 0.0018 0.0044 0.000026
Cypress wetland
Dry season 64 None 5.52 =0.285 2 0.1 - -
64 Strength 11.93 =0.918 3 0.0021 - -
64 Carbon 228.18 =0.001* 5 0.00057 0.0020 0.0000088
Wet season 64 None 7.81 =0.001 1 0.11 - -
64 Strength 12.34 =0.910 4 0.0026 - -
64 Carbon 384.81 =0.001* 3 0.00044 0.0013 0.0000033

See the text and Table 1 for the calculations of the odds ratio, overall IC and definitions of A, B, C and D. IC within compartments is calculated as D/(C+D), and IC between compartments is calculated as
B/(A + B). Asterisk indicates significance at « = 0.05.
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Scientific name or

classification

Phytoplankton

Benthic producers

Bacteria <1 pum (small)

Bacteria >1 <2 um (medium)

Bacteria >2 um (large)

Acartia tonsa (copepod)

Micro ciliates

Macro ciliates

Predaceous ciliates

Chrysaora quinquecirrha

(sea nettle)

11 Mnemiopsis leidyi
(comb jelly)

12 Nemopsis bachei (jellyfish)

13 Cladocera

14 Other zooplankton

15 Anchoa mitchilli larvae
(anchovy)

16 Anchoa mitchilli eggs

17 Fish larvae

18  Marenzelleria viridis

(polychaete)
19 Nereis succinea (polychaete)
20 Hetermastus filiformis

70

60
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[=]

50 -
40
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20 -
10

(rosy ciam)
27 Rangia cuneata
(wedge clam)
28  Mulinia lateralis (coot clam)
29 Mya arenaria
(soft-shelled clam)
30 Crassostrea virginica (oyster)
Callinectes sapidus

Dimension 2
o
1

(bluecrab)
32 Anchoa mitchilli

—20 - (bay anchovy)
Vi

=30 ;
36 Cynoscion regalis (weakfish)
37 Alosa sapidissima
(American shad)
38 Alosa pseudoharengus
(alewife)
39 Alosa aestivalis
(blue-back herring)
40 Brevoortia tyranus
(menhaden)

(white perch)
42 Morone saxatilis
(striped bass)
Pomatomus

=40 - A

-60
(bluefish) :

44 Paralichthys dentatus

(flounder)

-80
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Dirmension 1

Figure 1 Graphical display of the results for the Chesapeake Bay food web with 45 taxa  identify taxa (yellow, within compartment A; blue, within compartment B). Arrows indicate
and weighted by interaction strength. Units are relative distances based on the inverse of  interactions between taxa (solid red, within compartment; dashed green, between

the density of interactions. Within-compartment distances were decreased by a factor of ~ compartments; thickness indicates rank of associated interaction strength) and point from
6.2 for aesthetic purposes. Circles indicate compartment boundaries and numbers predator to prey.
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The changes in variables of interest (for example, IC) should be
assessed for stability properties, such as resistance'. Our results
show that this method is a rigorous and effective way to analyse
food-web structure and provide the initial steps in understanding
the relationship between compartments and stability'~. ]

Methods

Interactions were weighted by interaction frequency, by carbon flow or by interaction
strength. Interaction frequency was estimated as acts of predation per hectare per day.
Carbon flow from prey i’ to predator i, W;;, was estimated as g C mfzyr*1 (refs 27, 28).
Interaction strength was the geometric mean of the interaction strengths between predator
iand prey i’ (ref. 30). The interaction strength of predator i on prey i was measured as
—(W,;1B;), where B; is the biomass of predator i (g C m ™ 2), and the interaction strength
of prey i' on predator i was measured as R;(W;;/B;), where B; is the biomass of prey i’
(gCm™?) and R; is the production to consumption ratio of predator i (ref. 30). With
weights, the definition of IC becomes the proportion of possible interactions, each with
maximum weight, that are realized (with no cannibalistic interactions).

We used the software KliqueFinder'” to identify compartments. Because KliqueFinder
operates on an integer scale from 1 to 99,999 we modified the interactions for weighted
versions of the food webs to fit the scale. The modifications had little or no effect on the
results. To test whether the concentration of interactions within identified compartments
was greater than what was likely to have occurred by chance alone, for each web we
conducted Monte Carlo simulations. First, we randomly reassigned interactions,
constraining the row marginal (sum of each row in a matrix) to be equal to the row
marginal of the original food web, where rows represented predators and columns
represented prey. We then applied KliqueFinder and recorded the odds ratio. We then
repeated this process 1,000 times to obtain a sampling distribution against which we could
compare the empirical odds ratio. Our constraints ensured that the simulated food webs
had the same number of predators, the same number (and weight) of interactions
associated with a predator, and the same total number (and weight) of realized
interactions as the original food web. Basal taxa (taxa with no prey) did vary in simulations
for some food web versions, which did change the overall IC from the original for some
food webs but we found that there was little or no effect on the P values and no effect on
statistical inference.

Although the range of calibrating simulations'>'* (the third feature of the
methodology) did not allow a direct assessment of the performance of the algorithm
for our data (because of large n and weighted interactions), the algorithm typically
performs well when there is evidence of compartments in non-weighted data'>.
Cannibalism and taxa that interacted with only one other taxon were dropped from the
analysis when optimizing the odds ratio because these interactions do not add information
to the relative assignments of taxa to compartments. Dropped taxa were added back to the
food web for the calculations in Table 2.

Coordinates for the diagram in Fig. 1 were generated by employing multidimensional
scaling within and between subgroups", and SAS proc gplot was used to generate the
figure. Because of the large magnitude of the difference between the smallest and largest
interaction strength weightings (~10,000-fold), the lines were weighted by the rank of the
associated interaction strength, where the smallest interaction strength was given a rank of
1 and the largest a rank of 137 (the maximal number of realized interactions). The units are
based on the inverse of the between-compartment density (0.0097).

In our scenarios for exploring compartments and stability, we made one simple
assumption: the predators of the taxon involved in the disturbance compensated for the
loss in their interactions by increasing their interaction strength with their remaining prey
items. For the first hypothetical scenario, all interactions with taxon 36 were removed and
the predators on 36 had their interaction strengths associated with 36 redistributed
proportionally to their other prey interactions. For the second hypothetical scenario, all
interactions associated with taxon 6 were removed except for those with taxa 5 and 8. The
interactions of the predators on 6 were modified in the same manner as in the first scenario.
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Group I metabotropic glutamate receptors (consisting of
mGluR1 and mGluR5) are G-protein-coupled neurotransmitter
receptors’ that are found in the perisynaptic region of the post-
synaptic membrane’. These receptors are not activated by single
synaptic volleys but rather require bursts of activity’. They are
implicated in many forms of neural plasticity including hippo-
campal long-term potentiation and depression®®, cerebellar
long-term depression®"!, associative learning”'', and cocaine
addiction>. When activated, group I mGluRs engage two
G-protein-dependent signalling mechanisms: stimulation of
phospholipase C and activation of an unidentified, mixed-cation
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